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ABSTRACT. A continuous preference order on a topological space Y is a binary
relation < which is reflexive, transitive and complete and such that for each x, {y:
x <y} and {y: y < x} are closed. Let T and X be complete separable metric spaces.
For each ¢ in T, let B, be a nonempty subset of X, let <, be a continuous preference
order on B, and suppose E = {(t, x, y): x <,y} is a Borel set. Let B = {(¢, x):
x € B,}.

THEOREM 1. There is an S(T) ® B( X)-measurable map g from B into R so that for
each t, g(t, -) is a continuous map of B, into R and g(t, x) < g(t, y) if and only if
x <, y. (Here $(T) forms the C-sets of Selivanovskii and B(X) is a Borel field on X.)

THEOREM 2. If for each t, B, is a o-compact subset of Y, then the map g of the
preceding theorem may be chosen to be Borel measurable.

The following improvement of a theorem of Wesley is proved using classical
methods.

THEOREM 3. Let g be the map constructed in Theorem 1. If p is a probability measure
defined on the Borel subsets of T, then there is a Borel set N such that p(N) = 0 and
such that the restriction of g to B N\ (T — N) X X) is Borel measurable.

1. Introduction. A preference order is a binary relation < on a set Y which is
transitive, reflexive and complete. Such a relation is also known as a linear preorder.
One may partition the set Y into equivalence classes via the equivalence relation
x ~ y if and only if x <y and y < x (one may think of x being equivalent to y as
meaning that x and y are equally “preferred”). The natural relation induced by < on
the set of equivalence classes is a linear order. A representation or Paretian utility
function of a preference order is a map f from Y into the real numbers such that
x < y if and only if f(x) < f(y). One of the problems which has been of interest to
mathematicians and economists concerns continuous representations of a preference
order when the space Y has some underlying topological structure to which the
preference order is related [5,12]. More generally, one may have parametrized
versions of this problem. One may consider the space Y and the preference
order < as not being fixed, but the functions of some parameter (say time or
“traders”). One may then be concerned with the problem of obtaining (continuous)
representations which vary in some reasonable sense with the parameter [16]. This
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type of situation is known as “preference orders in markets with a continuum of
traders”. A discussion and references may be found in [7].

The purposes of this paper are to prove some general representation theorems and
to formulate some of the unsolved problems. Some known results will be reproved
either for the deeper purposes of this paper or to show these earlier results may be
obtained from standard mathematical procedures and constructions without the use
of forcing methods from mathematical logic.

Our setting which will be called the “fundamental hypothesis” throughout the
paper is the following:

Let T and X be Polish (= complete separable metric) spaces. For each 7 in T, let
B, be a nonempty subset of X and <, a preference order on B, such that if x € B,,
then both {y: x <,y} and {y: y <,x} are closed with respect to B,. We will also
assume that this entire process is “describable” or computable from some parameter.
Our assumption in this direction is that

E={(t,x,y) ETX XX X:x<,y)

is a Borel measurable subset of T X X X X.

In the context of this fundamental hypothesis we will set

B={(t,x) ETX X:x €B,}.

Let us note at the outset that B is a Borel measurable subset of 7' X X since
B = m,(E N A), where A = {(¢, x, x): t € T and x € X} and 7,, is the canonical
projection map of 7' X X X X into the first two coordinate spaces. Of course 7,
restricted to the Borel set E N A is a one-to-one continuous map, so the image of
E N A under 7, is also a Borel set [9, p. 487].

Let us make the following terminology. If < is a preference order on a topological
space Y, then < will be said to be a continuous preference order provided that for
each x in Y, both {y: y < x} and {y: x <y} are closed. This definition is reasonable
since in order for there to be a continuous representation of < it is, of course,
necessary that these sets be closed. It is a corollary of a result of Debreu [5] that for
each ¢, there is a continuous representation of <,.

Thus, one question which naturally arises is how these representations can be
“pasted together”. Heuristically, one could speculate that since the preference orders
are “describable”, there should be some reasonable manner of putting the individual
representations together. Specifically:

Problem. s there a Borel measurable map f from B into R so that for each ¢ in 7,
f(t, -) is a continuous representation of <,?

The answer to this problem is surely negative although we do not have an
example. We do prove that the answer is yes if one makes some additional
assumptions concerning the T-sections of B.

THEOREM 4.3. Assume the fundamental hypothesis. If for each t, B, is a o-compact
subset of X, then there is a Borel measurable map f of B into R such that for each t in T,
f(¢, ) is a continuous representation of <,.

We also show that one can always obtain a universally measurable map f with no
additional assumption.
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THEOREM 3.4. Assume the fundamental hypothesis. Then there is a map g of B into R
which is S(T) ® B( X)-measurable and such that for each t, g(t, -) is a continuous
representation of <,.

Our method of proof of Theorem 3.4 yields an improvement in a theorem of
Wesley [16].

THEOREM 4.1. Assume the fundamental hypothesis. There is a map g of B into R
which is S(T) ® B(X)-measurable such that for each t, g(t, ) is a continuous
representation of <, and such that if p is a probability measure defined on the Borel
subsets of T, then there is a Borel set N such that p(N) =0 and g restricted to
B N [(T — N) X X] is Borel measurable.

There are at least two differences between our Theorem 4.1 and Wesley’s theorem.
First, Wesley’s argument involves forcing techniques whereas our argument is purely
descriptive set theoretic. Second, for each probability measure p, Wesley’s construc-
tion yields a Borel set N with u(N) = 0 and'a Borel measurable function g from
BN[(T— N)X X] into R such that for each t € T — N, g(¢, -) is a continuous
representation of <,. However, these g’s may vary wildly with p. In our construc-
tion, we have a fixed g and only vary the null set N with p. Of course, our problem
raised earlier asked whether it is even necessary to vary N with p.

We will use the following conventions concerning a preference order < : x ~y
means x <y and y <x; x <y but not y <x. Of course, if <is a continuous
preference order, then each equivalence class is closed.

This paper grew out of and is an improvement upon an earlier unpublished
manuscript of the author [11]. The central theme of that manuscript was to first give
a number of different constructions of continuous representations of a fixed prefer-
ence order (Debreu’s theorem), and second, to “parametrize” these constructions in
the setting of the fundamental hypothesis. The idea was that the more “effective” the
construction the better the measurability properties of the parametrized function
would be. It was shown that one could take a particular method of construction and
obtain Wesley’s theorem. This is also carried out in this paper. It was also shown
that if one followed this procedure and if one assumed Martin’s Axiom (MA), then a
universally measurable parametrized representation could be obtained (actually, one
could take any of the constructions given and obtain a universally measurable
parametrized representation assuming MA). What this result suggested is that
Martin’s Axiom is not really necessary: there must be an absolute argument for such
a representation. This is precisely what happened. This fact was discovered by at
least three people who read the original manuscript, John Burgess [2,3] who used
some techinques from “modern” descriptive set theory and by David Fremlin [8]
and by the author both of whom used only “classical” descriptive set theoretic
techniques (even though the key classical result used here, Lemma 3.2, has only been
known for a few years). The proofs given in this paper follow the construction of
Fremlin because this single method of construction shows most clearly how all the
theorems may be obtained (although one could obtain similar results using any of
the constructions given in [11]).
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We wish to thank the referee for his numerous corrections and suggestions
concerning the original manuscript [11] and for pointing out that the map g
constructed in Theorem 3.4 is S(T) ® %B(X)-measurable. We also wish to thank
John Burgess for his comments and David Fremlin for his comments and permission
to use his construction.

2. Basic construction of a continuous representation. Our proofs of the general
theorems discussed in the introduction follow a basic strategy. First, one must have a
method of proving the existence of a (continuous) representation of a given prefer-
ence order. Then one “parametrizes” the proof. The idea being that if one is
sufficiently clever in constructing a representation then the parametrized construc-
tion should retain some degree of measurability.

So, here we investigate representations of a fixed preference order. The first two
theorems demonstrate a method of constructing a continuous representation of a
given preference order. Theorem 2.2 is due to Debreu [5]. It is these proofs which
will be parametrized in the next section.

THEOREM 2.1. Let X be a second countable topological space and < a continuous
preference order on X. Let {V, ), be a base for the topology of X. For each k, let

R,={y:yE€Veand|[x €V, ->y=<x]}
and let
L,={y:y€Viand[x €V, > x=<y]}.

Let D= {x,: n € N} be a countable dense subset of X such that for each k, if
R,+#* &,then D N R, # & andif L, + &, then D N L, # @. Define the function h
on D as follows.

Set

h(x,)=1/2.
Suppose h has been defined on x,. . .,x,. Then:
@ IfAi < nlx;~x,. ], set h(x,,,) = h(x,).
(b) If x; < X,41, Vi < n, set h(x,,,) = 3(1 + max{h(x,): i <n}).
(©) If x, 1 < x;, Vi < n, set h(x,,, ) = 3(min{h(x,): x; < n}).
(d) If x;, < x,4 < x,, for some iy and j;, 1 <iy, jy<n and Vi<n, x; < x, or
X;, = X, set
’ h(xn+l):%(h(xi0)+h(xjo))'
The function h has the following properties:
(D) x; < x; < h(x;) < h(x,), and
(2) if {x, }i= and {x,, }?2, are sequences of elements of D such that
() x, <x, <x, < <. <x, <X, <X,;
(B) either {x, }2, is strictly increasing or {x,, }i2., is strictly decreasing; and
(Y) Vjaplx; < Xy, OF Xy, <x;),
then lim,_, ,, h(x, ) = lim,_,  h(x,, ).
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PRrOOF. It can be checked that & satisfies condition (1). Assume the hypotheses of

condition (2) hold and

limh(x,) =b—e<b+e= limh(x,,).

i— o0 i— 00
Notice that condition (y) guarantees us that for all k, either A(x,) <b — e or
b + e < h(x,). Let i and j be the first integers such that b — 2e < h(x;) <b — e and
b+ e <h(x;) <b+ 2e Let us suppose that i <j. Let s be an integer less than j
such that b — 2e < h(x,) < b — e and if k <j and h(x;) < b — ¢, then x, < x,. So,
if k <j, either x, < x, or x; < x,. Condition () guarantees us that there is a first
positive integer p such that x, < x, < x;. Of course, p >j. Now, by part (d) of the
definition of 4, h(x,) = 3(h(x,) + h(x,)). But, | A(x,) — b|<e. This contradiction
establishes part (2) of the theorem in case i < j. The argument in case j < i is similar.
Q.E.D.

THEOREM 2.2. Let X be a second countable topological space,=< a continuous
preference order on X and let D and h be as constructed in Theorem 2.1. Define the
function g from X into [0, 1] by setting

g(x) = inf{h(x;): x < x;}.
Then g is a continuous representation of < .

PrOOF. Certainly, if x <y, then g(x) < g(y)and g|D = h.

Suppose g(x) < g(y) and y < x. If there were elements x; and x; of D such that
y=<x;<x;<x, then g(y) <g(x;) = h(x;) <h(x;) = g(x;) < g(x). From this
contradiction it follows that there is an open set U such that y € U and if z € U,
then z < y. Thus, there is some k, such that y € R, . Therefore, there is some n,
such that y ~ x, . Similarly, there is k, such that x € L, and some n, such that
x ~ x,_. But, this implies that g(y) < g(x). This last contradiction leads to the
conclusmn that if g(x) < g(), then x < y.

In order to prove that g is continuous, we will demonstrate that g is left
continuous at some fixed point y. A similar argument can be given to show that g is
right continuous at y, and of course, g is continuous at y if and only if g is both right
and left continuous at y. So, let {,}, be a sequence of elements of X converging
to y such thaty, <y, <y; < --- and suppose lim,,_ o g(y,) = I < g(y). Notice that
for each n, y, <y and the sequence {y,}-, must have a strictly increasing subse-
quence. From this fact, one can construct a sequence {x, ), of elements of D
which is strictly increasing such that {x,} converges to y and lim, . g(x,) =
lim, ,  h(x, ) =I. Now, if there is some element x; of D such that x; ~y, let
X, = X, for i=1,2,3,.... Otherwise, let (X, )72 be a decreasing sequence of
elements of D such that g( y) = lim,_ ,, h(x,, ). The sequences {x,} and {x,, }
satisfy the hypotheses of (2) in Theorem 2.1, but violate the conclusion of 2). This
contradiction demonstrates that g is left continuous at y. Q.E.D.

3. Parametrized constructions. In this section, we shall parametrize the construc-
tions of §2. We shall assume the fundamental hypothesis. In addition, let {V, }>_, be
a base for the topology of X and for each k, let

R,={(t,y):y€V,NBand[x €V, N B, —y<,x]},
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and let
L.={(t,y):yEV,NBand[x EV,NB - x=<,y]}.

Let C be the family of all subsets of T X X which can be obtained from operation
(A) applied to sets of the form C X D, where C € &(T) and D € B(X). Here S(Z)
denotes the C-sets of Selivanovskii, the smallest family of subsets of Z containing the
open sets which is closed under complementation and operation (A) [1].

LEMMA 3.1. Each of the sets R, and L, is in C.

PrROOF. We have
(t, V)R, < (t,y) E(TXV,)NB
and (if V; C Vi and ¥V, N B, # @&, then 3z[z € V; N B, and y <, z]). Thus,
(3.1) R, =BN(TXV,)

N N [((T- m((Tx ¥) N B)) x X)Umy(En (Tx XX K))].

Q.ED.

LEMMA 3.2. If W € C, then there is an S-measurable map f from T into X such that
if W, 3, then f(t) € W,.

A proof of this theorem has been given by Dellacherie [6, p. 217]. This theorem
seems to have been known to a number of people.
The next theorem is a parametrized version of Theorem 2.1.

THEOREM 3.3. Assume the fundamental hypothesis. There is a sequence { f, )5, of
maps of T into X such that (1) for each n, f, is S(T)-measurable, (2) for each t,
D, = {f(t): n € N} is a dense subset of B, and (3) if R;, #+ @, then D, N R, #* &
andif L,, # &, then D,N\ L, # &.

PROOF. Since B is an analytic subset of 7 X X, it follows from the von Neumann-
Yankov theorem (see [15]) that there is a sequence {g,}3>, of maps of T into X each
of which is B@(T )-measurable and such that for each ¢, {g,(¢): n € N} is dense in
B, :
For each k, let &, be an §(T )-measurable map of T into X such that if R, # @,
thenh,(t) € R,,. Let H, = {¢t: (¢, h(t)) € R,}. Then H, € §(T). Let i;k(t) = h,(2),
if t € H, and let ﬁk(t) = g,(1), if t & H,. Then }ik is an &(T')-measurable map of T
into X and for each 1, #,(t) € B, and if R,, # @, h,(t) € R,,. For each k, one can
construct a similar map p, for L,. Finally, arranging the sequences {g,}, {hA <}, and

{ p,} into one sequence { f, }°>,, we obtain the conclusion of the theorem.

THEOREM 3.4. Assume the fundamental hypothesis. Then there is a map g of B into R
which is S(T) ® B( X)-measurable and such that for each t, g(t, -) is a continuous
representation of <,.

PrOOF. Let {f,}22, be a sequence of S(T)-measurable maps satisfying the
conclusion of Theorem 3.3. Let D = U {Gr(f,): n = 1,2,3,...} and define » on D
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by the following procedure. First, let (¢, f(¢)) = 3, for all ¢ in T. Certainly, A is
S(T) ® B(X)-measurable since h~'(E) is either empty or is Gr(f,) which is in
S(T) ® B(X). Next, let

T = {t: h(1) <. [(D)},
T, = {t:£i(t) ~ £(1)},

and

T, = {r: fi(2) <. (1)}
Each of the sets T}, T,, and T} is in S(T'). Now, extend the domain of 4 to include
Gr( f,) by setting

ifr €T,
ifteT,
ift €T,

-

h(z, £(1)) =

W= = &=
-

-

Now, continue this process by induction as in Theorem 2.1. It can be checked that
the map 4 is 5(T') ® B( X)-measurable. Finally, define g on B by setting

g(t, x) = inf{h((¢, £,(2))): x <, £,(1)}.
Since g(¢, -) is the parametrized version of the function constructed in Theorem 2.2,
g(t, -) is a continuous representation of <,for each ¢in T.

In order to see that g is S(T") ® B( X)-measurable, fix a and let V = g~!((- o0, a)).
Note that

V={(t,x):In[x<,£() and h(¢, £,(2)) <a}.
Thus,

v=U [{(t, x): x=<,£()} 0 {t: (2, £,(2)) <a} X X].

For each n, let F,(¢, x) = (1, x, f(2)). Then F, is an 5(T) ® %B( X )-measurable map
of BintoT X X X X. So,

{(t,x):x =<, £(2)} = E'(E)
and is therefore in §(7) ® B(X). Also, for each n, the map ¢+ (t, f,(1)) is an
S(T)-measurable map of T into D and since ¢ - h(¢, f,(2)) is the composition of two
S-measurable maps, it is S(T')-measurable [14; 4, p. 403). This implies {#: h(z, £())
< a} is in §(T'). Therefore, g is S(T) ® B( X)-measurable. Q.E.D.

4. Applications and Borel measurable selections of continuous representations. In
this section we apply the techniques of §3 to obtain Wesley’s theorem and to obtain
some sufficient conditions for the existence of a Borel measurable selection of
continuous representations. First, we give an improvement of Wesley’s theorem [16].

THEOREM 4.1. Assume the fundamental hypothesis. There is a map g of B into R
which is S(T) ® B(X)-measurable such that for each t, g(t,-) is a continuous
representation of <, and such that if p is a probability measure defined on the Borel
subsets of T, then there is a Borel set N such that w(N) =0 and g restricted to
B N [(T — N) X X] is Borel measurable.
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PROOF. Let {f,}, be a sequence of (T )-measurable maps as constructed in
Theorem 3.3. Since these maps are universally measurable there is a Borel subset N
of T with u(N) =0 such that for each n, f,|T" is Borel measurable where
T' =T — N. Now, note that our constructions of 4 and g in Theorems 3.4 from the
maps f, will be Borel measurable maps. Q.E.D.

In fact, the preceding argument can be used (with N = &) to prove the following
theorem.

THEOREM 4.2. Assume the fundamental hypothesis. Suppose there is a sequence
{f. )=, of Borel measurable maps of T into X such that conditions (2) and (3) of
Theorem 3.3 hold. Then there is a Borel measurable map g of B into [0, 1] such that for
each t, g(t, -) is a continuous representation of <,.

THEOREM 4.3. Assume the fundamental hypothesis. Furthermore assume that for each
t, B, is o-compact. Then there is a Borel measurable g from B into [0, 1] such that for
each t, g(t, -) is a continuous representation of <,.

Proor. First, notice that there is a sequence {d,: n € N} of Borel measurable
maps of T into X such that for each ¢, {d,(¢): n € N} is a dense subset of B, [13].
Next, notice that for each k, R,, is closed with respect to B,. So, each R,, is
o-compact. Also, each set R, is a Borel set. This follows from the expression for R,
given in (3.1) and the facts that if V' is open in X, then (7 X X) N B is a Borel set
with each T-section o-compact and W= E N (T X X X V) is a Borel setin T X X
X X such that for each (1, x) € T X X, W, ,, = (z: (1, x, z) € W} is o-compact.
Thus, the projections of these sets are Borel sets [8] and therefore R, is a Borel set.
Thus, for each k, there is a Borel measurable map 4, of T into X such that for each ¢,
h,(t) € B, and if R,, # &, then h,(¢) € R,,. Similarly, one can construct Borel
maps for the sets L,. Thus, there is a sequence { f,}%_, of Borel measurable maps of
T into X satisfying properties (2) and (3) of Theorem 3.3. The corollary now follows.
Q.ED.

COROLLARY 4.4. Assume the fundamental hypothesis. Furthermore, assume that for
each t, <,is the linear order and assume that there is a sequence {g,}>-, of Borel
measurable maps of T into X such that for each t, {g,(t): n € N} is a dense subset of
B,. Then there is a Borel measurable map g of B into [0, 1] such that for each t, g(t, -)
is a continuous representation of <,.

PrOOF. All that needs to be shown is that each of sets R, (L, ) is a Borel set, since
for each ¢, R,, (L,,) is o-compact being either empty or consisting of a single point.
But,

(t,y) ER, <y €E€V,NB, and Vn|[g,(t)<,yorg,(t) & V.

This means each set R, (and similarly each L, ) is a Borel set. Q.E.D.

In closing we would like to raise two questions.

Question 1. Assume the fundamental hypothesis. Is there a map f: B — R which is
PA(T) ® B(X)-measurable and for each ¢, f(z, -) is a continuous representation
of X,?
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Question 2. Assume the fundamental hypothesis and assume that for each ¢, <, is
a pre-wellordering of B,. Is there a Borel measurable map f: B — R such that for
each ¢, f(¢, -) is a continuous representation of <,?
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