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introduction

One of the problems considered as descriptive set theory developed
in the first half of this century was the following: Under what conditions
are two Borel sets, 4 and B, Borel isomorphic, that is, under what conditions
does there exist a one-to-one map f of 4 onto B so that if £ is a subset
of A then E is a Borel set relative 10 4 if and only if f(E) is a Borel
set refative to B? It was shown that two Borel subsets 4 and B of a Polish
space X are Borel isomorphic if and only il they have the same cardinality
([13]. p. 451). -

The corresponding problem for analytic or counalvtic sels was not
solved. The reason for this, as we now know, is that this problem is intimately |
involved with the axioms of set theory. C. Ryll-Nardzewski and A. Maitra [15%
showed that il there is a “thin™ coanalytic set — an uncouniable coanalytic
set C which does not contain a perfect set, then C i not Borel isomorphic
to a universal coanalytic set. Later the second author of this paper showed
that if 4 is the complement of such a coanalytic set C, then 4 is not Borel
isomorphic to Ax A4 or to Ax[0, 17[18]. Of course. Gidel announced [7]
that the existence of a thin coanalytic set follows from the Axiom of
Constructibility (V = L), which he proved to be consistent with the usual
axioms of set theory (denoted by ZF, for Zermelo and Fraenkel).

On the other hand, Solovay proved that if there is a measurable cardinal,
then every uncountable coanalytic set has a perfect subset (see T16]). In fact,
it is known that all analytic games are determined if and only if there is
exactly one isomorphism class of coanalytic non-Borel sets [8]. There are
various assumptions which imply that all analytic games are determined [161.

More recently, it was shown by Hrbacek [10] and others that, assuming
the Axiom of Constructibility (V = L}, there exists a family of continuumly
many pairwise non-Borel-isomorphic coanalytic sets. One purpose of this paper
is to construct several particularly nice families of non-isomorphic coanalytic
sets. The following four theorems are proved in Sections 3 and 4, assuming
that all reals are constructible.

Turorem 1 There is a coanalytic subset Q of NYx N such that the
projection w2 (Q) is coanalytic. each horizontal section Q¥ is clopen. cach
vertical section @y contains a perfect set and no two vertical sections are Borel
isomorphic. Furthermore, i P is a relative Borel subset of Q and cach P,
is thin, then no two vertical sections of Q—P are Borel isomorphic.
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Tuzorem 2. There is a coanalytic subset T of NV x NV such that the
projection A TY is o thin counalytic sel. cach horvicomtal section of T is
clopen and no iwo vertical sections of T are Borel isomorphic.

In addition, we continue the study of the isomorphism properties of
algebraic and set-theoretic combinations of coanalytic or analytic sels initiated
in [18]. Given a family of sets [K;iell. let ) {Kiiel} denote the
disjoint union {J {Kix {i}: iel}; for a set K and cardinal number n, nK
denotes the disjoint union of n copies of K. Finally, [1{K:: iel} denotes
the cartesian product of the family of sets.

"TuEOREM 3. There is an uncountable family {Culc]: 0 < @ i} of pairwise
disjvint coanalvtic sets such that for any twe countable subsets My # M, of wy:
@) U !Cufc): ae My} and \J {Culo]: ae My} are not Borel isomorpitic.
(b) []iCulal: o eM}and [[ {Culal: o Maz; are not Bor of isomorphic.,

THEOREM 4. There is a family {T,: o < w,} of thin coanalytic subsets
of NV such that the sets 3 {m;T;: ie I}, where I is any coumtable subset of
o, and each n; < ww, are pairwise not Borel isomorphic. )

" These last two theorems answer some questions of J. P. R, Christensen
L6, p. 126] and several possible generalizations.

In this paper we introduce the concept of Borel equivalence of coanalytic
sets, primarily as 4 tool for the problem of Borel isomorphism.

One of the mosi important ideas of descriptive set theory is the eflective
decomposition of a coanalytic set into an ordered union of wy disjoint
Bore! sets: this was first discovered by Sierpinski [22]. We introduce the
notion of an admissible decomposition and say that two coanalytic sets 4
and B are Borel equivalent if therc are (wo admissible decompositions
4 = 1} A{z) and B = {j B{a) such that A{ax) and B(x) have the same
cardinality for all but countably many ordinals «.

Section one contains preliminaries concerning the effective decomposition,
by inductive definition, of & coanalytic set into a union of Borel sets and the
key result that Borel isomorphic sets must have similar decompositions. The
related topic of countable admissible ordinals is also discussed.

The results of section one are strengthened in section two by the
assumption of Godel’s Axiom of Constructibility. A precise definition of
‘admissible decomposition’ is given and the foliowing fundamental theorem
is proved.

THEOREM 5. Suppose that all reals are constructible. If two coanalytic
sots P and @ are Borel isomorphics then they are ulso Borel equiralent.

In section five, we consider the Borel equivalence of coanalytic sets under
the assumption that ceriain projective games are determined. As mentioned
above, Steel [8] showed under this assumption that all coanaiytic non-Borel
sets are Borel isomorphic. Now in this situation not all reals are constructible,
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so that Borel isomorphism does’ not necessarily imply Borel equivalence.
Nonetheless, we obtain the following.

THEOREM 6. If all projective games are determined, then any two coanalyvtic
non-Borel sets are Borel equivalent.

Finally, in section six, some further results and open gquestions are
considered. :

We note that a result similar to Theorems | and 2 {although with
no qualifications regarding perfect or thin seis) is essentially obtained in
Hrbacek [10]. The approach taken in [10] differs substantially from ours,
afthough the methods in both papers depend on the Boundedness Principle
of Lusin and Sierpifiski. Hrbacek uses some theorems from the field of
admissible structures to obtain results about Kicene degrees: the existence
of non-isomorphic coanalytic sets is a corollary to these results. Possible
ooﬁ.ﬁomozm between Kleene degrees and Borel equivalence are discussed in
section six.

The basic outline of the present paper first took shape in 1977 after
some years work. Some of the resuits were announced at the Spring
regional meeting of the Association in Houston, Texas in 1978,

1. Coanalytic sets and admissible ordinals

This section is a briel presentation of two closely related topics which
are basic to our study of Borel isomorphisms of coanalytic sets. The first
topic is the effective definability of coanalytic sets and the second is the
family of countable admissible ordinals. .

Some definitions are necessary. N will denote the set of natural numbers
10.1,2,...} and Seq will denote the set |J {N*: ke N} of finite sequences of
natural numbers. The natural coding map #: Seq — N is defined by # (@) = |
and — my 1 oamyt ] iy + 1 s .

# (M, ..., ny) = 2 3 wopet . where py,p,, ... lists the prime
numbers in increasing order. Seq has the usual Brouwer-Kleene ordering:

(1) 5= (mg,..., ;) <{ng,....i_, ) =1 if and only if 5 extends t(s 2 1)

or (3} {my = ng & ... & my_, = n;_, & my < ny).

‘Forany s = (mg,...,m;) and any ie N, let s« i = (mg.....my..q, 1 J will

denote the space N* of infinite sequences of natural numbers with the
product topology. Of course J may be regarded as the space of irrational -
numbers between O and 1 via their continued fraction expansions. Throughout
this paper, a real will mean an element of J. Two reals wu
= {t{0}, u(l). ...} and v = (v(0}, v(1),...} may be coded together as usxr¢
= {(1{0), £(0), u(1), v(l1),...}. Any real v may be decomposed into infinitely
many reals (i), defined by (u),(i) = u{pl*!). For any real » and any n,
uin = ({0 u(l). ... uln—1): also, write s < u for (In) {s = u|n). For s e Seq.
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J(s) is defipedsto be {ned:s < ul, The Tamily of sets [J(s): s € Scqj
forms a base for the topology on J.

J is dn example of a Polish space, that is. a complete separable
metric space. We will also be concerned with several other Polish spaces,
cuch as Seqx J. J' {for ie N) and J*. In any Polish space, the Borel sets
compose the smallest family containing every open set and closed under
complementation and countable union. A subset A of & Polish space is said
to be analytic {or E}) il there is a Borel subset B of X xJ such that
A= o (B = Ix: Gp)(v. e Bl A subset C of X is coanalytic {or IT})
if X —C is analytic. The Souslin theorem states that a set is Borel ZHE
and only if it is both X} and 1.

For two subsets B and M of a Polish space, B is said to be a relative
analvtic {respectively counalytic or Borelt subset of M if there exists a X
(resp. T} or A}) set P such that B = PnM. We will call B a pseudo—
Borel ot bianalytic subset of M if there exist an analytic set P and a coanalytic
set () such that P M = QM = B Of course any refative Borel subset
of M will be a pseudo-Borel subset of M and, il M is analytic, the converse is
also true. In general, however, there is no relativized Soustin theorem, even
for coanalytic seis.

The effective analogues of analytic, coanalytic and Borel sets are the
(lightface) £}, 11} and 4} sets. A set is (boldface) X} if and only if it is
gightface) 5! in some real parameter, and similarly for /7] and A4}, The
fundamentals of effective descriptive set theory can be found in Hinman [9]
and the authors’ {51

Perhaps the most important idea of descriptive set theory is the effective
decomposition of a coanalytic set C into a union of «, Borel sets. In
its most general form, such a decomposition can be viewed as an inductive
definition of the set . OF course. any scl has uncountably many such
decompositions. However, all of the decompositions of a particular T} set
will have certain properties in common, That is the key idea of this section.

The concept of inductive definability has a central role in the study of
coanalytic sets. Here is a briel introduction to the theory of the inductive
definability of coanalytic sets. Details can be found in [L 4, 5]

An inductive operator I” over a set X is a map [rom the power set
2% 1o 2% such that K < I'(K) for all subsets K of X. In this paper, we
will assume that I" is always monotone, that is, whenever K < M, then
F{Ky < I'(M). Let On denote the family of ordinals. The operator I' constructs
a transfinite sequence {I”: a € Onj as follows: ‘

(2) IO = @; = (M) for all ordinals o and I' = [J{I": o < A} for
limit ordinals A.

The closure CHITY of [ is 1) 177" e On). The least ordinal a such
that ™% = I = CI{I) is . the closure ordinal of I
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Anr important example of a I} sel with a nice inductive definition is
the family of countable well-orderings. coded in the Tollawing manner. For
R < Seq, let xze 2™ be defined by xix(s) = 1 if and only if seR. Note
that any countable lincar ordering can be imbedded in Seq. The set W
of countable weil-orderings is defined to be x,: R is well-ordered]
= {xe 2 Yisy, 51,...0e8eq” @ n)x{s.) = 0 OR 5,2, = 5,).

Now elements of 29 can be regarded as reals and W can be regarded
as a subsel of J. as seen by the [ollowing. Recall the coding map #:
Seq —» N defined above. For x e 2™, let #(x) be the unigue ve J such that
vimy =1 1f and only if m = # (5} and x{s) = 1 and y(m} = 0 otherwise,
The map 6 is a homeomorphism of 2%% onto a subset of J. It will be
clear from context whether W is viewed as a subset of 2%, 2% or NV = J.
Note that for each countable infinite ordinal o, {xe W ¢(x) = a} is an
uncountable Borel set, where x(x,) is the order type of R.

For peSeq and R < Seq, let Rip be [seR: s <pand pe E}. for
x&2* and s = Seq, let x T p(s) = x(s)-x(p) il s < p. and 0 otherwise.

Wis the closure of the inductive operator 4. defined by:

(3) ved(K)ifand only f ve K OR (Vi)x(s) = 0 OR (Vp)xlpe K.

In fact, for each ordinal «, 4" = }x: o(x) < a}. Thus W= Cl{4) and
td] = w,. Note that 4 is actually a 1Y operator.

The standard sieve decomposition € = ] {(,: x < w,} of a coanalytic
set can be effected by means of a continuous function ¢ such that xe C,
if and only if o{p(x}) = a. {See [14, p. 412-414].) The more general inductive
decomposition described below will simplily the analysis of the complicated
non-isomorphic sets constructed in sections three and flour.

For any real z, let g(z) be the least ordinal not recursive in z, where
is recursive in z il o{x) = o for some x in W which is recursive in -
Sacks [20] proved that a countable ordinal ¢ is admissible i and only i
a = p{z) for some real z. We will use this characterization as our definition
of the term “admissible™. Similarly, an ordinal & will be said (o be —-admissible
if @ = g(z=u} for some real w It is clear that, for any real z, the set of
c-ad missible ordinals is uncountable and has least element g{:). Let Ad denote
the set of countable ordinals which are either admissible, a limit of admissibles
or zero and let Cd denote the sel of x in W such thal oix) belongs (o Ad.
The following lemma is a consequence of Propositions 5.11 (p. 235 and
HLED (p. 253) of [3].

Lemma 11 Cd is a pseudo-Borel subser of W, in juct, {x, 2} xe W
and o{x} is s-admissible} is o pseudo-Borel subset of WixJ. =

The basic results concerning the inductive definability of coanalylic sets.
as developed in 1, 4, ST are given in the following theorem. IT A4 s
a subsel of a product space X x ¥ let (4}, denote the vertical section
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‘yr(x,11e A} for any x€ X and {A) denote the horizontal section {x: (x, v}
w&. for any re ¥ Let X be a Polish space and let - be a real number.

The terms 4! in z, 71} in - and X} in : are defined in [5 p. 8I].

Tueorem 1.2, {a) For any C & X which is I} In z, there is a monotone
inductire operator 4 over Seqx X which is A} in = and there is an _,..mmg
such that € = {Clid),. o . _

thy I is @ monotone operator orer X which fs A{ trespectively 1)
in z, then for each ordinal & < o(2) {resp. < g(z)), I'* is 4} (resp. IT}) E z.

(¢) If T is o monotone operutor over X which is ITY in =, then CIH{T)
is also 117 in -

(d) : I is ¢ monotone opet EE over X which is f1} in = and 4 is a subset
of CUTY which is ) in = then 4 @ 1
. As exampics of the application of Theorem _.m,. we prove the foliowing
two lemmas, which will be needed in the next seclion.

Lemma 1.3 Let R be a well-ordered subser of Seq which is 4] in the
real parameter . Then the order type of R is less than 9(2).

Proofl Given R as described. define 4 monotone operator 4 by: s € 4{K)
i and only if (vi)flt <s&t1eR)—=1eK] OR sek. Qmmnw,. Cl{dy =
and |4| is the order type of R. Now both R and 4 are 4] in =z, so by
Theorem 1.2(d) CHLf = R € A" It follows that the order tvpe of R,
14}, is < g(z). Since there is no longest well-ordering 4] in z, the inequality
must be strict. =

Lemma 14, If the real x is A} in the real y, then g{x) < e{y).

Proof Given that x is 4} in y, any well-ordering R which is recursive
in x will be 4! in y. 1t follows from Lemma 1.3 that the order type of
R is < o(y). Thus p(x) < g(y). .

We now relurn to our main topic. which is the decomposition of
a coanalytic set by means of an inductive definition.

Blass and the first author studied the related notion of the core of
a 11} set in [1]. For any real = and set P, let C.{P} be the union of the
subsets of P which are 4} in - .

The IT! monotone operator I will be called pseudo-Borel il there
exists a Z! monotone operator 4 such that [7 = 4" for all ordinals =«
(equivalently, I'(M) = A(M)} for any M o CI(I): [ is called pscudo-4}
in z if I is 1! in = and 4 is 2] in = The following is a direct
coroliary of Theorem 1.2 (h. di ,

CoroLiARY L5 Let 4 be a monetone inductive operator which s
?E_io-m_ in the real parameter = and let P = Cl{4). Then n,u:,wv = 4
Similarly, if P = (CHd)),. as in Theorem 1.2 (a), then C.(P) = (421, .

>u an example, consider the set W of countable well-orderings described
above, For any z. C.{W) = {x: a(x) < ¢{2)].
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We can now see that two different decompositions of a given 1} set
must coincide af uncountably many levels.

Tieorem 16, Let 4 and ' be two monotone inductive aperalors which
are pseudo-4] in the real parameter = and which have the same closure P.
Then for crery z-admissible ordingl 3. I'* = A", Similarls, if P = (Cl{),
= (CL(I),, then (4%), = (I'*), jor every z-admissible ordinal w.

Prool Let =, P. 4,1 and « be given as described. Choose a real v so
that & = g{z = u); thus 4 and I are nmmmao&_ in - % u. The conclusion
now follows from Corollary 1.5.

We now wish to consider properties of a decomposition which are
invariant under Borel isomorphism. There are scveral notions of Borel
isomorphism, two of which are fairly standard. Subsets P and Q of X are
said 1o be intrinsically Borel isomorphic if there is a onc-lo-one map 0 of P
onto @ such that a subset £ of P is a relative Borel subset of P il and

“only if 0(E) is a relative Borel subset of Q. Subsets P and @ of X are said

to be (extrinsicallyy Borel isomorphic if there is a Borel isomorphism 1 of X
onto X such that t{P) = @. For coanalytic sets. these two notions coincide.

Turores L7, Let Poand Q be coanalytic, non-Borel subsets of a Polish
space X. The sets P oand Q are intrinsically Borel isomorphic if and only
i they are extrinsically Borel isomorphic.

Proofl Clearly if P and Q are extrinsically Borel isomorphic, then P
and Q are intrinsically isomorphic. Now suppose that 7 is a relative Borel
isomorphism of P onto Q. Accerding 1o a theorem of Kuratowski [13,
p- 436], there are Borel sets £ and F in X and a Borel isomorphism T
of E onto Fsothat P E,Q & F and T|P = 1. Let M be a Cantor set
lying in the uncountable analytic st E—P. Then T|E~M is a Borel
isomorphism of E—M onto F—T{M). Let G be a Borel _ono_ﬁ:IE of
the uncountable Borel set M (X —E) onto the uncountable Borel set
T{M}yu(X—F). Let H be the Borel isomorphism of X onto X which
agrees with T and G on their domains. Clearly. H(P) = 0. ®

Throughout the remainder of this paper, Borel isomorphic will mean
extrinsically Borel isomorphic.

Just as any Borel subset B of a Polish space is actually 4! in some
real parameter, any Borel mapping H of a Polish spacc X onto itself is
actually 4} in some real parameter z, meaning that H™'(B) is 4! in - for
any set B which is 4.

Tueorem 18, Let 4 and I be two monotone inductive operators which
are pseudo-A1 in the real parameter = let P = CHA). Q = CUT} and let H be
a Borel isomorphisnt with H(P) = Q which is AL in =. Then for every z-admissible
ordinal o, 7 = H{A%). Similarly, if P = (CHA), and O = (Cl {3, then (I'),
= H{A")) for crery c-admissible ordinal o
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Proof Let =, A. 1. P, Q and H be as described. Consider the inductive
operator X, defined by (K} = ILA:IHWW:_ It can be seen by induction
that H(Z%) = I for all ordinals %, so that P = CI{Z). Now it follows from
Fheorem 1.6 that 37 = A4 for any z-admissible ordinal o. Therefore, I”
= H(Z" = H(4") for every z-admissible ordinal «. The proof is similar in
ihe case where P and ( are reducible to the closures of 4 and [ =

The implication of Theorem 1.7 is that Borei isomorphic sets P and @
must have similar inductive structures. For example, il P adds uncountably
many elements at cach inductive level, while ¢ adds only countably many,
then P and @ cannot be Borel isomorphic. The cxistence of sets of the
latter type turns out to depend on sct-theorelic axioms such as (V = L)

2. The hypothesis of constructibility

The constructible universe [ was defined by Godel [7] by a sequence

_ﬁ (0): o € On}. where each set Cf{o) is constructed from certain v_,mcwogﬂ sels
“t1) in a manner encoded by a. For z € Ad. L, will denote 'Cla): o< 2

me L= |J{L, aeAd). Godel showed that L satisfies the usual axioms of
\r:;m_OIT,Fm_? set theory plus lhe axiom of choice and the continuum
hypothesis. The proof of the continuum hypothesis consists of showing that
every constructible real is actually Clg) for some countable ordinal ¢. The
following is an exercise in Shoenfield [21, p. 3I8].

Lesesia 2,10 Let D = (i, x): ne W& x = Clo(w)}: then D is a pseudo-
Borel subset of WxJ.

We remark that the set D and its complement can both be given by
4! monotone inductive definitions. Furthermore, the real x belongs to L,
if and only if there is a 4] relation B € JxJ and an ordinal 7 < 2 such
that, for any v with o{u) = 7, x is the unique eiement of {y: By, ).
ﬁnnﬁi 2.1 implies that the set of constructible reals is Xy, since LovJ

(3 [ue W& Din.x)]}

hmzzm» 22 If x = C{t), then x is 4] in any u with o{u) 2

Proof. Suppose that x = C(t}and o () 2 7. Then, for some p, clulp =t
and x is the unique element of {z: Duip. z)}. .

We conciude this sequence of facts about the constructible hierarchy
with the following,

Provosmion 2.3, If the reai x = C{1), then every admissible ordinal
a > 1 s x-admissible,

Proof. Given x = Ctr) and admissible 2 > 7. let x = g(y). Now there

is some real v recursive in y with o{u) = t. By Lemma 2.2, x is 4 in
w and thercfore A! in y. Thus xs ) is 4] in yi of course y is also u._
in x=v. 1t follows by Lemma 14 that p{3) = glx =1} = 2, 80 that o s
x-admissible. 8

2. The hypothesis of constructibitity i3

This proposition allows us (o remove the parameter = from Theorems 1.6
and 1.7 to obtain boldface versions of %mvn theorems under the hypothesis of
constructibility (V = L),

Tueoren 24, Suppose that all reals are constructible. Let 4 und T he
pseudo-A} monotone operators having the same closure. Then Jor some countable

ordinal o and all admissible o > ¢, 4% = I'". Similarly, if’ (Cl (4)), = (C1(N),,
then (A%, = (I'), for all adwmissible o > o.

Proof. Since 4, I" are pseudo-4!, there is some real parameter z such
that 4 and I" are both pseudo-4l-in-z. By Theorem 1.6, 4" = 17 for every
z-admissible ordinal «. Now since ali reals are constructible, = = Cig} for
some countable ordinal ¢ By Proposition 2.3, cvery « > o is —-admissible
It foilows that for every admissibie o > o, 4% = /7. =

Tueorra 2.5, f:%a:. that all reals wre constructible. Let A and T he
pseudo-At monotone inductive operators; let P = Cl(4), 0 = ClL(I') and let H be
a Borel isomorphism with H(P) = Q. Then for some Q:E:S.@ ordinal o and
all admissible a > o, I = H{A'). Similarly, if P = (Cl(A), and Q = (C1T° W
then (M), = H{(4M),) for all admissible « > o. =

Proof Since 4, I'. H are pseudo-4}, there is some real puramcier -
such that 4, H are pseudo-4} in =. By Theorem .8 I'" = H(4%) for every
c-admissibie ordinal «. As in the prool of Theorem 24, we conclude that
I' = H(A%) for every admissible o > o, where 2 = (7).

For any ordinal %, 7 is the least admissible ordinal greater than % If
P = (CI{I),, where I is some pseudo-Borel operator over Seqx X, then I
decomposes P into w, disjoint admissible constituents P(a) = (I'*" —TI M. for
ordinals z € Ad. It foilows from Theorem 1.2 (b} that cach admissible constituent
is a Borel set.

Recall that a set P is said 10 be thin il it has no perfect subset.
We note that a coanaiytic set P is thin if and only if cach admissible
constituent of P is countable.

Let us say that {we subsets P and @ of the Polish space X arc
Borel equivalent if there exist admissible decompositions [P{x): a4 € Ad? of P
and {Q{x): xe Ad} of O such that P(x) and ({x) have the same cardinality
for all but countably many ordinals, For cxample. the set W has admissible
constituents W({x) = {x: o < o(x}) < a*}; the set Cd has admissible con-
stituents Cd () = {x: o(x) = «}. Since, for each infinite ordinal «, there are
continuumly many reals x with o{x) = 2. W () and d{z) have the same
cardinality for all ordinals e Ad. It follows that W and Cd are Borel
equivalent. It is also clear that these two scts are not Borel cequivalent to
any thin coanalytic set. The following result will be usclul in showing that
given sets are not Borel equivalent.

Tueorem 260 Suppose that all reuals are consiructible. Then counalytic
subsets P oand Q of a Polish space X are Borel eguivalent if and oniy if
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S any admissible decompositions {P(x): xe Ad} of P and Qi) x e Ad}
f O, Pta) and Qi) have the same cardinality  for all but countably many
winals o,

Proof. It clearly suffices to show that for any two admissible decompo-
iitions P, (=) and Py{x) of a single coanalytic set P. P, (2} and P,{a) have
he same cardinality for all but countably many ordinals «. But it lollows
rom Theorem 2.4 that P, (x) = P,{x) for all but countably many ordinals. »

The existence of coanalytic sets which are not Borel is well known.
Such sets can be characterized by the lollowing.

Turorem 2.7. Let P be « counalytic subset of a Polish space X e
ot T he a psewdo-Borel monotone inductive operator which decomposes P ::c
\dmissible constituents {P{a): we Ad}. Then P is Borel if und only if P{oj =
broall but cownably many ordinels x 6 Ad.

Proof {—) Let P = (Ci(I),. Il P is Borel, then [s{x P is an analytic
abset of CH(IM). 1t follows from Theorem 2.i(d) that {sjxP < [7 for
.ome counlable ordinal o: now Pl = @ for all 2 > a. («) I Plx) = 6]
‘or all @ > g, then P=1{J{P(x): « <o} gives P as a countable union
of Borel sets: thus P is also Borel

The examples of non-Borel-isomorphic sets which we will construct in
the next section wili be pseudo-Borel subsets of the set W of countable
well-orderings. such as the set Cd defined above. The following lemma cnables
us to determine the Borel equivalence of such sets.

Lemma 2.8. Let P be a pseudo-Borel subset of the coanalytic set Q, where
0 has admissible decomposition (@) %€ Ad}. Then P has an admissible
decomposition given by Pla) = g{a)nP. #

Proof Let I be a pseudo-Borel monotone inductive operator over
Seqx X such that Q = {Cl(IN). Define the operator 4 by

A(K) = {0y x5, x) (s, x) e T'{{{s, x): (0D 5, x} € Ko
U@, x): (K0, x) e A(K) & v € P}
It can be seen by transfinite induction that for any countabie ordinal a,
= {0 x5, X} (5. ) e U@, x): (@, el & xe P

it foliows that the admissible decomposition of P corresponding to 4 has
the desired property.

This lemma can be used to obtain admissible decompositions for a special
type of subset of a coanalytic set. We first need to consider a version of
the Prewellordering Theorem.

Suppose that P = (CHI) and Q = (Cl(4)),, where I' and 4 are pseudo-
Borel operators over Seqx X and Seqx Y and s and ¢ are in Seq. A mapping
from X into the set of countable ordinals together with infinity (%) is
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defined by |x|i = the least o such that (s, x)e ™" f xe P, and x| = %
otherwise. A similar definition can be given for [1|,. The Prewellordering
Theorem for pseudo-Borel operators is given in the following; the proof is
tmmediate from the discussion in [5], p.. 68

THEOREM 29, Lot P. Q. 1" and 4 be as described ubove. Then ({(x, v): |x)
< [¥ls & yeQ} and {(x, 3): ixly < Iy, & ye Q) are both pseudo-Borel subsets
of XxQ. =

Applying this result 1o the set W of countable well-orderings, we obtain
the following.

Cororrary 210, {n. ey e Wx W a(m) < atr)) and 'n. ) e Wx W o{n)
< o(v)} are both pseudo-Borel subsets of Jx W, w

The next two lemmas are needed in section five; the first is a refine-
ment of Lemma 2.8. A subset B of W is said to be satwrated if, for any
uoreW. ueB and oli) = air) imply r€B.

Lemma 211 Let Q be a IT subset of the Polish space X, let se Seq
and let I' be a pseudo-A} operator over Seqx X such that Q = (CL{N)}..
P.E B he a saturated pseudo-Borel subset of Wand let P = {J UM, ae c.:S.“ .
ﬁ:.:. P is coanalytic and there is u psendo-Borel operator o such thot, for
each ordinal a,(4%)y = (I'),NP. .

Prool It clearly suffices, if we use the method of Lemma 2.8, to show

that P is a pseudo-Borel subset of Q. Now the set P can be defined in
two ways

P=veQ: (Vuyo(u) = x|y - ne B}
= Ixe@: Buaw) = |xr & ve B,

Lemma 2.12. Let B a saturated pseudo-A} subset of W with o(B)
uncountable and let n be an order isomorphism of W, onto o(B). Then
{0 o) < o(v)} and {(u, 0): 7{o(w) < o(v)} are ?:_a pseudo-Borel sub-
sets of Wx W,

Prool For ¢,we 2™, define the pseudo-Borel subset M of Wx W by
Eq:... w) il and only if (Vs){w(s) =l ofs) = 1 & r[seB). Then M{r.w)
implics that p{e(w)} = o(r) and. for each r. there is a unique w such that
M{v, w). Now we can define {(u, v): n{o(w)) < ¢(v)} in two ways:

n{o () < o(0) > @M (o, ) & o) < o (w)]
o (VW) (M (@, w) > o (1) < aiw)).
{The argument is similar for “<™)
We .noncmcmm this section with the theorem which will be our basic tool
for proving that two coanalytic sets are not Bore! isomorphic. This theorem

indicates the close relation between Borel equivalence and Borel isomorphism.
We do not know if the hypothesis of constructibility can be removed.
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TuroreM 2.13. Suppose that all reals are aozmn.:na?.m.. If two T} sets P
and Q are Borel isomorphic, then they are also Borel m%:w.ﬁ:_ﬁ:.

Proof Let H be a Borel isomorphism of J onto J Ewm zrqﬁ H ¢ and
suppose that P = (CH{A), and Q = Am‘m:,.m_. Let P(x) = E — A%, and OM&
= (I'*" —TI'®), be the corresponding admissible decompositions ﬁ.vm ,w.mz,a m.> w
Theorem 2.5, {17, = HA{(A47)) tor all but countably many 32_;5.7 e ﬁ..
Since H is an isomorphism, it follows that P ()} = e for almost
all xeAd. =

3. Ordinal partitions and non-isomorphic sets

In this section we show that, assuming all reals are nom.m:cnﬂ@_n. .QH.R
exists an uncountable family of coanalytic, non-Borel sets which are pairwise

- i hic. .
o Nﬂimwﬂ”ﬂwwﬂw.namﬁ is a partition of the set o.ﬁ couniabie owdh._x;m
into infinitely many uncountable subsets. Zoé any oﬁ_ﬁmw & can be ,.«:m:uw
uniquely in the form i+n, where 7 is Q:ﬁm.m :,Bn. o_d::z. o5 zero REM
ne N. For each n, let A{n) = {or 2 = A+n with ‘ either & limi or Nwao.w_.
This partitions the family of countable ordinals into uncountable sels ﬂ._w_
desired. See Kuratowski and Mostowski [14] for basic facts about ordina
:cBMwMMw: the set Ad ol ordinals which are either admissible, the limit of
admissibles or zero. Enumerate Ad as feir) <o) and let Ad Tu
n - imilar itnt = ixeCd: slxye Ad[n];.
= la(r): te A} lor ne N. Similarly, Cc ] =1ix . dLn]
Note that each set Cd[i] contains a perfect subsel since, as :.oﬁa above,
N o{x) = o} s an uncouniable Borel set for cach infinite c_.ﬁmmgmm ¥

Limma 3.0 For cach i, Cd[n] is « pseudo-Borel subset of the set W
of countable well-orderings. _ )

Proof Cd[0] = {xeCd: (Vs}[x[se Qm. —{hr > s)xfre mw&f. wow
each n. Cd [n+1] = {xe Cd: (Fs)[x{seCd [l & (v sl .hﬂﬁ_% Since
Cd is known, by Lemma Lf, to be a psendo-Borel subset of ¥, it follows

at es 1] is also. m ] .
et Mwo%cmwww “r&m resull with Lemma 2.8, we see that Cd[n] has admis-
sible constituents .

. i oo(x) = ap, i xe Ad [n]:
® Cd b = @ otherwise.

TueorenM 3.7 Suppose thar all reals are cemstructible. Then for any nt 7 10,
Cd [m] and Cd {n] wre not Borel isomorplic. o

Proof It is clear that for m # n. the natural m,oMSmmm&_a aoao.S.wo-
sitions given by (4) for Cd [m] and Cd [:] disagree for every maamm.w%wm
ordinal &, so that Cd [m] and (d[n] are not m.ozwm. o»._a_é_ﬁ:‘ Now, by
Theorem 2.13. Cd [m] and Cd [1] can not be Borel isomorphic.
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In fact, we can prove more.-For any set M & N, let Ad [M]
= U {Ad[n]: ne M} and Cd[M] = |) [Cd [n]: ne M},

Lemma 3.3 Suppose K = () {K,: ne N} and that each set K, has admiss-
ible constituents {K,(a): x€Ad}. Then K has admissible constituents K (o)
e () {K (&) neN}.

Proof Suppose K,, = (Cl{4,))s for each n. Define an inductive operator A
by putting {{n) ¥s, x) € 4(K) if and only if (s, X} € 4,{(K )y} and (D, x)e 4(K)
if and only if (3n){(n), x)e A(K). It can be seen by transfinite induction
that (4%), = ({) 43) for each ordinal «. It follows that K (#) = {J {K,, (2): ne N}
for the admissible decomposition of K corresponding to 4. »

Tueorem 34. Suppose that all reals are constructible. Then for any
two subsets My # M, of N.Cd [M,] and Cd [M,] are not Borel isomorphic.
Furthermore, for any two thin sets B and C. B a relative Borel subset
of CAd[M,} and C a relative Borel subset of Cd[M,], Cd[M,] — B is
not Borel isomorphic to Cd [M,] — C.

Proof By formula (4) and Lemma 3.3, Cd [M,] has admissible con-
stituents Cd [M;](«) such that Cd[M] (0(x)) is non-empty if and only
if xeCd[M]] for i=1,2, If M,# M,, -choose me(M;—M)u
VM, —M,); Cd [M,1(z) and Cd[M,}(2) will have different cardinality
for every ordinal ¢ belonging to the uncountable set Ad [m]. H foliows
that Cd[M,] and Cd[M,] are not Borel equivalent and therefore, by
Theorem 2.13, are not Borel isomorphic. Since the non-empty admissible
constituents of any Cd [M] are all uncountable, the removal of a thin set,
which has all constituents countable, does not effect the Borel equivalence
class of Cd [M]. This proves the second part of the theorem. =

Remark. Given any two thin coanalytic sets B and C and perfect
sets P and @ such that BAP =@ = CnQ, it can be seen that B is
Borel isomorphic to C if and only if BuP is Borel isomorphic to CuQ.
Thus if B and C are not Borel isomorphic, one can trivially “fatten™ them
up to non-isomorphic coanalytic sets which contain perfect sets. The thrust
of the last sentence of Theorem 3.4 is that the sets Cd [M] cannot be
obtained in this fashion.

We now have a family of continuumly many coanaiytic subsets of Cd,
no two of which are Borel isomorphic. This family of subsets of J can be

realized as the family of vertical sections of a coanalytic subset of JxJ, as
shown in the following

Taeorem 3.5, Suppose that all reals are constiuctible. Then there is
a coanalytic subset Q of Jx.J such that the projection m,(Q) = Cd. euch
horizontal section Q% is clopen, each vertical section O, comtains a perfect set
and no two vertical sections are Borel isomorphic. Furthermore, if P is a relative
Borel subset of Q and each P, is thin, then no two vertical sections of
Q—P are Baorel isomorphic.
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Proof. For any real x, let M(x) = {p+x(0)+ ... +x{n): ne N} Tt is
lear that M is a one-to-one map from J onto the family of infinite
ubsets of N. Define the coanalytic subset @ of JxJ to be {{x,y):
e Cd [M(x)]}. Then, for any xeJ, 0, = Cd [ M (x)]. 1t follows that for
% X5, M{x,) # M(x;) and, by Theorem 34, Q,, is not Borel isomorphic
o ., The last part of the theorem follows from the last part of
Fheorem 34. m

The sets considered in the last iwo theorems were constructed from the
artition {Cd [n}: ne N} of the set Cd by the operation of union. We next
wild a family of sets using the operation of direct product. For any
ubset M of N, let P[M] be the direct product of the collection
Cd [m]: me M. .

Lemma 3.6, Let M he a subset of the natural manhers.

() If M is finite, then P[M] is Borel equivalent to Cd{M].

(b) If M is infinite, then P{M] is Borel equiratent to Cd [Mw {0}].

Proof. Let M = {mg,my,...}, let B= P[M] and let C = Cd[M]
tet Cdfm] = (Cl{d))s, for all [ and let A(K) =1 {i+1}x
A ((K)x1): i€ N} w0} x [T (K1) ie N}. This natural inductive
lefinition of B produces admissible constituents Blo) = {(xq. Xy, - (Vi (x;
:Cd [m,]) & o = sup {o(x): ie N}}. On the other hand, € has admissible
onstituents C{a) = {x: @} {xeCd [m] & a = a(x))}. Notice that, in both
cases, each constituent is either empty or has the cardinality of the continuum.
Suppose first that Bfa) # @; then there is some {Xg, X;,...} with each x;
«Cdm;] and sup {o(x): i=0,1,...} = if M is finite or if @ ¢ Ad[0],
then @ = o(x;) for some i, which implies that Clo) # . The other direction
requires a little more work. For each i, let o, be the least ordinal in
Ad[m;] and choose x;€Cd{m] with olx) = o let ¢ = sup {0y ie N}.
Now suppose that Cla) # ¢ for some a > o. Then for some i and some
xeCdm], ox)=ulet i=0 without loss of generality. Then
sup {o(x), o(xy), o(x3), .o} = o(x) = &, so that {x, X{sXz,...) € B{o) and Blx)
£ (). Recall that Ad[0] is the set of ordinals which can be given as the
limit of a sequence of admissible ordinals. Thus if the ordinal « belongs
to Ad[0] and is greater than ¢ and if M is infinite, then a can be
expressed as sup {o;: ie N} with each o e Ad [M]. 1t follows that B(a)
£ ( for all but countably many ¢ Ad[0]. =

Tueoresm 3.7. Suppose that all reals are constructible, Then for any two
sihsets M, # My of the positive integers, P{M,] and - P[M,] are not
Borel isomorphic.

Proof By Lemma 3.6, P[M;] is Borel equivatent to Cd [M] for
i=1,2. It was shown in the prool of Theorem 34 that Cd[M,] and
Cd [M,] are not Borel equivalent. It follows that P[M] and P[M,] are
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not wO.Em equivalent. Now by Theorem 2.13, P[M,} and P[M,] cannot be
Borel isomorphic. a

,d.umuoagm w.,wu 34 m:a. 3.7 can be improved slightly by starting with
a mm:m:on. of the set Ad into «, disjoint uncountable sets, To this end,
we define 4 map F: o, xw; - w; by transfinite induction as follows:

CF{0,0) =0; F(O,t+1) = F(0,t}+7+1 for all t;
) £(0, 4)

sup {F(0,7): 7 < 4} for limit ordinals 2;
Flo.7) = F(0,0+1)+¢ for all ordinals ¢ > 0.

MWcm FO,}y=1, F(1,0) =2, F0,2) = 3, F(1,1) =4, F(2,0) =35 and
on. -

Now enumerate as {f§(0), f(1),...} the set of ordinals in Ad which

“are not limits of admissibles; those limits are deleted in order to simplify

the direct product theorem. For each coumtable ordinal o, Iet Aufe]

"= {F(o,p0): © < w,} and let Cu[d] = {xe Cd: &(x) s Au [¢]}.

LEmMMA 3.8, (a) For each countable ordinal o, Au ]
subser of Ad , [o7 is an uncountable
(b) For any two countable ordinals ¢ 3 t, Au [o] and Au [1] are disjoint.

of AMMW M;Q. any countable ordinal o, Culg] is a pseudo-Borel subset

Remark. Parts {a) and (b) follow immediately from definition (5).

mmm {c} is proved in the manner of Lemma 3.f. The details are left to the
reader.

) M.rm sets Cu[o] can now be combined using the operations of union
and direct product. The proof of the following result is similar to
th

Theorems 3.4 and 3.7. , et

THEOREM u”m. Suppose that all reals are constructible. Then there is an
:._R..os._:nEm Jamily {Cu [¢]: ¢ < w,} of pairwise disjoint coanalytic sets such
that for any two countable subsets M, # M, of w,;

ﬁwv U{Cule]: oe M} and|) {Cu[c]: o e M,} are not Borel isomorphic;

() [T{Culo]: o e M} and [T {Cu[c]: ¢ e M,} are not Borel isomorphic.

In both cases, the sets remain non-isomorphic if thin relative Borel
subsels are removed from each. &

4. Thin non-isomorphic sets

The basic non-isomorphic sets Cd [#] defined in the previous section
were all large in that each had a perfect subset. It is a classical result
that any uncountable analytic set has a perfect subsci. However, if all
B.mmm are constructlible, then an uncountable thin coanalytic set exists, as
discussed in the introduction; we describe such a set below. In this wwnmmcz.
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we construcl an uncountable family of pairwise non-Borel isomorphic thin
nom:%_wﬁnwmwm*os of thin coanalytic sets is characterized by the following
result, noted above in section two. .
Tueorem 4.1, Let Q be a coanalytic set with admissible constituents
Q) xe AdY. Then Q is thin if and” only if eaclt Q(2) is countable. .
Proof (—) The constituents of Q are all analytic. So by the classicai
result stated above, if any Qf{a) is uncountable, then Qf{x) has a perfect
. Thus that Q is not.thin. .
mzvmﬂlwwcwtomnw has a perfect subset B. Then B is E.g&wznq S0 by
Theorem 1.2 (d), B € U {Q(ey o < f} for some countable ordinal f. Since B
is uncountable. some admissible constituent C () must also be canomnﬂmw_m. &
For each ordinal ¢ e Ad, let L{o} = (L, 4+ —LJ)NJ, é.:onm h.n is the ath
level of the constructible universe as described above in section two. It
should be noted that uncountably many of the Lix} are empty. Each
L{x) is a countable Borel set, but {L{x): x¢€ Ad} is not the set of constituents
of a coanalytic set if (V = L) since {J{L{ak eweAd} = LnJ would
! W\om“ﬁr we can define an uncountable coanalytic set T such that,
for each o€ Ad, T{o) < L{a): such a set must be :::. by Theorem 4.1
Before doing so, we consider what such a set n.z.um# be :ww.. .
Suppose now that x & L{x). Then by Proposition 2.3, 2% is x-admissible,
so that g(x} < a*. On the other hand, if xe T{a}, .”wg by Theorem 1.2
(d), ¢{x) = a*. Combining these, we have the foliowing result.
Prorasition 4.2. Let Q be a coanalytic set, xeJ and weAd. If xeQ(a)n
ALy, then o(x)=a" and Ly, If Q)% L{a) for all oeAd, then
g ix:xeLlyy ®
The well-known largest thin I} set C, is defined by:

(6) Cy = {x: x€ Lyat-

It is a consequence of Lemma 2.1 that C; is 1T1. w.u_ vaonom,.m:o.: 4.2, any
coanalytic set C with C(z) & L) for all we Ad is included in C;. It mmmo
follows that a real x is in C, if and only if, for some countable o.a_.nmm
a.xe L) and g(x) = a”. It is not hard to see that €, smm admissible
nmzm:”cnﬁm Cilo) = Ly ix: gix) = et} This cach C;(x) i countable
and, by Theorem 4.1, C, is thin. . . _

It remains to be seen that the set (g s cmnocnmmio ._m A<.| L}.
The following facts are taken from Kechrtis [11]; a detailed discussion of
the set C, can be found there. .

“Tueorem 4.3, {a) For each non-empty L), there is a real neCdnC,
with g{i) = o.
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(b) Any thin 11} set C is included in C,.
{c) If all reals are constructible, then C, is an uncountable thin 11} ser. =

Remark. Part {a) is essentially due to Boolos and Putnam [2]. Part (c)
follows from part (a), since if all reals are constructible, then uncountably
many L{x) are non-empty. That {x: xeL,,} is the largest thin I} set
is due independently to G. Sacks and D. Guaspari.

Keeping part {a) above in mind, let Ld denote the set of ordinals « 5 Ad
such that L(x) is non-empty and let Td denote the set of reals x € Cd n C,
such that no real ye Cd nC, with o{p) = ¢{x) is constructed before x. It
can be seen that Td is a relative 4} subset of Cd and that the admissible
constituent Td (@) is empty il « ¢ Ld and is a singleton {x! with o{(x) = a
if weld.

As was done in section three for the set Ad, the set Ld can be
partitioned into either countably many or uncountably many disjoint subsets
{ld [n]: ne N} or {Lu[c]: ¢ < w;} with corresponding partitions Td [n]
= (xeTd: g(x}eLd [#]} and Tufol = {xeTd: o(x)e Lu [6]} of the 7}
set Td. These sets can be combined by union and direct product as in
Theorems 3.4, 3.7 and 3.9 and can be parametrized as in Theorem 3.5. We

obtain an improvement in Theorem 3.9 (a) due to the fact that the non-empty
constituents Td (x) are singletons.

Lemma 4.4. Suppose that all reals are constructible. Let T be a coanalytic
set such that uncountably many admissible constituents T(a) are finite and
non-empty. Then the family {nT: n < w} is pairwise not Borel isomorphic.

Proof It is clear that T has admissible constituents nTix) -for each
n < wand acAd. Now if T{(x) is finite and non-empty, then each »nT(x)
has a different cardinality. Since uncoumtably many 7{x) are finite and
non-empty, the sets n7T are pairwise not Borel equivalent. It follows from
Theorem 2.13 that they are also pairwise not Borel isomorphic. =

Since the proofs of the following results differ little from those given in
section three for Theorems 3.4, 3.5 and 3.7. they are omitied here.

Tueorem 4.5. Suppose thai all reals are constructible. Then there is
w fumily [T, 0 < w,} of thin coanalvtic sets such that (a) the sets
Y {nTi: iel}, where I is any countable subset of w, and each n 5w,
wre pairwise not Borel isomorphic; (b) the sers : Vo iedy where 1 is any
countable subset of wy, are pairwise not Borel isomorphic.

{In each case, the set 7 is assumed to be listed in increasing order.) »

Tueorem 4.6. Suppose that all reals are constructible. Then there is
¢ coanalytic subset T of JxJ such that the projection m,{T) is a thin
coanalytic set, each horizontal section of T is clopen and no two vertical
sections of T are Borel isomorphic. u
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5. The hypothesis of projective. aﬁ.ﬁ.im_zw@

An infinite game G, of perfect information can be ‘associated with
each subset 4 of the continuum J, as follows. Players I and I/ alternately
select natural numbers x (0), x (1), x{2), ..., resulting a piay of the game, a real x.
A strategy for one of the players is a function from Seq into N. Player [
foliows the strategy ¢ in the play x provided that, for all n, x(2n) = £ix|2n);
I1 follows ¢ provided that x(2Zn+1) = {(x[2n+1) for all n.

If player I plays x(2nm) = u(n) and II follows g, the resulling play
p(n) = x(2n+ 1} is denoted by P(u, &); similarly P(S, v) results when I7 plays
v and I follows £ Lo

The. above definition of foliowing a strategy leads directly to the
following lemma. : .

LeMmA 5.1, For any strategy & {ux P(u, & ueld} and PE. s 0
eJ} — the set of plays resulting when one players follows & = are closed:
$Pan, &) we J) and {P(,v): veJ} — the set of responses dictated by the
strategy — are analytic. Also. the functions P(—, £), P{&, —) are continuous.

A strategy & is said to be winning for a player if he wins every play
of the game in which he follows ¢, The game G, (and the set A) is said
to be determined if one of the two players has a winning strategy for G.i;
of course at most one player could have a winning strategy. There are
many interesting consequences when a game G, is determined, See Mycielski
[197 for some examples. The following in particular will prove useful.

TueoReM 5.2. If all coanalytic games are determined. then any thin couna-
lytic set is countable. ® :

It follows from Theorem 4.3 that if all reals are constructible, then
not all 1] games are determined. Martin has proved that all Borel games
are determined [17] and that if there is a measurable cardinal then ali IT}
games are determined [16]. The Axiom of Projective Determinacy (PD)
states that all projective games are determined. Of course the Axiom of
Choice implies that some games are not determined. :

Combining Theorems 4.1 and 5.2. we obtain

CoroLEARY 5.3, Suppose that all IIT games are determined. Let () be
a coanalytic non-Borel set with admissible constituents {Q(e): a e Ad}. Then,
for uncountably many ordinals o Qla) Is uncountable.

Proof Suppose by way of contradiction that only countably many
Q(e) are uncountable; choose a countable ordinal § such that Qf{x) is
countable for all & > . Now let B = {ueCd: ¢(w) > fij; B is clearly
a pseudo-Borel subset of Cd. By Lemma 211, P ={J 10(e(): ve B} is
a coanalytic set with admissible decomposition {P(a): o€ Ad}l such that
every P{x) is countable. P is non-Borel since it differs from the non-Borel
set O by the Borel set |J{Q(x): o= p}. However, P is now thin by

2
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Theorem 4.1 and therefore countable by Thecrem 5.2, Thus P is Borel
This contradiction proves the corollary. =

By assuming a little more determinacy, we can improve this resull to
show that Q has an admissible decompeosition with every Q{«) uncountable,

Let us call a family ¥ of relations nice il it includes the IT! rela-
tions and is closed under recursive substitution and number quantification.
Examples include the family of 4}, relations and the family B(IH}) of
Boolean combinations of IT} relations, for n > 1. Recall that a subset B of
W is saturated if, for any w,ve W, veB and o{y) = oir) imply reB.

The following is essentially due to Soiovay.

ThEOREM 3.4. Let £ be a nice family of relations such that every game
in B(X) is determined. Then every saturated subset B of W which is in 2 Is
actually a pseudo-Borel subset of W.

Proof Given B and X as described, let B* = {otm: ue Bl and let
G, be the Solovay game given by

A=luxv:veW = B*n{o)+1) e {of(u),): ne N} « B*].
The first inclusion in the definition of A4 can be writlen
(veB > @Eno® = o)) & (VP (oI pe B - Bnow@ ! p) = o((w).)

and the second can be written (Vi) {u),€ B. Thus, if X is nice, then A is
in B(Z). Thus either player I or player Il must have a winning strategy.

The idea of the game is that player I7 must play a real ¢ from W
and 1 ‘'must respond with a u which codes up a subset of B* including
any ordinal in B* which is < o(v). Now if player // had a winning
strategy ¢ then by Lemma 5.1 his set of responses would be an analytic
subset of W Then by the Boundedness Principle {Theorem 12 {d)),
{o(Pu, &) ueJ} is bounded above by some countable ordinal . But

-player I can now defeat the strategy ! by playing some real u which

codes up B*n({f+1).

It follows that player I must have a winning strategy {. Now B
= {ve W: (3n)o(v) = ¢(P(,v))} and is therefore a pseudo-Borel subset
of W by Corollary 2.10. =

We want to apply this result to {u: (I'"™), is countable}, where the

oo.msmmwao non-Borel set @ = (CI{I)),. The next result determines the appro-
priate family Z of relations in this case. ‘

TueEOREM 5.5. For any pseudo-Borel monotone inductive operator I over
SeqxJ and any s €Seq, {u: ("W " s countable} is IT}.
Proof It follows from Theorem 2.9 that Yu, xh (s.x)g [T o prih)

is a relative Z! subset of WxJ. A more general result of Kechris [13],
p. 378, now completes the prool.

We are now approaching the prool of the main theorem of the chapter
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"Theorem & of the introduction), that if all B(II}) games are determined,
then any two coanalytic non-Borel sets are Borel equivalent. Fix now a coana-
iytic non-Borel subset Q of J, a pseudo-Borel monotone inductive operator I’
aver SeqxJ and an se Seq such that ¢ = (ClI{[)),. Also, assume that all
B{I1!} games are determined.

Let B = {u: (P"WF1 0N s ::oo:imvm@w. Combining Theorems 54
and 5.5, we obtain that B is a pseudo-Borel subset of W. B is unbounded by
Corollary 5.3. Now let' y be an order isomorphism of W, onto o(B). Our
goal is to obtain a pseudo-Borel operator 4 such that, for all «,

H‘C mhn.v»w@ - ﬁ)ﬁﬁffuvm.

It follows from (7) that (4! — A% is uncountable for every countable
ordinal a. Clearly then, every constituent of the admissible decomposition of
0 corresponding to 4 is uncountable. If the same thing can be done [or
every coanalytic non-Borel set {0, then of course any two such sets will be
Borel equivalent.

We now turn to the construction of the desired operator 4. One more
game-theoretic lemma is needed.

Lemma 5.6, Let B be a saturated pseudo-Borel subset of W such that

c(B) is uncountable and let n be an order isomorphism of W, onto o{B).
Suppose that afl B(T}} games are determined. Then there is a continuous
function f= J - J such that, jor all ue W, o(f () > n{e (1)

Proof. Let B and n be given as above and let G, be the Solovay game

given by
= ?*e“ pe W ?m W& olu) > ﬁi&i.

It follows from Lemma 2.12 that A is a Boolean combination of I ! sets.
Therefore either player [ or player /I must have a winning strategy. Now
if player I1 follows a strategy ¢, then by Lemma 5.1 his set of responses
would be an analytic subset of W. Then by the Boundedness Principle,
la{Pu, &): ned} is bounded above by some countable ordinal . Player
/ can now defeat the strategy by playing some fixed real ne W such that
o () > n{f). It follows that player I must have a winning strategy ¢. The
continuous function f may now be defined by f{v) = P{{,0v). »

We are now ready to define the desired pseudo-Borel monotone inductive
operator 4 over Seqx J satislying (7).

(0>, me 4K} .Rov, e K OR (¥sju(s) = 0OR (VpY (0>, ulpte K

8) (@, ved(K)oxeQ&(Vu) (6 () = |xir = @p) (({0), ulp)
ed(K)&ny(a(ulp) = a(w))
o () @9 ((K0), e 4(K) & xIr S o{f () g} &
& (o) = o(f (v) ] g))-
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It can be seen by induction that for each countable ordinal «
= {0, u ue W&k o(u) < alu (@, x): x|y < n@)}.

Equation {(7) follows immediately from the above. The fact that 4 is
pseudo-Borel follows from results 2.9, 2.10, 2,12 and 5.6 along with remarks
preceding (7). This completes the proof of the following theorem.

THeorREM 5.7. Suppose that all BT}y games are determined. Then for
any counaiyvtic non-Borel subset Q of J. there is a pseudo-Borel monotone
inductive operator 4 over SeqxJ such that Q = {Cl(d))e and, for all coun-
table ordinals «, (A" — A% is uncountable.

Cororrary 3.8. Suppose that all B{IT1l) games are determined. Then any
two coanalytic non-Borel subsets of J are Borel equivdlent.

We remark that these last results imply only that every coanalytic
set has some nice admissible decomposition. Of course, even if all games
are determined, the sets Cd [n] defined in section three will still have their
usual admissible decompositions, differing from each other at every level
However, by combining the techniques of Corollary 5.3 and Theorem 5.7,
we can obtain the following.

TueoreM 5.9. Suppose that all B{II]) games are determined. Then for
any admissible decomposition {Q(2): aw e Ad} of a 117 subset Q of J, {o: Q&)
is countable and nonempty} is countable.

6. Further results and open questions

We first consider those results which can be obtained if the hypothesis
that all reals are comstructible is weakened or removed. Of course, the
resuits of section two can be relativized 1o the hypothesis that all reals are
constructible from a single fixed real {that is, V = L[x]). The resulis in
sections three and four then go through unchanged.

If the hypothesis of constructibility is removed entirely, an extremely
weakened version of Theorem 2.13 can still be proved. Let us eall a coana-
Iytic set C thick if, under some inductive decomposition, there are uncoun-
tably many admissible constituents C{e) which are uncountable; call C mixed
if it is neither thin nor thick.

Tueorem 6.1, If A, B end C are coanalvtic sets such that A is thin,
B is thick and C is mixed. then A, B and C are pairwise not Borel
isomorphic. '

Proof Let Cfx) be an uncountable admissible constituent of C. If H
is a Borel isomorphism of C onto A, then H{C{)} is an uncountable Borel
subset of A, which implies that A4 has a perfect subset. The same argument
proves that B is not Borel isomorphic to 4. Now suppose that H is a Borel
isomorphism of B onto €. Let & be a countable ordinal such that for all



Borel equivatence and isomorphism of coanalytic sets

= a, C(f) is countable and let D = {J{C{o): 6 < «}. Then H™'(D) is
Rorel subset of B and is therefore included in U {B{o): ¢ < 1} for some
,untable ordinal 7. Now choose y-> 1 so that B{y) is uncountabie. H(B&)
now an uncountable Borel subset of C—D and is therefore included in
HIC(P): o < B < A} for some countable ordinal 1. Since this is a countable
aion, there is some f§ = a with C(f) uncountable, contradicting our
wice of a. =

Since any set is Borel isomorphic to itself, Theorem 5.1 impiies the
sllowing invariance result.

COROLLARY 6.2. A coanalytic set C is thick if and only if. under anp
wductive decomposition, there are uncountably many wncountable admissible
onsituents; C is thin if and only i under any inductive decomposition. there
e no uncountable admissible constituents; C s mixed if and only if, under
ny inductive decomposition, there are countably many (but some) uncountable
dmissible consituents.

Now suppose that an uncountable thin coanalytic set T exists. Then the
fisjoint union T++J is mixed. The set W is of course thick. The set TxJ
5 also thick but cannot be Borel isomorphic to W for the following reason:
tach admissible constituent of T'xJ is an F, sel, that is, the countable
inion of closed sets, whereas the admissible constituents of W have arbitrarily
igh Borel class. That two such sets are not Borel isomorphic follows
rom an argument of the second author [18, p. 243].

We have now proved the foliowing.

TueoREM 6.3. Suppose that an uncountable thin coanalytic set exists, Then
‘here is a family of fowr coanalytic, non-Borel sets which are pairwise not
Rorel isomorphic.

The number “four” here can presumably be improved by further analysis
of the four types of sets considered. Of course, one could also look for
conditions under which any two sets of a particular type would have {0 be
isomorphic. It should be noted that the thin set T is Borel equivalent
‘o the mixed set T+J. This example shows that Borel equivalence does
not necessarily imply Borel isomorphism. .

Recall that the thin set Td defined in section four had the special
property that each nomempty consituent Td () was a singleton. It is not
hard to see that the admissible constituents of TdxTd are almost all
countably infinite. Thus Td and Td? are not Borel equivalent or Borel
isomorphic if V = L is assumed. However, for each m and n = 2, it is clear
that the sets Td™ and Td” are Borel equivalent; it can be shown that in
fact Td™ and Td" are Borel isomorphic.

ConsecTuRE. Let T be a thin coanalytic set. Then for any m and n > 2,

7 and T" are Borel isomorphic.
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The concepts of thin, mixed and thick sets allow us o compare the
relative sizes of coanalytic sets. Let C denote the equivalence class of the
coanalytic set C under the relation of Borel equivalence. If we assume that
all rcals are constructible, then the family of equivalence classes possesscs
a natural partial ordering, defined by [C] < [D] if and only if there exist
admissible decompositions {C(a): ae Ad} of C and {D(0): ae Ad} of D such
that card {C (o)) < card (D() for all but countably many ordinals aeAd.
The class [(] of Borel sets is clearly the least clement in this ordering and
the class {Ad] is the largest. There are chains of length w, and longer.
For example, take the sets Cu[o] from Theorem 39 and let
= {}{Culcl: ¢ < a} for all @ € w,; then [C,] < {Cy] for all & < fi < oy,
Note that the class [C] of & thin set C is not necessarily less than the
class [D7 of a thick set.

Hrbacek [10] describes another ordering, that of “boidface relative
recursiveness”, which also has interesting properties if {V = L} is assumed.
As with Borel equivalence, two sets with different positions in the ordering
cannot be Borel isomorphic if (V = L). However, the two orderings are in
general quite different. For example, let T be uncountable but thin. Then T
and Tx J have the same (Kleenc} degree under relative boldface recursiveness,
but are clearly not Borel equivalent. It can be seen that the sets Ad and W,
which are Borel equivalent, will not have the same Kleene degree if V = L.
~_Finally, we consider the problem of Borel isomorphisms between analytic
sets. It is clear that two analytic sets 4 and B are extrinsically Borel
isomorphic if and only if their complements are extrinsically Borel isomorphic.
Thus, if all reals are constructible, then there exist nice families of non-
extrinsically-Borel isomorphic analytic sets. In fact, it can be shown that these
analytic sets are also not intrinsically isomorphic.
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