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REALIZATIONS OF MAPS

R. Daniel Mauldin and A. H. Stone

1. INTRODUCTION

Let (X,.#,\) and (Y,e,u) be o-finite measure spaces. For the results of this
paper we can reduce our considerations to the case in which A\ and p are finite,
and we assume that this reduction has been made. Throughout Sections 1-3 (but
not in Section 4) we assume that p is complete.

Let & be the measure algebra of (Y, ,n), provided with the metric p given
by p([A],IB]) = L {AAB), where [A] is the measure class of A. We consider three
types of maps ¢:X - & First, we say that ¢ is “realizable” if there exists a
measurable subset E of X X Y such that, for all x € X, the section

E.={yeY:x,y€ E}

is in the measure class ¢(x); such a set £ will be called a “realization” of ¢.
Here the measure on X X Y is the completed product measure A X p. Second,
we say that ¢ is “almost realizable” if there is a measurable E C X X Y such
that E, € ¢(x) for A-almost all x. Finally, ¢ is “measurable” provided ¢~ *(U)
is )L—measurable for all open subsets U of the metric space ( &,p).

This paper arose from a problem raised (orally) by D. Maharam: Charactenze
the realizable functions ¢. We give such a characterization in Theorem 3, Corollary,
below. In particular, if A is complete and & is separable, ¢ is realizable if and
only if it is measurable. We also investigate some generalizations and sharpenings
of this result.

We remark that, for each measurable E C X X Y, E, is n-measurable for h-almost
all x. While this is not directly relevant to the question considered here, it does
show that the question is a natural one.

We are grateful to the referee for suggestions that have improved the presentation
of the results, and in particular for formulating Theorem 3, Corollary.

2. A CHARACTERIZATION OF REALIZABILITY

Let % be the family of all unions of finitely many “rectangles” M X A, M € 4,
A €. and let # be the o-field generated by % We shall need the basm
measure-theoretic facts summarized in the following theorem.
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THEOREM 1. IfB € #Z, then

1) each B, is p-measurable,

2) the map fz: X — I=[0,1] defined by fg{x) = n(B,) is \-measurable,
8) (W X p)(B) = § yu(B,)dr(x),

4) the map byz: X — & defined by i z(x) = [B,] is measurable.

Proof. The assertions 1), 2), 3) are essentially Fubini's theorem,; see, for example,
[2, Props. 5.1.2 and 5.2.1]. To prove 4), let % be the family of all B € & for
‘which 4) is true. It is easy to see that ¥ D % and that ¥ is closed under
complementation and under the formation of countable increasing unions. Since
% is a (finitely additive) field, it follows from the “monotone class” theorem
(see [3, p. 27]) that # contains the o-field generated by #; thus & = %, as
required. ,

COROLLARY 1. Aset E C X X Y is measurable (with respect to the completed
product measure \ X y) if and only if, for some \-null N € # and some F € %,
[E.] =[F,] forallxe X — N.

For if Eis (A X p)-measurable, there are sets D and Fin & suchthat FCEC D
and (A X p)(D — F) = 0. Then § , . ((D — F)_dX(x) = 0, so the set

N={x:pn(D,— F,) # 0}

is A-null (and A-measurable), and we have {E ] = [F.] for all x € X — N. The
converse is immediate.

COROLLARY 2. A map ¢:X— & is almost realizable if and only if it is
realizable.

For we can alter an “almost realization” by a suitable null set.

THEOREM 2. Suppose the measure space (X,.#,\) is complete. If ¢ X — &
is realizable, then ¢ is measurable.

Proof. Let E be a realization of ¢. By Corollary 1 there is F € # such that
¢ (x) = ¥z (x) for A-almost all x. Since s, is measurable, by Theorem 1, it follows
that ¢ is measurable.

Definition. We say that ¢:X — & is “essentially separable-valued” if there
is a A-null set N C X such that (X — N) is a separable subset of (& p).

THEOREM 3. Ifé:X — & isrealizable, then & is essentially separable-valued.
Conversely, if & is measurable and essentially separable-valued, then & is realizable.

Proof. With the notation of the proof of Theorem 1, let #  be the family
of all B € # such that the set S(B) = {[B,]:x € X}, of the measure-classes of
the sections of B, is separable. Then # D % in fact, if F € % then S(F) is
finite, hence separable. #” is closed under complementation, because complementa-
tion induces an isometry of { &,p) onto itself. Finally, #  is closed with respect
to countable increasing unions. For if B= U {B,:n € N}, where B, C B, C ...
and each B, € #, let D, be a countable dense subset of S(B,) and put

D=u{D :n€ N).
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It is easy to see that S(B) C I); hence, as a subset of a separable metric space,
S(B) is separable. Thus, as in the proof of Theorem 1, it follows that #" = Z

Now let E be any realization of ¢. By Theorem 1, Corollary 1, wehave [E.] = [B,]
for all x &€ X — N, where N is a A\-null set and B € % Thus $(X — N} C S(B)
and is separable.

Conversely, suppose that ¢ is measurable and that ¢ (X — N) is separable, where
N is A-null. Let D= {d,,d,,...} be a countable dense subset of ¢$(X — N), and
choose for each n a set D, in the measure-class d,. For n=1, 2, ... define
Y,: X — & by:¢,(x) =d, if x € N, and {, (x) = first d_, such that

plbx),d,)<1l/n if xe X—N.
Thus each , is measurable and countable-valued, and

pld(x) ¥, (x)) <1/n forallxe X — N.

Now let C,,, =¥."(d,), and put E(n) = |J (C,, x D,,) It is easy to see that

E (n) is a realization of {1, and thence that [T} |J E(2*)is an “almost” realization
n  k=n .

of &. By Corollary 2, ¢ is realizable.

COROLLARY. Suppose the measure space (X, #,\) is complete. Then the
following statements about a map &: X — & are equivalent:
(1) & is realizable,
(ii) ¢ is almost realizable,
(iil) & is measurable and essentially separable-valued.

3. FROM MEASURABILITY TO REALIZABILITY

It follows from Theorem 3 that if & is separable (equivalently, if & is countably
generated) then the measurability of ¢: X > & implies its realizability. We next
show that here the separability of & can be replaced by a set-theoretic hypothesis
on X. First, some definitions. A cardinal k is said to be “real-valued measurable”
if there is a countably additive probability measure defined on all subsets of «
and vanishing on all singletons. By the “cellularity” of (X,.#\) is meant the
smallest cardinal number m such that every sub-family of .# of pairwise disjoint
nonempty sets has cardinality ==m. Note that this cellularity is at most the cardinality
of X.

THEOREM 4. Supposethereisno real-valued measurable cardinal < cellularity
of {X, . #N\). If & is measurable, then & is realizable.

Proof. Let € >0 be fixed for the moment. Take a o-discrete open refine-
ment of the open cover of (& p) by ¢/2-spheres, say % = U {#%,:n € N}, where
N is the set of positive integers and where, for each n, %, is discrete; say
%,={U, o€ A,}. Put B, = ¢ "(U, ), and note that every union of sets B,
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is measurable, because U {B, :1a € A} =é (U {U,.:a € 4}), the inverse of an
open set. For each n, put M, = {a € A,:\(B,,) > 0}. Thus M, is countable. Also
MU {B, ;0 € A, — M,}) = 0, since otherwise one could choose a point x, from
each nonempty B, and construct a nontrivial countably additive measure 7, defined
on all subsets of Z= {x_:\ (B, ) =0} and vanishing on singletons, by setting,
for each W C Z, 1(W) = AU {B,.:x, € W)}.

Put S(e) = |J (U B,.:a € M,); thus A(X — S(€})} = 0 and $(S(e)} has a count-
able covering b; sets of diameter <e. Finally, put S= N {S{1/n):n € N}; then
AMX — 8) = 0 and ¢ (S) is separable. So ¢ is realizable, by Theorem 3.

COROLLARY. It is relatively consistent with ZFC that the measurability of
& implies the realizability of ¢.
The proof of Theorem 4 can easily be modified to prove the following theorem.

THEOREM 5. Suppose the density character of (&,p) is not real-valued mea-
surable. If ¢ is measurable, then & is realizable.

COROLLARY. Suppose (£,p) is separable, or more generally has density
character less than the first weakly inaccessible cardinal. If & is measurable, then
& is realizable.

We shall now show that the assumptions, in Theorems 4 and 5, about real-valued
measurable cardinals cannot be eliminated.

THEOREM 6. Suppose there is a real-valued measurable cardinal. Then there
are measure spaces (X,.#\) and (Y, ,n), with complete probability measures,
and a measurable &: X — & that is not realizable.

Here & as before, is the measure algebra of Y, metrized by
p([A],[B]) =un(AAB).

Proof. Let k be the smallest real-valued measurable cardinal. Take X to be
a set of cardinal x, and let A be the corresponding measure (a probability measure,
defined for all subsets of X, and vanishing on singletons). Take (Y,,1) to be

the measuretheoretic product [1{I,:a < x} of k copies of the unit interval I, with
product Lebesgue measure. There is a family & consisting of k measure classes
in & every two of which are at p-distance 1/2 (for instance, the classes {H J e < K]

for which one J, is [0,1/2] and the others are I). Take & to be a one-to-one
function from X onto 2. Then ¢ is measurable, since every subset of X is measurable.

Suppose ¢ has a realization, E. By Theorem 3 there is a A-null set N such
that (X — N) is separable. But X — N has cardinal k, because the restriction
of A to X — N is still a probability measure, defined on all its subsets and vanishing
on singletons. So ¢ (X ~ N)is asubset of & of cardinal «, and cannot be separable—a
contradiction,

COROLLARY. The following are equivalent:
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(i) Every measurable ¢ is realizable.

(11} There are no real-valued measurable cardinals.

4. THE BOREL CASE

Finally we consider the situation in which the maps and realizations are required
to be Borel. Thus we suppose henceforth that A\, . are Borel measures, so that
4 and &/ consist of the Borel subsets of X, Y, respectively.

THEOREM 7. Supposethat X and Y are metric spaces, and that Y is separable.
Then a map &:X — & is Borel measurable if, and only if, & has a Borel realization.
Proof. First, if ¢ is Borel measurable, then (using the fact that here (&p)

is separable and hence has a countable base) one can easily modify the proof
of Theorem 3 to obtain a Borel subset E of X X Y such that, forallx € X, E, € $(x).

Second, suppose E is a Borel subset of X X Y that realizes ¢. Each open subset
U of & is a countable union of sets of the form U (4) = {e € & :ple, [A]) < €],
where € > 0 and A is a Borel subset of Y. It will suffice to prove that each ¢ (U, (A))
is Borel measurable. Let A(x) = pn(E,AA), for each x € X. It is well known (and
easy to check) that & is a Borel measurable function. Thus ¢ (U (4)) = A7 ([0,€))
is a Borel set; and the proof is complete.

Problem 1. Is there a “reasonable” extension of Theorem 7 to nonseparable
Y?

When X and Y are complete separable metric spaces, the “only if” implication
in Theorem 7 can be sharpened. First, a theorem from descriptive set theory.

THEOREM 8. If X and Y are uncountable complete separable metric spaces,
then there is a coanalytic subset N of X X Y which is universal for the Borel
subsets of Y that have p-measure zero.

Proof. Take a coanalytic subset C of X X Y that is universal for the Borel
subsets of Y—i.e.,, each C, (x € X) is a Borel subset of Y, and if B is a Borel
subset of Y then B = C, for some x € X.

Let S = {x:n(C,) > 0}. It follows from Theorem 4.1 of [1] that § is a coanalytic
subset of X. Let f be a Borel measurable map of X onto X — 8§, and let

N = (fxid)™"(C).

Then N is a coanalytic subset of X X Y having the required properties.

THEOREM 9. Let X and Y be uncountable complete separable metric spaces,
and let &: X — & be a Borel measurable map. There is a subset Rof X X X XY
that is the difference of two analytic sets and is such that

(i) foreach t € X, R, = {{x,y):{t,x,y) € R} is a Borel realization of ¢,

(ii) for each x € X, {R,,,:t € X} is the family of all Borel sets in &(x), where
th,x) = {y3(t:x,3’) = R}.

Proof. Let v be a Borel isomorphism of X onto X X X say7(x) = (T; {x),r5 (x)).
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For each i = 1,2, let A,(tx,y) = (t,7,(x),y). Let N,=h' (X X N), where N is a
coanalytic subset of X X Y as in Theorem 8. Notice that N, and NN, are coanalytic
subsets of X X X X Y, and if B, and B, are Borel subsets of Y with p-measure
zero then there is some (,x) € X X X so that (N)) ., = B;fori =1, 2.

Let E be a Borel realization of &. Put R= ((X X E) — N,) U N,. Then the
set R has all the required properties.

The following question remains unanswered.

Problem 2. Let X and Y be uncountable complete separable metric spaces,
with Borel measures \, p respectively. Let & be a Borel measurable map of X
into & Is there an absolutely measurable (or A X A X p-measurable) subset W
of X X X X Y such that (1) for each t € X, W, is a Borel realization of ¢, and
(2) if E is a Borel realization of ¢ then there is some t € X so that W, = E?

Added in Proof: The authors are grateful to S. D. Chatterji and M. P. Ershov
for pointing out that the problem considered here is known to probabilists under
the name “measurable modification,” and for supplying the following references
to earlier work:

Donald L. Cohn, Liftings and the construction of stochastic processes. Trans.
Amer, Math. Soc. 246 (1978), 429-438. J. Hoffman-Jorgensen, Existence of measur-

able modifications of stochastic processes. Z. Wahrsch. Verw. Gebiete 25 (1973),
205-207.
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