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A transition kernel (p:):ex between Polish spaces X and Y is called
completely orthogonal if the . are separated by the fibers of a Borel map ¢:
Y — X. It is orthogonality preserving if orthogonal measures on X induce
orthogonal mixtures on Y. We give a von Neumann “type” isomorphism
theorem for atomless completely orthogonal kernels, and a theorem and some
counterexamples concerning the separation of two orthogonal measure convex
sets of probability measures by a measurable set. These techniques yield three
results on orthogonality preserving kernels: (1) They need not be completely
orthogonal but (2) are uniformly orthogonal (in the sense of D. Maharam)
and (3) if X is o-compact, Y = lim. Y, and (u.) is orthogonality preserving

-and continuous in x then there is even a strongly consistent sequence of
statistics @n: Y, — X for (p.).

0. Introduction. Let X and Y be Polish spaces. We will address ourselves to the study
of transition kernels of orthogonal probability measures from X to Y and their classification.
To this end we first (Section 1) present a hierarchy of notions of orthogonality beyond the
simple property of being pairwise orthogonal.

These include “complete orthogonality” and the property “orthogonality preserving”.
Complete orthogonality which in statistical language means existence of a perfect statistic
¢: Y — X, is known to occur in many contexts (ergodic decompositions, Gibbs states,
extremal models, etc. ([6], [8], [9], [19])). Preservation of orthogonality is an “algebraic”
condition which is e.g. equivalent to p-almost sure consistency of the a posteriori distri-
butions for every a priori measure p on X. This condition naturally arises when looking at
orthogonal kernels from a functional analytic point of view (cf. the comments to Theorem
4.1).

Section 2 contains a uniform von Neumann isomorphism theorem for atomless com-
pletely orthogonal kernels. It implies a complete classification of completely orthogonal
kernels. It improves a parametrization theorem of Mauldin [21] and a classical result on
decompositions of Lebesgue space of Rokhlin and Maharam.

Section 3 is devoted to the following problem. Suppose M and N are measurable measure
convex sets of probability measures on a completely regular space Y such that every
element of one is orthogonal to any element of the other. Does there exist a Baire subset
B of Y which is a nullset for all measures in M and a one-set for those in N? (To see the
role of measure convexity look at the trivial counterexample M = {Lebesgue measure}
and N = {&,: y €[0,1]}.) If M and N are o-compact, the answer is known to be yes [11]. We
prove the same if one of the sets is a singleton and the other arbitrary. Our method is
based on the concept of a filter of countable type (essentially due to Grimeisen [13] and
Katetov [16]) which allow us to formulate a weakened minimax theorem for certain convex
measurable sets. The proof also yields the result of Mokobodzki [31] that under Martin’s
Axiom there is for every pair M, N, a universally measurable separating set. However, in
Section 5, it is shown that there need not exist a Borel separating set even if Y is Polish
and both M and N are narrowly closed or one of them is narrowly compact. This improves
an example found independently by Blackwell [2] and Preiss [25].
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Section 4 gives a number of reformulations of the condition of being orthogonality
preserving. A new point is that it implies under some additional assumptions the existence
of a strongly consistent sequence of statistics. In particular, an orthogonality preserving
kernel is completely orthogonal if the set {p.}:ex is narrowly o-compact. Also we prove
using the results of Section 3 that orthogonality preserving kernels are always uniformly
orthogonal in the sense of D. Maharam [20], i.e. every measure y, of the kernel is supported
by a Borel set B, which is a nullset for the other measures in the kernel. However, we then
show in the last section by similar techniques as used for the example mentioned above
that preservation of orthogonality does not imply complete orthogonality in general, i.e.
sometimes the sets B, must overlap.

A list of problems related to and left open in this paper appears in [22]. Two others are
mentioned at the end of the paper.

Besides its intrinsic interest, our work may also more specifically be interpreted as an ‘
effort to understand the general structural conditions on a measure theoretic model
(Y, B, {p.: x € X}) of a statistical experiment which ensure that according to this model
the parameter x can (perhaps asymptotically) be completely identified from the idealized
observations in Y.

1. Notions of orthogonality. Let (X, #(X)) and (Y, #(Y)) be measurable spaces.
We shall be mainly interested in the case where both are uncountable standard Borel
spaces, i.e. Borel isomorphic to the unit interval I with its Borel o-algebra. However the
following definitions also make sense in more general settings. Let 2(X) and 2(Y) be the
set of all probability measures on #(X) and %(Y), respectively. A transition kernel (u.)
from X to Y is a family (p.).ex of elements of 2(Y) such that x — u.(E) is Borel
measurable for all Borel subsets E of Y.

In our opinion the following concept of “complete orthogonality” is the most important
of the notions discussed in this paper.

DEFINITION 1.1. A transition kernel (p.).cx from X to Y is said to be completely
orthogonal provided there is a set B € #(X) ® #(Y) such for each X, px(B:) = 1 and if
x # x', then B, N B, = &. We say that the set B completely separates (px).

Letting o(y) = x if (x, y) € B and ¢(y) = xo(xo € X arbitrary) if y & =y(B) we see that
B is the (anti)-graph of a map ¢: Y — X satisfying u. (¢ *{x}) = 1 for all x, i.e. the measures
px are separated by a map. If X and Y are standard Borel the map is Borel measurable by
Kuratowski’s theorem. This justifies the definition of complete orthogonality given in our
summary. Statisticians call such a ¢ an “exact estimator of the parameter x” or a “perfect
statistic”. In [6], the associated kernel @: y —> u, () is called a H-sufficient statistic for the
set {px}rex. Kernels (@,) from Y to Y arising in this way from completely orthogonal
kernels are characterized by the property @,({y": @,=@Q,-}) =1forallye Y (decomposing
kernels [17]).

Our next proposition illustrates one manner in which completely -orthogonal transition
kernels arise.

PROPOSITION 1.2. Let Y be a Polish space and let /be a set of kernels (v,) from Y to
Y such that for all but at most countably many elements of A the corresponding map 7:
p = [y vy(+)dp(y) of Z(Y) to 2(Y) is continuous in the narrow topology. Let 2 be the
set {p € 2(Y): vp = p for all (v,) E N }. If P+ O then there is a completely orthogonal
kernel (u.) from some standard X to Y such that {y.}.cx is exactly the set of extreme
points of 2. (i.e. the Aergodic measures are parametrized by (u.)).

ProoF. Write /"= #; U 4, where /] is countable and 7 is continuous for all (vy) in
2. Then 2, is the set of common fixpoints of the family {#: (»,) € 45} of continuous
transformations of #(Y). By the Lindelof property of the separable metrizable space
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2(Y), there is a countable subset ./"5 of 4, with the same invariant measures. Thus 2,
=Py N Py, = Py, NPy, = P4 4, is the set of invariant probability measures of the
countable set .#1 U A"5. For countable sets ./” the proposition is proved in [17], Theorems
2.6-2.8.

CoMMENT. If the elements of .4 are induced by point maps, the corresponding results
are already contained in [8]. As pointed out in the introduction of [17], the present more
general assumption also includes Gibbs measures and the other examples treated in [6].

A second concept of orthogonality is the following, which—except for the measurability
requirement for (u.) and B—was introduced in [20].

DEFINITION 1.3. A transition kernel (p.):ex from X to Y is said to be uniformly
orthogonal provided there is a set B € #(X) ® #(Y) such that for each x, px(B;) =1and
" if x # x’, then p,(B,) = 0.

That this notion is weaker than that of complete orthogonality is demonstrated by the
following example which we first learned from R.J. Gardner.

ExXAMPLE 14. Take X =1Iand Y =1 X I. For x € I, let . be the probability measure
Yoe, @ A + 12\ ® &, where A is Lebesgue measure. Then the set .

B={(x,(y,y)): ;1 =x0ry, =x}CXXY

has the properties in the definition of uniform orthogonality. But it is not difficult to verify
that the restriction of this kernel to any compact subset of X with positive Lebesgue
measure fails to be completely orthogonal.

CoMMENT. In [10] a transition kernel (p.):c: of pairwise orthogonal measures is
constructed such that the restriction of the kernel to any subset of I with positive Lebesgue
measure fails to be uniformly orthogonal. From the “Cantorian theorem” in [3] it follows
however that for a transition kernel (u.) of pairwise orthogonal measures there is always
a nonempty compact perfect subset X, of X such that (u.):ex, is completely orthogonal.
Even the analogue of this for non-measurable families of pairwise orthogonal measure fails,
as was proved in the paper [20] which motivated the research of [3] and [10].

REMARK. One could consider modified notions of uniform and complete orthogonality
by deleting the requirement that the set B be a Borel measurable subset of X X Y. Let o
be Lebesgue measure on [0,1] and . be the point mass at x for each x in (0,1]. Then
(ux)xeron) is a transition kernel consisting of pairwise orthogonal measures which is not
uniformly orthogonal even in the modified sense. With this modification, uniform or-
thogonality implies complete orthogonality if card X = X;. One simply sets D, = B, —
U {B.: x’ < x} where < is a well ordering of X into type X,. On the other hand the
situation may change for Polish X if one drops CH:

ExXAMPLE 1.5 (Fremlin). Take a model of set theory in which there is a set A C [0,1]
such that (a) A has positive outer measure and (b) if { N,: « € A} is a family of sets with
measure zero, then U{N,: a« € A} # [0,1]. Then there is a uniformly orthogonal kernel
which is not (modified) completely orthogonal: Let X = ((0, 1] x {0}) U ({0} X (0,1]) and
Y =(0,1] X (0,1]. Let pu(0,:) be A ® & and let o) be & ® A. As in the first example this kernel
is uniformly orthogonal. Suppose now that there is a subset B of X X Y such that for each
x, px(Bx) = 1 and if x 5 x’, then B, N B, = &. According to property (b), there is some ¢’
in N;ea{s:(s, t) € B:)}. According to property (a), there is some ¢” in A such that
(¢, t") € By0). Then (¢, t") € B0y N By,:), contradiction.

The following condition depends on a (usually metric) topology on X having #(X) as
Borel-g-algebra and on an increasing sequence ( 4,) of sub-c-algebras of # (Y) generating
% (Y). It can be verified in many probabilistic situations.
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DEFINITION 1.6. The kernel (u.) is said to admit a strongly consistent sequence of
statistics if for each n, there is a %,-measurable map ¢, of Y into X such that for each x,

pe{y: lim, o @u(y) =x} =1

Finally we turn to a lattice condition which is near to complete orthogonality. The name
is taken from [12]. A number of equivalent reformulations of this property will be given in
Section 4.

DEFINITION 1.7. A transition kernel (p.).ex is called orthogonality preserving, if for
any paxr (p, q) of orthogonal elements of 2 (X ) the corresponding mixtures u” = [x . p (dx)
and pu? = [x p.q(dx) are orthogonal.

Now we summarize the relations between the notions of definitions 1.1, 1.3, 1.6, and 1.7.

THEOREM 1.8. Let (u.) be a transition kernel between standard measurable spaces
Xand.

a) If (u.) admits a strongly consistent sequence of statistics then it is completely
orthogonal.

b) Every completely orthogonal kernel is orthogonality preserving.

¢) Every orthogonality preserving kernel is uniformly orthogonal.

d) The converse implications in a), b) and c) are false in general.

e) (Partial converse of a) and b)). Assume that X and Y have metric topologies so
that X is o-compact, x — . is continuous for the narrow topology on ?(Y) and Y =
lim,, Y, for some spaces Y, with projections m,: Y — Y,. If (u.) is orthogonality preserving
then it admits a strongly consistent sequence of 7' (% (Y,))-measurable statistics.

ProoF. The proofs of c) and e) will be postponed to Section 4 and the counterexample
to the converse of b) to Section 5.

a) is obvious: Consider B = {(x, y): lim,_,»@.(y) = x} where (¢,) has the properties of
Definition 1.6.

b) Suppose (p.) is completely orthogonal. Let ¢ be a Borel map from Y to X satisfying
p=(@~'{x}) =1 for all x. Let p and q be two orthogonal measures on X. Choose A in #(X)
such that p(A) = 1 = ¢(X\A). Then u?(¢7'(A)) = [x p=(¢7(A)) p(dx) = [4 Ip(dx) = 1
and similarly p?(Y\¢@™'(4)) = 1. So u” and p? are orthogonal. This proves b).

d) Example 1.4 also shows that a uniformly orthogonal kernel need not be orthogonality
preserving, so the converse of c) fails.

Finally we give an example showing that the converse of a) fails: Let Y be the Cantor
space {0,1}" and let y: X — Y be a Borel isomorphism such that ™" is not of first Baire
class. If p. = g,(x) then there is no sequence (¢,) of continuous mappings of Y into X such
that for each x, p.{y: .(y) = x} = 1. Now take %, to be the o-algebra generated by the
first n coordinates so that every %,-measurable map is continuous. For this choice of
(%) there is no strongly consistent sequence of statistics. However, (u.) clearly is
completely orthogonal.

2. Classification of completely orthogonal kernels. The following may be called
the “canonical example of a completely orthogonal atomless transition kernel”.

ExamPLE 2.1. Let I be the unit interval (0, 1] and let »:I X #(I X I) — [0, 1] be
defined by v.(E) = (. Q@ A)(E) = A(E,). Certainly (»,) is a transition kernel. Let B be the set
{(t, (¢, 8)):(¢, s) €I X I}. Then (1) B is a Borel subset of I X (I X I). (2) B, N B, = if
t# t’ and (3) v«(B,) = 1 for all ¢. So (»;) is completely separated by B.

Indeed, we have the following isomorphism theorems which can be viewed as parame-
trized versions of von Neumann’s theorem that if y is an atomless probability measure on
a Borel set B in a Polish space X, then there is a Borel isomorphism ¢ of B onto I such
that pep™ = A.
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THEOREM 2.2. Let X and Y be uncountable standard Borel spaces. Let (u.) be an
atomless completely orthogonal transition kernel from X to Y. Let B be a Borel subset of
X X Y which completely separates (ui.). Then for each Borel isomorphism y of X onto I
there is a Borel isomorphism ¢ of wy(B) onto I X I such that for each x in X the set B, is
mapped under ¢ onto {{(x)} X I and e,y ® X is the image measure of u. under ¢.

Proor. If B completely separates (u.) then the projection #y: B — 7y (B) is a Borel
isomorphism, mapping the set {x} X B. onto B, and ¢, ® p, to p. for each x. Therefore, this
theorem is implied by the following which improves Theorem 2.3 in [21]. (In fact our two
results are essentially the same, because for every not necessarily orthogonal kernel ()
from X to Y one may consider the completely orthogonal kernel (e, ® p.). from X to
X X Y applied to which the first result easily yields the second.)

THEOREM 2.3. Let X and Y be uncountable standard Borel spaces and ( Uz) be an
atomless transition kernel from X to Y. Let B be a Borel subset of X X Y with px(By) =
1 for all x. Then to every Borel isomorphism y of X onto I there is a Borel isomorphism
¢ of B onto I X I such that under ¢ for each x in X
(i) the set {x} X B; is mapped onto {Y(x)} x I
(ii) the measure . ® p. has e,y ® A as its image.

ProOF. According to Theorem 2.3 of [21] there are Borel isomorphisms o and ¢ of
X onto I and of B onto I X I respectively which fulfill the analogue of property (i). Since
an automorphism of the first factor (component) of I X I does not change this statement
we may assume Yo = . In order to show that a suitable modification ¢ of g, even satisfies
(ii), apply the following assertion to the kernel (p,) which is defined by &4y ® pyy =
(8 ® pa) oo

LEMMA 24. Let (p) be an atomless transition kernel from I to I. Then there is a
Borel isomorphism 1 of I X I onto I X I which for each t maps the set {t} X I onto itself
and transforms e ® p, into e, Q \.

Proor oF THE LEMMA. For each ¢ let R, be the measure defining function associated
with p;, R.(s) = p/((0, s]). The maps R, are continuous, nondecreasing with 0 and 1 as
fixpoints. In particular R,(I) = I. Consider the set

L = Uy rationat{(2, 8) : 7 < s, Re(r) = Ri(s)}.

Clearly L € #(I X I). For each t the section L, is the union of the intervals of constancy
of R, including the right and excluding the left endpoints. In particular A (L, > 0 if L, #
.

Fix an uncountable Borel set D in I of zero Lebesgue measure. Choose a Lebesgue
measure preserving Borel isomorphism & of I onto I — D. Since m:1(L) = {¢:A(L;) > 0} and
L is a Borel set it follows that (L) is a Borel set. According to Theorem 2.3 of [21] (or by
an elementary direct construction) there is a Borel isomorphism w of L onto (L) X D
which maps {¢} X L, onto {t} X D for each ¢. Now define r:I X I — I x I by

(¢, Ri(s)) if t& m(L)
7(¢ 8) =14 (¢, 8(R(s))) if t€ m(L)but (t,s)& L
w(t, s) if (¢ s)€EL.

As is easily checked, 7 is bijective Borel measurable and it keeps the first coordinate fixed.
It remains to be shown that for each ¢, A is the image of p, under the map R;:s —
7a2(7 (¢, s)). For R, instead of R, this is simple and well known. If ¢ € 7;(L) then B, = R, and
for t € mi(L) the map R, is obtained from R, by just sending the p,-nullset L; to D and on
I\L, composing R, with the A-preserving transformation 8. This completes the proof of the
lemma and of the two theorems.
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We would like to note the following application of our methods. For each x, one can
choose in the second theorem a nonempty compact perfect u.-nullset K. C B.. The
problem is, can one make this selection in a measurable fashion. In [21] it was demonstrated
that this is so if we were selecting compact perfect sets with positive ., measure. Our
corollary gives a positive answer for the case of nullsets.

COROLLARY 2.5. (“Null set theorem”). In Theorem 2.3 let Y be equipped with a
Polish topology compatible with the given Borel structure. Then the set B contains a
Borel set K such that for each x the section K, is a nonempty compact perfect p.-nullset.

ProoF. Choose any Borel isomorphism ¢ of X onto I. Let ¢ be as in the theorem. Let
p be an atomless probability measure on I which is concentrated on a Lebesgue nullset D.
Let M be the inverse image of I X D under ¢. Then M is a Borel subset of B such that
(M) = A(D) = 0 for all x. On the other hand «.(M.) = p(D) = 1 if we define the atomless
kernel (k) by (ex ® k.) 9™ = &y(x) ® p. Thus, according to Theorem 2.4 of [16] the set M
has a Borel subset K with nonempty compact perfect sections. Because of K, C M, we
have also p.(K.) = 0.

For the sake of completeness we now consider also measures with a discrete part. Let
2 = (2:)i=0 be a nonincreasing sequence of nonnegative real numbers satisfying ¢ z; = 1.
A probability measure p is said to be of type z if it is of the form p = p° + Y7 z:¢, where
u€ is an atomless measure and y; # y; whenever z; > 0, z; > 0 and i # j. The type of p is
unique and will be denoted by z(u) or (z;(p)).=0. The proof of the following lemma is left
to the reader. It is a consequence of the fact that # (Y) is countably generated.

LEMMA 2.6. Let (u.) be a transition kernel from X to Y. Then the mappings x —
zi(uz) are measurable and there is a sequence (f;)i=1 of Borel functions of X to Y U { ¥}
(where y» & Y) such that for each x the discrete part u% of . equals ¥ 7 2i(px)er ) and fi(x)
=Y ifzi(,lzx) =0.

Let now X, X', Y, Y’ be standard Borel spaces. Let (u.) and (v.-) be completely
orthogonal transition kernels from X and X’ to Y and Y’ respectively. Let B and B’ be
completely separating sets for (u.) and (».-). Denote by Y the set

(Upswo Bx) U (Upeeo {y: {5} > 03}).

Let Y’ be defined similarly using B’ and (vx").

THEOREM 2.7. If there is a Borel isomorphism { of X onto X' such that z(vy) =
2(pz) for all x then there is a Borel isomorphism @ of the Borel set Y ontoY’ such that for
every x
(i) (P(Bx) = Bx,lz(x) lfﬂ; # 0,

(i) peo@™ = wyeo.

Proor. Let X, be the set of all x in X for which u$ # 0, or equivalently for which zo(u.)
> 0. According to the lemma X, is a Borel subset of X. The restriction ¢ |x, is a Borel
isomorphism of X, onto X§ = {x' € X" : zo(v,) > 0}.

Choose f;: x = Y U {y=} according to the lemma for the kernel (y.), similarly f;: X" —
Y’ U {y%} for (vx). The set Bo = (B\U%=1 Graph (f))) N (Xo X Y) completely separates the
atomless kernel ((1/zo(ux))p%)xex, Similarly ((1/z0(vs))v%),ex;, is separated by By =
(B’\U%=1 Graph (f})) N (Xo X Y’). It is easy to deduce from the first theorem in this
section the existence of a Borel isomorphism ¢o of 7y(Bo) onto 7y-(Bo) such that ¢go(Box)
= Blyw and pSo@™! = v, for each x € X,.

Each f; maps the set X; = {x: z;(u.) > 0} injectively onto its image Y;, since the measures
ux are pairwise orthogonal. For the same reason Y= = 7y (Bo) U U%-1 Y;, the union being
disjoint. Similarly Y’ = #y(B¢) U U%-; Y. So Y and Y’ are Borel sets and we can define
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the map ¢: ¥ — Y’ by

_|floyoft  if yEYi,iz=1
o= {‘Pﬁ(y) if y € 7y (Bo).

It is easily verified that ¢ has all required properties.

CoMMENTS. 1) Compare the “classification of measurable decompositions of a Le-
besgue space” in [26], Section 4. Our results in this section are essentially the strengthened
form of Rokhlin’s which are obtained by dropping in his conclusions everywhere the
qualification “mod 0”. Rosenblatt ([27], Lemma 2) and Ershov [7] independently gave a
simplified proof of Rokhlin’s “theorem on independent complements,” [26], Section 4,
number 3, which is a reformulation of the atomless case. Their proof uses an argument
similar to our Lemma 2.4.

2) The condition that card {x:z(u.) = 2z} = card{x’:z(v.) = z} for every z does not
imply the existence of a Borel isomorphism ' of X onto X’ satisfying z(pt.) = 2(vy(»). This
is why v is always given in advance. Indeed, let Z be the set of all possible types with its
Borel structure induced from the Polish space 4. Let X be the product Z X I and let X’ be
a subset of Z X I such that for each z € Z the section X} is uncountable but X’ does not
admit a Borel isomorphism y: X — X’ leaving the first coordinate fixed. Then for any
completely orthogonal kernel (u.)xex satisfying z(p ) = ¢ for all ¢ € Z, the kernel (u,) and
its restriction (v.-) to X’ may serve as a counterexample. ’

3. Separation of two sets of measures. In this section we will work in the following
setting unless otherwise stated.

GENERAL HYPOTHESIS. Let (Y, #) be any measurable space, 2 be a set of probability
measures on % and let G be a linear subspace of (Y, #) such that

el = SUP{J’ gdx:g€ G, | gl= 1}

for all « in the linear hull of 2. The set 2 will always be equipped with the topology of
pointwise convergence on G.

The most interesting case occurs when Y is a topological space, G is the set of all
bounded continuous functions, % the Baire o-algebra (generated by G) and Zthe set of all
Baire probability measures 2 (Y) with the “narrow” topology (the topology induced by
a(M(Y), Cy(Y))).

We want to modify the following result of Goullet de Rugy [11]. If M and N are
countable unions of compact convex sets and u L » for all u € M and » € N and Y is
compact, then there are pairwise disjoint K. subsets F and H of Y such that p(F) =1 =
v(H), for all u € M, v € N. (Recently, S. Graf and G. Mégerl gave a new proof of this using
capacities, [12].) We will improve this theorem by demonstrating that the sets F and H
can be taken to be K, sets. However, it is not this result itself which we need. Rather, it is
the quantitative version of Goullet de Rugy’s theorem given in the following proposition
and the minimax lemma in its proof which we will employ later on. Finally, let us note that
if one substitutes for compactness, the existence of a o-finite measure with respect to which
the elements of K and L are absolutely continuous the proposition is (with a similar proof)
already essentially contained in [18] where it is attributed to Le Cam. (This was pointed
out to us by H. Strasser.)

ProPOSITION 3.1. Let K and L be two compact convex subsets of 2. Suppose for some
€ > 0 and each p in K and each v in L there is a set S,, in & such that u(S,,) < ¢ and
v(Sw) > 1 — &. Then there is a function g € G, ||g|| = 1 and a 8§ > 0 such that p{g < 8}
<2eandv{g>—908} <2, forallpeK,veE L.
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ProorF. Computing integrals of the functionsls, —1ly\s, we see that [[u — »[:>2 —
2¢ for each u in K and each » in L. Since || ||; is lower semicontinuous with respect to our
topology and the sets K and L are compact we infer the strict inequality dist) |,(K, L) > 2
— 2¢. According to the minimax lemma given below, there is a function g € G, [|g]l = 1
and a number d > 2 — 2¢ such that u(g) — v(g) = d wherever p € K, v € L. For each § >
0, define g;: = g+ 1(jgi=s;- Then | g — &5l = 8. Therefore, there is some 8, > 0 such that
w(h) — v(h) > 2 — 2¢, for all p € K, v € L, where h = g;. Notice

1—u{h50}=p{h>0}2J’ hduz=ph)>2—2%+vh)=1—2
(h>0}

i.e. u{h =< 0} < 2 for all p in K. Similarly »{h = 0} < 2¢if » € L. Since {h =0} = {g < &}
and {h = 0} = {g > —&}, the proof is complete.

MiNmMax LEMMa 3.2. Let (G, || ||) be a normed space. If K and L are convex and
o (G*, G)-compact subsets of G* then

disty (K, L) = sup{inf.ck(e, g) — supeer(e’, 8):8 € G, | gl = 1}.

ProoF. The lemma is a special case of classical Minimax theorems (e.g. [30], Theorem
4.2") applied to the map(,): (K — L) X B — R where B is the unit ball in G.

COROLLARY 3.3. Let Y be a completely regular space and let M = U%-1 K, and N =
U%-1 L, be subsets of #(Y) such that K, and L, are narrowly compact convex sets and
L v whenever p € M, v € N. Then there are pairwise disjoint Baire-measurable F.-sets
F and H such that p(F) = 1 = v(H) for all p € M, v € N. If all measures in M U N are
tight and each of the sets K,, L, is uniformly tight, then F and H can be chosen to be
K,-sets.

ProoF. Assume K, 1 M, L, 1 N for compact convex set K, Ln. Choose &, > 0 such
that Y51 &, < . For every n there is a continuous function g. and a number 8, > 0 such
that u{gx < 8.} < 2. and ¥{g, > —8,} <26, if p € K, and » € L,. Put Fr = N5 {&n =
8,,} and H, = NT= {g,, = - n}. Then F, N H, = [} and [.L(Fk) =1—-Y% ,ll{gn < Bn} >
1—2 Y%k & for p € K. Similarly v(Hz) =1 — 2 ¥%-1 & for p € Ly. The sets F = U%1 F,
H = U%-, H, are disjoint F,-sets such that u(F) = 1 = v(H) for all p € M, » € N. Now
assume that for each n there is a compact subset C, of Y such that p.(B) < &, for all Baire
sets with B N C, = ¢ and all u € K,.. Then we may in the definition of F, and F replace
{g. = 8.} by the compact set {g, = 8.} N C;, to get a K,-set F c F with u(F) = 1for all u
€ M. Similarly uniform tightness of the L, leads to a K,-set H c H with v(H) = 1 for all
vE N.

CoMMENT. The reader may notice a certain ambiguity in the last statement of the
corollary: If the sets K,, L, are uniformly tight with respect to Baire measurable compact
sets, then the K,-sets F and H can be made Baire measurable. Otherwise this need not be
true and the equality u (F) = 1 = »(H) refers to the Radon measure extension of the Baire
measures y, v.

It is quite natural to ask the same questions for measurable measure convex sets K, L.
The main difficulty is that in this situation only a weak minimax result is available. For its
formulation we need the concept of a filter of countable type. The theory of these or rather
closely related filters has been developed to some extent in [1], [13], [16].

DEFINITION 34. a) If #, %, ... is a sequence of filters on a set I, the filter
{U%=n Fr:n € N, F), € %} is called the product of %4, %, - - -

b) Let I be any (nonempty) set. A filter & on I is said to be of countable type if it
belongs to the smallest family .# of filters on I such that
(i) for each i € I the filter {F C I:i € F} belongs to .4 and
(ii) the product of each sequence of filters in .# belongs to 4
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Recall that, if #is a filter on I and (x;)ics is a family of real numbers, one defines
lim supz x; as infre #sup;erx;. Similarly lim infzx; and limgx; are defined. It is easily seen
that lim supsx; = lim sup,_.(lim supz x;) whenever Zis the product of #, %, --- . Note
also that each filter of countable type contains a countable set, hence instead of considering
arbitrary index sets I, one often may restrict one’s attention to the case I = N. The
importance of filters of countable type can be seen from the following remark.

REMARK. a) Let % be a set of functions on a set X, % the smallest family of functions
containing ¥ and closed under limits of sequences, 4. the family of all limits limgf;, where
Z is a filter of countable type and f; € 4. Then # C 4., and % = %. provided that f, g €
%, r € R implies that max(f, g), min(f, g), max(f, r), min(f, r) € %.

b) Whenever & is a filter of countable type on a set I, (2, <, P) is a probability space
and fi(i € I) are nonnegative measurable functions then lim infsf; is measurable and
[ lim infzf; dP < lim infs [ f; dP.

PrOOF. a) The inclusion & C 4. is obvious since %, is closed under limits of sequences.
To prove %#. C % under the conditions stated in a) first note that 4 is closed under lim sup
and lim inf for uniformly bounded sequences in . This implies that the same property
extends from sequences to all filters of countable type. If now 4. 3 g = limsf; we have g
= lim,_..limzmax(—n, min(f;, n)) € 4. .

b) The set of all filters on I for which b) is true fulfills the conditions (i), (ii) by Fatou’s
lemma.

DEFINITION 3.5 (cf. [15]). A set M in a locally convex space is called convexly analytic
if there is a map ¢ from a Polish space T into the set of nonempty compact subsets of M
such that
i) (¢ is onto) Every point of M is contained in some ¢ (¢), t € T
ii) ¢ is upper semicontinuous, i.e. {¢:¢(¢) C V} is open for every relatively open subset V'
of M,
iii) for every compact subset C of T there is a compact convex subset K of M such that
¢ () C K for all tin C.

CoMMENT. In this definition one may also take either N" or analytic spaces instead of
the Polish space T. An analytic measure convex set is obviously convexly analytic but the
converse is not true even for bounded sets.

For example, let M be the set of all probability measures g on R for which

*% | x| du(x) < o with the narrow topology. Then M is bounded but not measure convex.
However M is convexly analytic: Let T be the coarsest topology on M finer than the narrow
one such that g — [| x| du(x) is 7-continuous. Then for every r-compact set C it follows
sup,ec [ | x| du(x) < oo and hence every measure on C has its barycenter in M. From this
one deduces that the map ¢: u+— {u} defined on the Polish space T'= (M, ) has properties
1), ii), iii), so M is convexly analytic.

For analytic finite dimensional sets, the three notions convex, convexly analytic,
measure convex coincide since very finite dimensional convex set is automatically measure
convex. On the other hand every compact convex metrizable infinite dimensional set
contains a convex Gs which is not measure convex [33]. The set constructed in that paper
even fails to be convexly analytic.

We now give a weakened generalized minimax principle suitable for our purposes.

PROPOSITION 3.6. Let (G, | ||) be a Banach space. For every pair of convexly analytic
subsets M and N of (G*, 6(G*, G)) there are a family (g:):c1 of elements of the unit ball
of G and a filter # of countable type on I such that

diSt" ||(M, N) = infeeNlim infy(e, gl) - supeleMlim sup;;(e', gt).
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ProoF. In fact we shall prove something more: Let ¢ and ¢ be correspondences of NV
onto N and M respectively with the properties described in the above definition. Then
there is a filter # of countable type on the unit ball of G such that

dist) (M, N) = infceclim infzinfec,c)(e, &) — supceelim supssupeeyc)(e’, &)

where p(C) = Uiec(t) and ¥ denotes the set of all compact subsets of N". (Here the index
set I'is the unit ball of G itself. This simplifies the proof.)
Let 7. for ¢ = 0 denote the set of all open subsets A of N"such that

infeeglim infrinfeeyc) (e, &) = supceswlim supzsupeeyc)(e’ g) + v.

for some filter #of countable type on the unit ball of G where % (A) is the set of compact
subsets of A and y. = dist; |(M, N) —e.

We claim that A € 7. whenever e, | ¢, A, 1 Aand A, E 7, foralln=1,2, ... . For each
n choose a filter &%, associated with A, in the described way. Passing to a suitable
subsequence we may assume that lim, . (infcegu lim infzinfee, ) (e, g)) exists. Let & be
the product of the filters %,. Fix a compact subset C; of A. Since the A, are open we have
Co € % (A,) for all sufficiently large n and hence

lim infsinf.cyco(e, &) = lim inf, o lim infsinf.e,co (e, &)
= lim,.«infceqylim infsinfeey(c)(e, £)
= lim Sups—,«(Supcey(a,)lim supssupeey ci{e’, &) + Yen)
= lim sup,_,lim supgsupeeyco{e’, &) + ve
= lim supzsupe-eycofe’, &) + Ye

This proves A € 7.

Assume now N" & . for some ¢ > 0. Using what we just proved, a standard inductive
procedure shows that there is a n = (n;, ng, ---) in N" such that none of the sets
Ar(k € N) is in 7, where A, is the open set {z € NV:z; < n; for all i =< k}. Let C be the
compact set N%-1 Ax. Choose compact convex sets K, L such that ¢(C) C KC N and ¢/(C)
C L C M. According to the minimax lemma there are a g € G with || g|| = 1 and real
numbers ¢, d such that ¢ — d > dist) (K, L) — e = y. and

inf.ex(e, g) > ¢ > d > supeeL (e, g).

The set {z € N":¢(2) C {(-,g) > ¢} and Y(2) C {{-, g) < d})} contains C and is open
since ¢ and y are upper semicontinuous. Thus it contains A, for some % in contradiction to
Ap & ..

So N" € 7, for every ¢ > 0. Letting ¢ tend to 0 we conclude NV € 7, which completes
the proof since the inequality “=" in the proposition is obvious for any filter % on

{lgll =1}

CoMMENTS. 1) In a similar way as we have passed from the minimax lemma to the
above proposition, also other separation theorems can be shown to have noncompact
analoga involving filters of countable type.

2) Part b) of the following theorem is essentially (i.e. for analytic measure convex sets)
due to Mokobodzki (cf. [31]). We shall see in Section 5 that generally the set S in b)
cannot be chosen to have the property of Baire even if Y is Polish. So the dependence of
@ in part a) is not superfluous.

3) We recall that a map x: [0, 1]¥ — [0, 1] is called a medial limit for a filter # on N if
it is measure affine, i.e. universally measurable and x (r(s)) = [ x(x)u(dz) for every Borel
probability measure y on [0, 1]” where r(u) is the barycenter of y, and if lim infzz, < x ()
= lim supzz; for all z = (z;) € [0, 1]V. If & is the Fréchet filter, one calls x simply a medial
limit. Medial limits are known to exist under CH [23] and even under Martin’s Axiom. (An
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introduction to these questions is given in [14].) One easily sees that, if a medial limit
exists (for the Fréchet filter), then it exists for each filter of countable type.

THEOREM 3.7. Under the general hypothesis of this section, let M and N be two
convexly analytic subsets of ? such that p L v whenever . € M, v € N.

a) Let %* be the o-algebra over 2 generated by the evaluations u— u(g), g € G. There
is a set Bin 9* ® % such that p(B,) =1and v(B,) =0 for allp € M, v € N.

b) If a medial limit x: [0, 1]V — [0, 1] exists then there is a set S in the universal
completion of % such that n(S) =1 for all p € M and v(S) =0 for all v € N.

Proor. From the preceding proposition one deduces that there is a family (g:)icr
of measurable maps of Y into [0, 1] and a filter & of countable type on I such that
limg[ g; du = 0 for p € M and lims [ g; dv = 1 for » € N. (The function g; is obtained from
the one given by the proposition by first multiplying by % and then adding %.) We may
assume I = N.

For the proof of b) it is sufficient to take S = {y € Y: x((g:(y))ien) = 0} where x is a
medial limit for #

For the proof of a) put B = {(u, ¥): &(u, y) = 0} where g is the function obtained from
the following lemma applied to the space (X, &) = (&, %*) and the identity on Zconsidered
as a transition kernel from Zto Y. .

LEMMA 3.8. Let (u.) be a transition kernel between two measurable spaces (X, o)
and (Y, #). Let ( g:)ic1 be a family of o/ ® #B-measurable real functions such that for each
x the family (gi(x, +))icr is uniformly bounded. Let & be a filter of countable type on I.
Then there is a &/ @ JB-measurable function g such that inf g; = g < sup g; and for all x,
x" € X we have

J &(x, y) dux(y) = lim sups f &(x,y) dp(y),

f g(x, y) dpx(y) = lim infz f &i(x, y) dyux(y).

Proor. We may assume I = N. First let us consider the case of sequences, i.e. let #
be the Fréchet filter. The idea is just to take suitable convex combinations depending on
x which converge u. — a.e. Since this choice has to be measurable in x we give a detailed
proof.

Note that if Cis a convex subset of a (pre-) Hilbert space H and a = inf{|| z|: z € C},
we have for every pair (z, 2’) of C the estimate || z — 2’ | =4 max(|| z||* — a, || 2’||* — ). We
are going to apply this to the bounded sets C,(x) = conv{ g;(x, -): i = n} in £*(u.). The
numbers

an(x) = inf{j h*(y) dp(y): h € Cn(x)}

are increasing, uniformly bounded and measurable in x since it is sufficient to consider
rational convex coefficients. Choose an increasing sequence of measurable functions n,: X
— N such that a, (x) — a, (x) < & for r' > r where (&) is some decreasing sequence of
positive numbers with Y72, e, < . For fixed r choose (measurably) some &, (x) = n,(x)
and (rational) convex coefficients (af(x))n,sksk, such that || A, (x, ) ||§,,,x< an (x) + ¢ where
h(x, y) = 385 ) ak(x)gr(x, y). Then from the geometric estimate given above we infer
forr'>r

| A (x, -} — B (x, -)||;,’u =< 4 max(er, @, (¥) + & — an (x)) < 8.
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Thus A.(x, -) converges pu. — a.s. Let g(x, y) = lim sup,_.A.(x, y). Then by dominated
convergence

Ig(x,y) du:(y) =limr_mf h-(x, ) dp. (y) < lim supiawjgz(x,y) dux(y)

and by Fatou’s lemma
I £g(x, y) dux(y) = lim sup,_,. f h.(x, y) dp.(y) = lim inf;_,, J &i(x, y) du ().

Now the lemma has been proved for sequences. From this fact, it is easily seen that the
set of all filters for which the lemma holds is closed under products of sequences. Hence it
is proved for all filters of countable type.

We now want to establish the topological properties of the separating set.

THEOREM 3.9. Let (Y, #) be a completely regular space with the Baire o-algebra
and let G be the space Cyv(Y). Let M, N be as in Theorem 38.7. Then for each € > 0 there
isaset F € 9* ® % such that u(F,) > 1 — ¢, v(F,) =0 and F, is closed for every u € M,
v € N. If Y is homeomorphic to a Baire subset of a compact space Y and A is the trace
of the Baire o-algebra of Y, then the F, can be made compact.

Proor. We know that there is a ¥* ® # — measurable set B such that u(B,) =1 and
v(B,) =0 for all u € M, » € N. Choose F € %* ® # according to the following lemma,
applied to (X, &) = (2(Y), %*) and the “identity kernel.” Then F has the required
properties.

LEMMA 3.10. Let (u:)zex be a transition kernel from the measurable space (X, o) to
the completely regular space (Y, ) with its Baire-c-algebra. Let B € o/ @ % be such that
ux(Bx) = 1 for all x. Then for each ¢ > 0 there is a set F € o/ ® B such that F, is a closed
subset of B; and u.(F.) > 1 — ¢ for all x € X. If Y is homeomorphic to a Baire subset of
a compact space Y and & is the trace of the Baire s-algebra of Y, then the F, can be
made compact.

Proor. This lemma is a straightforward extension of Theorem 2.2 in [21].

4. Orthogonality preserving kernels. The following result collects a number of
properties, most of which are known to be shared by all completely orthogonal kernels and
which in fact are equivalent to the condition of being orthogonality preserving. For a
kernel (u.) from X to Y and every p € (X) we denote by ji* the mixture [xe; ® p. dp on
X X Y (generalized Fubini measure) and as before by pu” the mixture [xu. dp on Y.

THEOREM 4.1. Let X and Y be Borel subsets of Polish spaces. Let (i) be a transition
kernel from X to Y. Then the following conditions are equivalent:

(i)  (u<) is orthogonality preserving.

(i) The map r: m — [xp. dm is a vector lattice isomorphism from the space ».(X) of
signed measures on X to a linear subspace V of #»(Y) which is closed under the
lattice operations in » (Y).

(iii) For every p € #(X) and every B € B(X X Y) there is some C € B(Y) such that
Jxtie(B:A C)p(dx) = iP(B A (X X C)) = 0.

(iv) For every p € P(X) there is a Borel map ¢:Y — X such that p {x: . e {x}) =1}
=1.

(v)  For every p € #(X) and every increasing sequence (%,) of o-algebras generating
B(Y),p{x:p{y:05(y, ) Pnow &} =1} = 1 where ($E(y, +))yev is a disintegration
of uP| B(X) ® B, for the projection onto Y and the convergence is narrow conver-
gence in #(X).
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(vi) For every subset X, of X such that {u.}:ex, is narrowly o-compact, the kernel
(ux)xex, is completely orthogonal.

(vil) Let Xo C X be a countable union of compact sets on each of which the map x — p.
is continuous. Let (Y,) be a sequence of spaces such that Y =lim,Y, with
corresponding projections m,:Y — Y,. Then there are Borel maps ¢n: Y, — X, such
that p{ y:@n(m2(y)) 2nse x} = 1 for all x € X,.

(viii) There is a family (¢.)ien of Borel maps from Y to X and a filter  of countable type
on N such that limzp:{y:9:(y) € U} = 0 for all open sets U in X and all x € U.

Let us make some comments on these conditions. (The label of a comment coincides
with the label of the corresponding condition in the theorem.)

(ii) Let e.g. (ux)xex be the family of ergodic measures for a set .4/ of kernels as in
Proposition 1.2. Let V be the space of all .#“invariant signed measures. Then V is a vector
lattice and—this is essential in (ii)—the lattice operations in V coincide with those induced
from #(Y)([4]). A Choquet type existence and uniqueness theorem (for a suitable non-
compact version see e.g. [34]) then shows that the barycentric map r defines as isomorphism
from (X) to V. So here condition (ii) is easily verified by Choquet theory, whereas in this
context even complete orthogonality is known by different arguments (see Proposition
1.2). We mention in [22], Problem 4 some kernels of quasi-ergodic measures which preserve
orthogonality but for which complete orthogonality is still open.

(ili) A vague but perhaps more suggestive reformulation of (iii) is the forrnula L?(u?)
= [€ L) dp. In fact the assignment B — Cinduces canonically an isomorphism between
L%@”) and L%(u”). On the other hand for any kernel (i.) and any p € 2(X) the space
L*(z*) may be viewed as a concrete realization of the direct integral [$ L%(u.) dp of the
Hilbert spaces L%(u.), x € X. By the way, the equivalence of (i), (i) and (iii) holds for all
measurable spaces X and Y. (For (iii) = (ii) = (i) use the proofs given below whereas a
direct proof of (i) = (iii) is easy).

(iv) is just a nonsequential form of (v).

(v) states in statistical language that for any a priori distribution p on the parameter
space X any sequence of a posteriori distribution concentrates for p-almost every parameter
almost surely around this parameter. The implication (iv) = (v) was an early success of
martingale convergence (see [5], or, more accessible, [29], Section 3; consider the martin-
gales (x, y) — ¢%(y, V) on (X X Y, iu?) where V runs through a countable base of the
topology of X).

(vi) The implication (i) = (vi) had been proved independently in [8] and [32].

(vii) Condition (vii) does not imply p.{y: @-(y)(f) = p«(f)} = 1 for all bounded Borel
functions f on Y where @,.(y) = pg.(m(y)- Therefore, the sequence (@,) need not be an
asymptotically H-sufficient statistic in the sense of [6], page 714, even if X, = X.

Proor. We prove (i) = (vii) = (vi) = (iv) = (iii) = (ii) = (i) and (i) < (viii). The
equivalence (iv) & (v) has already been mentioned.

(i) = (vii). Let d be a metric for the topology on X. As is easily seen, condition (vii)
follows from the following statement which we are going to prove: If x — p. is continuous
on some compact subset Z of X then for every ¢ > 0 there is some n and a Borel map ¢,:
Y, — Z such that p. {y: d(x, gp(7.(y))) = ¢} =eforall x € Z.

For the proof of this, choose z;, ---, 2, in Z such that Z = U7, S(z;, ¢/4) where
S(z, &) (resp. S(z, 8)) denotes the open (resp. closed) 8-neighbourhood of z in Z. For every
i the sets {u”: supp p C S(z;, ¢/4)} and {u?: supp q C Z\S(z;, ¢/2)} are compact convex
subsets of 2(Y). Every element of the first is orthogonal to every element of the second
since () is orthogonality preserving. The subspace G of C,(Y) of all functions of the form
h o m,(n €N, h € Cy(Y,)) is norm-defining for »(Y). Our two sets of measures are also
o(#(Y), G)-compact since this topology is Hausdorff and coarser than the narrow topology.
Hence by Proposition 3.1, there is a subset V; of Y of the form {A ° 7, = 0} such that
px(Vi) > 1 — ¢/r for all x in S(z;, ¢/4) and p.(V;) < &/r for all x in Z\S(z;, £¢/2). Now define
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Yi: Y— {21, .-+, 2.} inductively by Y1 (y) = z1and for i > 1, Y;(y) = z;on V;and ¢; = ;1
on Y\V.. Choose n sufficiently large and ¢.: Y, — {21, -+, 2.} such that §, = @, °© 7.

In order to show that ¢, does the job, fix x in Z. There is some m such that x € S(z,,
e/4). If d(zm, ¥r(y)) = (%)e then either ¢ (y) # 2, and hence y & V,, or ¢, (y) = z; and
hence y € V, for some i > m with d (2., z;) = (%)e. Therefore

{y: d(x, @u(ma(y))) = €} C {y: d(zm, ¥ (y)) = (34)e}
C MV, UU (Vi i>m, d(zm, zi) = (a)e}.

But d(zm, 2.) = (%)e implies x & S(z;, ¢/2) and hence p,.(V;) < e¢/r. On the other hand
px(Vim) > 1 — ¢/r and thus altogether p.{y: d(x, Pn(m(y))) =&} = Vi-me/r <e.

(vii) = (vi). By identification of x with u. one gets a o-compact topology on X, to which
(vii) is applicable. The conclusion of (vii) implies in particular that (p.).ex, is completely
orthogonal.

(vi) = (iv) is clear by Lusin’s theorem applied to the map x — ..

(iv) = (iii). Let B in #(X X Y) and the Borel map ¢: Y — X be given such that
px(@{x}) =1 for all x € X, where p(X,) = 1. Let D be the set {(x, y): x € Xo, x = ¢(¥)}
and define C to be 7y (D N B). The projection 7y is injective on D, hence C € #(Y). Also
(CAB;) N D, = J and therefore p.(CAB.) = 0 for all x € X,. This implies (iii).

(iii) = (ii). Let V be the image of »(X) under the linear map r: m — pu™ (= [xu.dm).
We shall see that | ™| = p! ™! for every m € #(X). It follows then that r is a linear order
isomorphism between #(X) and V and that V is closed under the lattice operations in
m(Y), i.e. (ii) holds. Fix now m in »(X). Let A in #(X) satisfy m*(A) = 0 and m~(X\A)
= 0. According to (iii) there is a Borel subset C of Y such that u.(CA(A X Y),) = 0 for all
x € Xo where [m | (X\Xo) = 0. Hence px(C) = p((A X Y),) = 1 for x € Xo N A and p.(C)
= (A X Y)) = (D) = 0 for all x € X,\A. This implies u”*(C) = [x\ap=(C) dm =0
and g™ (Y\C) = [anx, it (Y\C) dm = 0. So u™ and p™* are orthogonal and hence |[u™| =
[u™ = p™ | =p™ +pm = plml,

(ii) = (i). Condition (ii) implies in particular r(p) A r(g) = 0 (infimum in V and hence
in #(Y)!) whenever p, ¢ € Z(X) and p A\ ¢ = 0. So the kernel is orthogonality preserving.

(i) = (viii). Since there is a continuous surjection g: NV — X, we may assume for the
proof of (viii) that X = N". For &, I € N let Uy, be the set {(x,) € NV: x = 1}. According
to Proposition 3.6, condition (i) implies that there is a family (g?");c;« and a filter #** of
countable type on I*’ such that | g#‘||» =< 1 and lim s+ [yg#’ du. = 1 for all x € Uy, and
lil‘n_o;k'fygfl dp.x = —1 for all x 6 Ukz.

According to the lemma below we may assume I** = N and #** = & for all k, [ where
Z is some filter of countable type on N. Let A*’ be the set {y: g*(y) > 0}. Then
lim 7y (A#’) = §,,,;(Kronecker symbol) for each x = (x,) € N". If we define ¢:: Y — N" for
each i € N by

_ _ [min{l:y € A¥} if y€ Uy A¥
(@i (e = {1 otherwise

it follows that limzu. { y:(@:(¥))x = xx} = 1 for all 2 € N and all x € N". But this is just
(viii) due to the definition of the topology in NV,

(viii) = (i) Let p and g be orthogonal measures on X. For every ¢ > 0 we may find a
continuous function ¢: X — [0, 1] such that [ ¢(x)p(dx) < e®and [ (1 — p(x))q(dx) < &>
Let U= {x € X: p(x) <¢}. Then lim supz [x [y ¢ ° @i(¥)p(dy)p(dx) =p(X — U) + ¢ +
lim sups [v p{y: ¢:(y) & U}lp(dx) < 2. Similarly we see that lim sups [x [v (1 — @)°
i (¥)ux(dy)q(dx) = 2¢, hence for some j we have [ ¢ ° @i(y)u’(dy) < 2e and [ ¢ o
¢ (y)n?(dy) > 1 — 2¢. This shows that p” and u? are orthogonal.

LEMMA 4.2. Let (%n)men be a countable family of filters of countable type on
corresponding sets I,,. Then there is a filter & of countable type on N and for each m €
Namap &:N — I, such {&.(F):F € #} is a base for %, (i.e. %, is the image of #under
én).
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Proor. If #and % are filters of countable type on sets I and o respectively, we define
F X %to be the filter on I X J with base {Urcr{k} X Gx:F €EZ G, € ¥}. Then ¥ X ¥is
a filter of countable type since for fixed ¥ the set { #:F X %is of countable type} is closed
under products of sequences and contains the filters generated by singletons. Also, the
images of #X % under the projections are #and ¥ respectively.

Using this in the situation of the lemma we may define %,, on I; X ... X I, inductively
by 4=%Aand %= %n-1XF.OnI=Un_1 I} X ... X I, let F be the product of the
sequence ({G:G N (I} X «++ X I,) € %,})men of filters of countable type. For each m
define &,,:1— I, by

. PR in if n=m
Sulin, o0y ln) = {i;:, it n<m
where i}, is some fixed element of I,,. Then one easily verifies that &%, is the image of &
under £. Since we may assume [ is countable, the same construction may be done on N.
The following proves part c) of Theorem 1.8.

THEOREM 4.3. Let X and Y be standard measurable spaces. Any orthogonality
preserving kernel (u.) from X to Y is uniformly orthogonal. If a medial limit exists then
(ux) is also “universally measurably” completely orthogonal, i.e. the measures p. are
separated by the fibers of a universally measurable map ¢:Y — X.

ProoF. Let (V,.)nen be a sequence of subsets of X which generates % (X). Let M, and
N, be defined as {p”: p(V,,) = 1} and {p”: p(V,) = 0} respectively. Then M, and N, are
measure convex analytic subsets of 2(Y) so that every element of one is orthogonal to any
element of the other. According to part a) of Theorem 3.7 there is a set B, in 2*(M,) ®
#(Y) such that p.(Br,,) = 1 and py(Bn,,) = 0 whenever x € V,,, x’ € V,. Let B be the
Borel set N7-1 {(x, y):x & V,or (ux, ¥) € B,}. For every x we have B, = N {By, :x € V,,
n= 1} and hence p.(Bx) = 1. If x # x’ then there is an n such that x € V,, and x’ € V, and
hence pr (Bx) < pir (Bn,,) = 0. This proves the first assertion. For the second assertion a
similar argument applies using part b) of Theorem 3.7.

5. Counterexamples. Finally we show that the various (0—) compactness conditions
in the previous results cannot completely be omitted.

Recall that a set A C Y is said to have the property of Baire if (A — G) U (G—A) isa
first category set for some open set G C Y. These sets form a o-field, hence they contain
the Borel sets; moreover they are closed under the Souslin operation [24] and hence they
contain all sets belonging to the smallest o-field containing Borel sets and closed under the
Souslin operation.

The following lemma is the key to the counterexamples given in this section. The first
part of the lemma is of a purely descriptive set theoretic nature and the second part is the
measure theoretic tool which we will use. This lemma is closely related to one given by
Blackwell [2] and was independently rediscovered by M. Talagrand and D. Preiss. It
replaces our original arguments which concerned analytic sets [25].

LEMMA 5.1. Let A be a subset of the topological product Y = I1Z Y; of a sequence
of finite spaces. Then

a) A is residual if and only if there is a z € Y and a sequence 1 = m(1) < m(2) <
-+« of integers such that y € A whenever the set

(REN:y=2zforj€ (m(k),---,mk+1)—1}}

is infinite and contains 1.

b) If A is residual then there is a real sequence (t;) with lim, ,.t; = 0 and a compact
subset C of A such that for every y° = (y?) € Y there is a probability measure y satisfying
p(C)=1land p{y:y:*y?) =t.
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ProoF. a) Let G be open such that A is comeager in G. Choose m and 2, - - - 2,, such
that Gi = {y € Y:y; =z, for i = m} C G. Let (Gx)i=1 be a decreasing sequence of dense
open subsets of Gi with N§-; Gi C A. Define H, for & > m to be the set {y € G: for all
Um+1, +++ , U With u; € Y; the sequence (21, + -+ , Zm, Um+1, =+ + , Uk, Yir1, Yhe2, « - +) belongs
to Gr}. Then G D Hy D Hp+1 and each H, is (a finite intersection of sets which are) open
and dense in G1. Thus there is a point z in N§-; H;. For each r > m choose p (r) € N such
that p(r) >rand {y € Y:y; =2, fori<p(r)} C H,.

We now define m(n) by m(1) =1, m(2) =m + 1and m(n + 1) = p(m(n)). Then z and
the sequence m (1), m(2), - - - have the desired properties. In fact fix n for the moment and
let y be such that y; = z; for j < m and m(n) =j < m(n + 1). Consider y’ with y; = y, for
J=m(n) and yj = z;for j < m(n). Then y; = z; even for all j < p(m(n)) = m(n + 1) and
hence y’ € Hn(n. Since y is of the form (21, *++, Zm, Unt1, *** , Umn), Vi1, Y my+2,
-++) this implies y € Gn(w. Now if this holds for infinitely many n we conclude y €
N%=1 G and hence y € A.

Conversely, suppose the second condition in part a) holds. Let Gi = {y: y; = z, for j =
m(k), ---,m(k + 1) — 1}. Then A contains the set S = N5-; (U%=. G) N Gy which is a
dense Gj; set in the clopen set G;.

b) Let Cbe theset {yE Y:y;=2zifor 1 =j<m(2) =m + 1 and for each r € N there
issomei € {0, 1, ---,2"— 1} such that y; =z, for m (2" + i) =j<m(2"+ i+ 1)}. Then C
is a compact subset of A according to part a). Let y° be any point in Y. The measure p we
are looking for is the image of Lebesgue measure under the map g = (g1, g, - - +) of [0, 1]
into Y where gi(t) = z;for 1l =j=m, gi(t) = zjfor m@2"+i) <j<m@ + i+ 1) and
teli27, i+ 1)27)re€ N, i€ {0, ..., 2" — 1}) and g;(t) = y} in all other cases. Then
&([0,1]) CC, hence u(C) = 1and u{y: y; %y} <A[i27", (i + 1)27"] = ¢, where t; = 27" for
m(2") =j <m(@2™"). Clearly ¢, —,_... 0 and this sequence does not depend on y° This
proves the lemma.

From Lemma 5.1, the following result can be obtained.

COROLLARY 5.2 (Blackwell [2]). The two sets
M= {p€ 2({0, 1}"V):p{yn =0} =pw 1}, N={r€ 2({0, 1}"):0{ yp = 0} =, 0}

cannot be separated by a set with the Baire property.

CoMMENT. This corollary which gives two orthogonal measure convex Borel sets of
probabilities which cannot be separated by a set with the property of Baire yields together
with Mokobodzki’s result (our Theorem 3.7(b)) the fact that in ZFC + MA there are
universally measurable sets which do not have the property of Baire. In fact, we would
know that some set theoretical assumption is needed to obtain Theorem 3.7 provided the
answer to the following is “yes”.

ProBLEM. Is there a model of ZFC in which every universally measurable set has the
property of Baire?

THEOREM 5.3. There is an atomless transition kernel (u.) from X = I to a compact
metric space Y such that

a) there is a sequence (p.) of continuous maps from Y to X such that ¢, — x in
measure . for each x. In particular () is orthogonality preserving (compare (viii) =
(i) in Theorem 4.1.)

b) (u:) is not completely orthogonal: there is not even a map ¢: Y — X such that
px (@ {x}) = 1 for all x € X and ¢~ (B) has the property of Baire for all Borel sets B in
X.

ProoF. Let X =1[0,1], Y;= {i/2%:i=1,2,..-,2') and Y = IIZ; Y. To define the
kernel, we introduce some other spaces. Let 2 be the space of all compact subsets of Y
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with the Hausdorff topology and let S be the set of all positive sequences of real numbers
with limit zero; S will have the topology of pointwise convergence. Denote by % the set of
all pairs (C, s) € 2¥ x S such that for each x € X there is some p € P2(Y) with p(C) =1 and
[ |y:— x| du(y) < s; for each i € N. Since % is a closed subset of 2¥ x S, there is a Borel
measurable map y of X onto %. Finally, let A = {(x, C,s,u) EX X X 2(Y): u(C) =1 and
[ lyi— x| du(y) < sifor each i € N}. The set A is closed in X X ¥ X 2(Y) (recall that the
set 2(Y) is compact in the narrow topology) and the sections A, cs are compact, hence,
according to a uniformization theorem [28], there is a Borel measurable map (x, C, s) —
Vx,c;s € Axc,s. The kernel (p.)xex will now be defined by p. = vx,(x). This kernel satisfies a)
since y; — x in measure . for each x.

Let S*, S% C S be disjoint Borel sets such that, for each s € S, one can find s' € S* and
s? € S? with s; < s} and s; < s? for each i € N. Put B, = v }(2¥ X S*). We shall prove that
the sets {p.: x € B;} and {u.: x € By} are not separated by a set A C Y with the property
of Baire. To prove this, let A C Y be a set with the property of Baire. Then, according to
Lemma 5.1 b), there is a pair (C, s) € ¥ such that C C A or C C Y — A. If we take s* € S*
such that s* = s;, then (C, s*) € ¢(k = 1, 2). Hence x* = Y X(C, s*) € By, and p+(C) = 1.
Consequently px(A) = pe(A), and A does not separate the sets {u.: x € B;} and
{ux: x € Bs}. This proves b).

Starting from the example of the preceding theorem one may construct even topologi-
cally nicer examples. :

THEOREM 5.4. There is an atomless orthgonality preserving kernel (u.) between
Polish spaces which satisfies Theorem 5.3 b) and moreover c¢) Y is locally compact and
d) the map p — p” defines a topological isomorphism of »*(X) onto a closed subcone of
»"(Y) in the narrow topology.

Proor. Let () be any orthogonality preserving kernel between spaces X, and Y,
which satisfies condition b) of Theorem 5.3. We may assume that Y, is a compact metric
space. Find a closed subset X of NV and a one-to-one continuous map 8 of X onto {»;: ¢t €
Xo}. Let y: NV [0, 1] be the homeomorphism (into) defined by continued fractions. Now
take for Y the direct sum of Y, and [0, + =) and define p. = %(B: + Y i-1 2_kexk(,,,) for x
€ X where x:(x) = ¢(x) + Y% x;.

Since (»:).ex, is orthogonality preserving and satisfies b) the same is true for (p.):ex.
Further, c) is obvious. The maps x; are continuous. Thus, for every f € C,(Y) the map
x> [ fdu. = %[y, fdBx + Y71 27*f(xx(x))) is continous, being the uniform limit of
continous functions. Hence x — p, and p — p? are continuous for the narrow topology.

Finally let us show that {u”: p € »*(X)} is closed in »*(Y) and that p” — p is
continuous. Suppose (p,) is a sequence in »*(X) such that p” — p for some p € »*(Y).
Then sup,p.(X) < o and the sequence (1) is uniformly tight. Therefore for every & > 0,
k € N there is some M < o such that

Du{x: Y1 x> M) <= po{x: ue (M, + ®)) > 277} < 25uP (M, + ©)) <e.

This means that also the set {p,} is uniformly tight and hence relatively compact in
»* (N") since X is closed in #*(X). Now it is easy to see that u = u? for some p € ».*(X)
with p, — p.

CoroLLARY 5.5. There is a locally compact second countable space Y and a pair of
orthogonal closed convex subsets of ?(Y) which cannot be separated by a subset S of Y
with the Baire property.

ProOF. Suppose in the preceding theorem that for every pair (X’, X”) of disjoint
closed subsets of X the two orthogonal closed sets {u”: p(X’) = 1} and {u?: ¢(X”) = 1}
could be separated by a subset of Y with the property of Baire. Then it would be easy to
construct a map ¢: Y — X such that ¢ (B) has the property of Baire for all Borel sets B
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and p.(p~'x) = 1 for all x € X in contrast to condition b). Thus a pair of sets as in the
corollary must exist.

COROLLARY 5.6. Let (u.) be a completely orthogonal atomless transition kernel
between uncountable Polish spaces X and Y. Then there is a Borel measurable measure
convex subset N of P(Y) such that p” L v, for all p € P(X) and v € N but {u.} and N
cannot be separated by a Borel subset of Y.

Proor. By the isomorphism theorem of Section 2 it is sufficient to exhibit one kernel
(u.) with this property. One such construction follows.

Let X=1[0,1]and Y=[0,1] X {0, }", N= {(r € 2(Y): [ yidv(y) > 1}, M= {n €
2(Y): n is atomless and [ y; dn(y) — 0}. Let x — 7. be a Borel measurable map of [0, 1]
onto M. For x € [0, 1] and y = (¥, 51, +++) € Y put q.(y) = (x, y1, y2, +--) and let p, =
@x7x. Assume that E is a Borel subset of Y such that »(E) = 1 for every » € N. Let E; =
{y € Y: q.y € E for every x € [0, 1]}. Then E, is co-analytic, hence it is universally
measurable and possesses the property of Baire. Moreover if » € N is such that »(E — E1)
= 1 then there is a »-measurable map T: E — E; — Y — E such that (Ty), = y; for j = 1.
Hence Tv € N and T»(T — E) = 1, which is impossible. Hence vE; = 1 for every » € N.
Since each residual set supports some measure from N and since E; has the property of
Baire, the set E; is residual. This implies that 7. (E;) = 1 for some x € [0, 1], hence p.(E)
= q:M:(E) = 1.

COROLLARY 5.7. There are a compact metric space Y and two Borel measure convex
subsets M, N of 2(Y) such that M is compact and p. L v for allp € M, v € N, but M and
N cannot be separated by a Borel subset of Y.

Proor. Let X, Y, (ux):ex and N ve as constructed in Theorem 5.6. Our assumptions
are invariant under the change of the topology on Y as long as we do not change the Borel
structure. Hence by the isomorphism theorem in Section 2 we may even assume that X
=L Y=IXITand p.=¢e., @ ANforallx. Theset M = {[xp. dp:p E PX)} = {(p®A:p E
2(I)} is narrowly compact and convex. Thus the assertion follows from the preceding
theorem.

The following is another example of the situation in the preceding corollary.

ExaMpLE 5.8. Let Y = {0, 1}V, M = {p € 2(Y): p(Yiusy = 0) < 27", for all n} and N
={r € 2(Y): lim,_.olim infr v (yur = 0) = 1}.
We omit the proof which is a modification of the proof of the last theorem.

We do not know the answer to the following questions:

1) Suppose that (u.)ex and (vy)rex are two completely orthogonal kernels such that
u? L »? for all mixing measures p, q. Can the two sets {u.} and {v,} be separated by a
Borel subset of Y?

2) Suppose M C 2(Y) is compact and N C 2(Y) closed such that both are convex and
pLvforallp € M, v € N. Can M and N be separated by a Borel subset of Y?

Acknowledgment. We are indebted to L. Louveau who pointed out an error in the
first version of the paper.
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