BULLETIN DE LA S. M. F.

DOUGLAS CENZER R. DANIEL MAULDIN On the Borel class of the derived set operator. II

Bulletin de la S. M. F., tome 111 (1983), p. 367-372.

http://www.numdam.org/item?id=BSMF_1983__111__367_0

© Bulletin de la S. M. F., 1983, tous droits réservés.

L'accès aux archives de la revue « Bulletin de la S. M. F. » (http://smf. emath.fr/Publications/Bulletin/Presentation.html), implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Bull. Soc. math. France. 111, 1983, p. 367-372.

ON THE BOREL CLASS OF THE DERIVED SET OPERATOR, II

BY

DOUGLAS CENZER and R. DANIEL MAULDIN (*)

RÉSUMÉ. — Soit X un espace non-énumérable topologique métrisable compact, 2^{X} l'espace topologique des compacts de X avec la topologie de Hausdorff et soit D la dérivation de Cantor. KURATOWSKI a démontré que D est borélienne et précisément de la deuxième classe, et a posé le problème de trouver la classe précise des dérivés successifs D^a. Nous démontrons que si n est fini, alors Dⁿ est précisément de la classe 2n et si λ est un ordinal de seconde espèce et n fini, alors D^{$\lambda+n$} est précisément d la classe $\lambda+2n+1$.

ABSTRACT. - KURATOWSKI showed that the derived set operator D, acting on the space of closed subsets of the Cantor space 2^N , is a Borel map of class exactly two and posed the problem of determining the precise classes of the higher order derivatives D^* . In part I of our work [Bull. Soc. Math. France, 110, 4, 1982, p. 357-380], we obtained upper and lower bounds for the Borel class of D^* and in particular showed that for limit ordinals λ , D^{λ} is exactly of class $\lambda + 1$. The first author recently showed, using different methods (cf. [1]) that for finite n, D^n is exactly of Borel class 2n. We now complete the solution of KURATOWSKI'S problem by showing that for any limit ordinal λ and any finite n, the operator $D^{\lambda+n}$ is of Borel class exactly $\lambda + 2n + 1$.

In this paper, we determine the exact Borel classes of the iterated derived set operators D^{α} , acting on the space \mathscr{H} of closed subsets of the Cantor space 2^{N} with the usual Vietoris topology. This completes the solution of the problem of KURATOWSKI [3] which was begun in part I of our work [2].

^(*) Texte reçu le 13 décembre 1982, revisé le 10 novembre 1983.

Douglas CENZER, University of Florida; R. Daniel MAULDIN, North Texas state University, Department of Mathematics, P.o. Box 5117, Denton, Texas 76203, U.S.A.

This author gratefully acknowledges support for this work under NSF grant MCS 83-01581 and a research grant from North Texas State University.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE – 0037-9484/1983/0436706/\$ 2.60 © Gauthier-Villars

The results in the present paper depend strongly on those of its predecessor. We begin with some basic definitions and results from [2].

The derived set operator D maps \mathcal{H} into \mathcal{H} and is defined by :

$$D(F) = F' = \{x : x \in Cl(F - \{x\})\}.$$

The α 'th iterate D^{α} of the derived set operator map be defined for all ordinals α by letting $D^{0}(F) = F$, $D^{\alpha+1}(F) = D(D^{\alpha}(F))$ for all α and $D^{\lambda}(F) = \bigcap \{D^{\alpha}(F) : \alpha < \lambda\}$ for limit ordinals λ . The set F is said to be scattered if $D^{\alpha+1}(F) = \emptyset$ for some α ; the derived set order o(F) of F is the least such ordinal α .

The countable subset S of 2^N is defined to be $\{x : (\exists m) (\forall n > m), x(n) = 0\}$. If 2^N is identified with the family $\mathscr{P}(N)$ of subsets of N, then S corresponds to the family of finite sets. Let $\overline{0} = (0, 0, 0, ...)$. The stitching operator Φ mapping \mathscr{H}^N into \mathscr{H} is defined as follows:

n

 $\Phi(F_0, F_1, F_2, \ldots)$

$$= \{ \overline{0} \} \cup \{ (0, 0, \ldots, 0, 1, x(0), x(1), \ldots) : x \in F_n \}.$$

Note that Φ preserves both finite intersections and unions, that is:

$$\Phi(F_0 \cup G_0, F_1 \cup G_1, \ldots) = \Phi(F_0, F_1, \ldots) \cup \Phi(G_0, G_1, \ldots)$$

and similarly for intersections. This also implies that Φ is monotone, that is, whenever $F_i \subset H_i$ for all *i*, then $\Phi(F_1, F_1, \ldots) \subset \Phi(H_0, H_1, \ldots)$. The two fundamental results on the stitching operator, Lemmas 3.7 and 3.8 of [2] concern the derived set order of the stitched set and the continuity of the stitching map. We actually need an extension of the former lemma to infinite ordinals; the proof goes through without difficulty.

LEMMA 1. – For any sequence (F_0, F_1, \ldots) of sets from $\mathscr{H} \cap \mathscr{P}(S)$ and any ordinal α :

$$D^{\alpha} (\Phi (F_0, F_1, \ldots)) = \begin{cases} \Phi (D^{\alpha} (F_0), D^{\alpha} (F_1), \ldots), \\ \text{if } (\forall \beta < \alpha) \{ n : D^{\beta} (F_n) \neq 0 \} \text{ is infinite,} \\ \Phi (D^{\alpha} (F_0), D^{\alpha} (F_1), \ldots) - \{ \overline{0} \}, \text{ otherwise.} \quad \Box \end{cases}$$

LEMMA 2. – Let (H_0, H_1, \ldots) be a sequence of continuous functions mapping a topological space X into the space \mathscr{H} of closed subsets of 2^N

TOME 111 - 1983 - Nº 4

such that each $H_n(x) \subset S$. Then the function H, defined by $H(x) = \Phi(H_0(x), H_1(x), \ldots)$ is also continuous. \Box

Calculation of the exact Borel classes of the iterated derived set operators begins with Theorem 1.3 of [2].

THEOREM 3. – For any finite *n* and any limit ordinal λ :

(a) D^n is of Borel class 2n;

(b) $D^{\lambda+n}$ is of Borel class $\lambda+2n+1$.

Proofs that the Borel classes cited in Theorem 3 are exact proceed as follows. First we note that $\{\emptyset\}$ is both a closed and an open subset of \mathscr{H} . Thus if D^n were of class 2n-1, then $T_n = (D^n)^{-1}(\{\emptyset\})$ would have to be a Borel subset of \mathscr{H} of both additive and multiplicative class 2n-1; similarly, if $D^{\lambda+n}$ were of class $\lambda+2n$, then $T_{\lambda+n} = (D^{\lambda+n})^{-1}(\{\emptyset\})$ would be of both additive and multiplicative class $\lambda+2n$. To show that T_n is not of multiplicative class 2n-1, we prove that T_n is actually universal for Borel sets of additive class 2n-1; a similar result is given for $T_{\lambda+n}$. Both results will be proved by induction on n. We need two more propositions from [2]; the first is Proposition 4.1:

THEOREM 4. – For any F_{σ} subset B of N^N , there is a continuous function H mapping N^N into $\mathscr{H} \cap \mathscr{P}(S) \cap T_2$ such that, for all x, $x \in B$ if and only if $H(x) \in T_1$. \Box

We actually need the following improvement of Theorem 6.2 of [2].

THEOREM 5. — For any countable limit ordinal λ and any Borel subset B of N^N of additive class λ , there is a continuous function H mapping N^N into $\mathscr{H} \cap \mathscr{P}(S) \cap T_{\lambda+1}$ such that, for all $x, x \in B$ if and only if $H(x) \in T_{\lambda}$.

Proof. — Let B be a Borel subset of N^N of additive class λ . By Theorem 6.2 of [2], there is a continuous function G from N^N into $\mathscr{H} \cap \mathscr{P}(S) \cap T_{\lambda+2}$ such that, for all $x, x \in B$ if and only if $G(x) \in T_{\lambda}$; furthermore, G(x) is also normal, as defined in 5.1 of [2]. Now let $C = C_{\lambda}$ be some canonical normal set with $o(C) = \lambda$ (see 5.10 of [2]). Define the function H by:

$$H(x) = G(x) \cap C_{\lambda}.$$

Recall from Lemma 5.2 of [2] that, for two normal sets F and G:

 $o(F \cap G) = \min(o(F), o(G)).$

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

369

It follows that:

$$o(H(x)) = \min(o(G(x)), \lambda).$$

This implies that H maps into $T_{\lambda+1}$ and that, for any x, $x \in B$ if and only if $H(x) \in T_{\lambda}$. Recall from Lemma 5.12 of [2] that the intersection map is continuous for normal sets. Of course the constant map $F(x) = C_{\lambda}$ is continuous. It follows that H is also continuous.

It should be pointed out that the proof of Theorem 6.2 in [2] required the introduction of a more complex stitching operator acting on the family of normal sets.

L. Pigtkiewicz has pointed out that in Proposition 5.8 of [2] $\theta(\hat{F})$ is actually normal if and only if $\gamma = \lim_{n \to \infty} (o(F_n) + 1)$; this does not affect the

proof of Theorem 6.2.

The induction step in the proofs that T_n and $T_{\lambda+n}$ are universal depends on Lemmas 1 and 2 and the following well-known result (a version of which can be found in LUSIN's classic book [5]).

LEMMA 6. – Let X be a topological space with a countable basis of clopen sets (such as 2^N and N^N). Then for any countable ordinal α and any Borel subset B of X of additive class α , B can be written as the disjoint countable union of Borel sets B_n , each of multiplicative class $< \alpha$.

THEOREM 7. – (a) For any natural number k and any Borel subset B of N^N of additive class 2k-1, there is a continuous function H mapping N^N into $\mathscr{H} \cap \mathscr{P}(S) \cap T_{k+1}$ such that, for all x, $x \in B$ if and only if $H(x) \in T_k$. (b) For any countable limit ordinal λ , any natural number k and any Borel subset B of N^N of additive class $\lambda+2k$, there is a continuous function H mapping N^N into:

$$\mathscr{H} \cap \mathscr{P}(S) \cap T_{\lambda+k+1}$$

such that, for all $x, x \in B$ if and only if $H(x) \in T_{\lambda+k}$.

Proof. — The proofs of parts (a) and (b) proceed from, respectively, Theorems 4 and 5 in a similar manner. We will give the proof of (b), which is of course by induction on k. Theorem 5 covers the case k=0. Suppose therefore that the result is true for k and let B be a Borel subset of N^N of additive class $\lambda + 2k + 2$. Since $N^N \setminus B$ is of multiplicative class $\lambda + 2k + 2$, there is a decreasing sequence $\{C_n : n \in N\}$ of sets of additive class $\lambda + 2k + 1$ such that $N^N \setminus B = \bigcap_n C_n$. Now by Lemma 6, there exists for each n a disjoint sequence $\{C_{n,m} : m \in N\}$ of sets of

TOME 111 — 1983 — № 4

multiplicative class $\lambda + 2k$ such that $C_n = \bigcup_m C_{n,m}$. It is now easy to see that, for all x:

(i) $x \in B \leftrightarrow \{(n, m) : x \in C_{n, m}\}$ is finite.

Let $(n_0, m_1), (n_1, m_1), \ldots$ be some one-to-one enumeration of $N \times N$ and let $A_i = N^N \setminus C_{n_i, m_i}$. By the induction hypothesis, there exists a sequence $\{H_i : i \in N\}$ of continuous functions from N^N into:

$$\mathscr{H}\cap\mathscr{P}(S)\cap T_{\lambda+k+1}$$

such that, for all x:

(ii) $x \in A_i \leftrightarrow H_i(x) \in T_{\lambda+k}$.

The desired reduction H of B to $T_{\lambda+k}$ is now defined by:

(iii) $H(x) = \Phi(H_0(x), H_1(x), ...).$

H is continuous by Lemma 2. We must now calculate the possible derived set order of H(x). First of all, from the induction hypothesis $D^{\lambda+k+1}(H_i(x)) = \emptyset$; it follows from Lemma 1 that $D^{\lambda+k+2}(H(x)) = \Phi(\emptyset, \emptyset, ...) \setminus \{\overline{0}\} = \emptyset$. Thus $H(x) \in T_{\lambda+k+2}$ for any x. Next suppose that $x \in B$. Then by (i) and the definition of the A_i , $\{i : x \notin A_i\}$ is finite. It follows from (ii) that:

$$\{i: D^{\lambda+k}(H_i(x)) \neq \emptyset\}.$$

is finite. Then by Lemma 1, $D^{\lambda+k+1}(H(x)) = \emptyset$ as desired. Finally, suppose that $x \notin B$. Then again using (i) and (ii), it follows that:

$$\{i: D^{\lambda+k}(H_i(x)) \neq \emptyset\}$$

is infinite. Applying Lemma 1 and the fact that each $D^{\lambda+k+1}(H_i(x)) = \emptyset$, we obtain:

$$D^{\lambda+k+1}(H(x)) = \Phi(\emptyset, \emptyset, \ldots) = \{\overline{0}\},\$$

so that $H(x) \notin T_{\lambda+k+1}$.

THEOREM 8. - (a) For any natural number k, T_k is a Borel subset of \mathcal{H} of additive class 2k-1 but not of multiplicative class 2k-1. (b) For any countable limit ordinal λ and any finite k, $T_{\lambda+k}$ is a Borel subset of \mathcal{H} of additive class $\lambda+2k$ but not of multiplicative class $\lambda+2k$.

Proof. — The positive direction is proved by induction, as follows. $T_1 = \{F : F \text{ is finite}\}$ is an F_{σ} set by Lemma 1.1 of [2]. For any limit ordinal λ , $T_{\lambda} = \bigcup_{\alpha < \lambda} T_{\alpha}$ and will therefore be of additive class λ

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

if the result is assumed for $\alpha < \lambda$. Finally, $T_{\alpha+1} = D^{-1}(T_{\alpha})$; since D is a mapping of Borel class 2, the result can always be extended from α to $\alpha+1$. The other direction has similar proofs for parts (a) and (b); we give the proof of (b). Let B be an arbitrary subset of N^N which is of additive class $\lambda+2k$ but not of multiplicative class $\lambda+2k$ (see [4], p. 425). By Theorem 7, there is a continuous function H such that $B=H^{-1}(T_{\lambda+k})$. Now if $T_{\lambda+k}$ were of multiplicative class $\lambda+2k$, it would follow that B must also be of multiplicative class $\lambda+2k$, contradicting our choice of B.

We can now give the complete solution of the problem of Kuratowski.

THEOREM 9. – (a) For any natural number k, the iterated derived set operator D^k is of Borel class exactly 2k. (b) For any countable limit ordinal λ and any natural number k, $D^{\lambda+k}$ is of Borel class exactly $\lambda+2k+1$.

Proof. — One direction is given by Theorem 3. The other direction has similar proofs for parts (a) and (b); we give the proof of (b). Recall that $\{\mathcal{O}\}$ is a closed subset of \mathscr{H} . Thus if $D^{\lambda+k}$ were of Borel class $\lambda+2k$, then:

$$T_{\lambda+k} = (D^{\lambda+k})^{-1} (\{ \emptyset \})$$

would have to be a Borel set of multiplicative class $\lambda + 2k$, which would contradict Theorem 8.

The finite cases of Theorems 7, 8 and 9 were previously obtained by the first author in [1] using different methods.

REFERENCES

- [1] CENZER (D.), Monotone reducibility and the family of finite sets, J. Symbolic Logic, to appear.
- [2] CENZER (D.) and MAULDIN (R. D.), On the Borel class of the derived set operator, Bull. Math. Soc. France, 110, 4, 1982, p. 1-24.
- [3] KURATOWSKI (K.), Some problems concerning semi-continuous set-valued mappings, in Set-Valued Mappings, Selections and Topological Properties of 2^x, Lecture Notes in Math., vol. 171, Springer-Verlag, 1970, p. 45-48.
- [4] KURATOWSKI (K.) and MOSTOWSKI (A.), Set Theory, North-Holland, 1976.
- [5] LUSIN (N.), Leçons sur les Ensembles Analytiques, Gauthier-Villars, 1930.

TOME 111 - 1983 - Nº 4