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ONE-TO-ONE SELECTIONS-MARRIAGE THEOREMS

By R. DANIEL MAULDIN*

Abstract. Let A be a Lebesgue measurable subset of [0, 1] X [0, 1]
such that each vertical and each horizontal section of A has positive
measure. Then there are Borel subsets E and F of [0, 1] with measure one
and a one-to-one Borel measurable map f of E onto F whose graph is a
subset of A. Variations of this theorem are also considered.

A marriage theorem for finite sets is as follows [5]:

A necessary and sufficient condition that a relation R < A X B be-
tween finite sets 4 and B have a matching is that, for every positive integer
k, every k-subset of A be related to a subset of B having at least k
elements.

One can try a simple generalization to infinite sets. For example, let
X be an infinite set and R C X X X such that for each subset A of X,
|A| < |R(A)| where R(A) = { y:3x[x € A A (x, y) € R]}. It is easy to give
examples of such relations R for which there is no marriage function or
matching. However, there are some abstact marriage theorems.

Let « be an infinite cardinal x. The following abstract marriage
theorem has been proven by Kaniewski and Rogers [2].

THEOREM A. Let A be a subset of X X X so that for each x, k =
|A,| = |A*|, where A, = {y:(x,y) € A} and A* = {y:(y, x) € A}. Then
there is a one-to-one map of X onto X whose graph is a subset of A.

This theorem is proved by transfinite induction. Perhaps the main
benefit of this theorem is the possibilities it suggests. Kaniewski and
Rogers prove for example that if X and Y are Polish spaces and F is a
subset of X X Y which is a countable union of Borel rectangles and each
X-section of E and each Y-section of E is uncountable, then there is a
Borel isomorphism of X onto Y whose graph is a subset of E. In this paper
we shall pursue a different line of thought.

Our first theorem concerns the descriptive character of the set of
points of density of a Borel set. Let I = [0, 1].
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TueorREM 1. If A is a Borel subset of I X I, then D = {(x, y):y is a
density point of A, } is a Borel set.

Proof. Note that

D= 2} gl Tn, m),

where
T(n,m) = {(x,y):VR[(0 < h < 1/m) = NA, N [y — h, y + h)
= 2r(1 — 1/n)]}.
It can be checked that
T(n, m) = N{T(n, m, q):q is rational and 0 < q < 1/m},
where
T, m, q) = {(x,y):NA, N [y — g,y + q) = 29(1 — 1/n)}.

In order to see that each set T(n, m, q) is a Borel set, define a map f on
I X I by setting

foe,y) =NMA, N[y —q y+ qD.

For each x, f(x, -) is continuous and it is also well known that for each ¥,
f(-, y) is a Borel measurable map. Thus, f itself is a Borel measurable
function [3, p. 378] and since

T(n, m, q) = f~ (291 — 1/n), + o)),

T(n, m, q) is a Borel set. Q.E.D.

TuEOREM 2. Let P and Q be closed subsets of I with N(P) > 0. If A
is a Borel subset of P X Q such that for each x in P, NA,) > 0, then for
each € > 0, there is a sequence {(H;, y;)}= such that

1. the sets H; are closed, pairwise disjoint subsets of P
2. diam(H;) < eand NH;) > 0,i =1,2,3, ...
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.y #yjfi #j
4. if x € H;, then y; is a density point of A,
S. MUH;) = NP).

Proof. Let D be the density set of A. Since D is a measurable subset
of I X I and for each x, N(D,.) = NA,),

AM{y:\D?) > 0}) > 0.

Thus, there is some point y and closed subset H of P such that
diam(H) < e, N(H) > 0 and if x € H, then y is a density point of A,.

Let W be the collection to which JC belongs if and only if 3C is a col-
lection of pairs (H;, y;) satisfying 1), 2), 3) and 4). Let W be partially
ordered by inclusion. Let C be a chain in W. Choose JC, € C such that

l'gn N3C,,) = sup{\(3C):3C € C}.

where

N3C) = NU{H:H € 3c}).

Let 3y =U 3JC,. Clearly, 3Cy € ‘W and JCy is an upper bound of C.
Let M = {(H;, y;)};/~; be a maximal element of W.

Suppose MU M) < N(P). Let P* be a closed set such that P* C P —
U{H:H € M} and \(P*) > 0. Let A* = A N (P* X Q). Since

A{y:ND**) > 0}) > 0,

there is a point z and closed set H C P*such thatz ¢ {y;:i=1,2,3, ...}
diam H < ¢, NH) > 0 and if x € H, z is a density point of A¥ = A, . Thus,
M U {(H, z)} € W and this contradicts the maximality of . Q.E.D.

THEOREM 3. Let P and Q be closed subsets of I such that \(P) > 0.
Let A be a closed subset of P X Q such that for each x in P, N(A,)) > 0.
Then for each ¢ > 0 and 6 > 0 there are closed subsets Py, ..., P, of P
and closed subsets Qq, ..., Q, of Q such that

OP,NP=¢=0QNQ,ifi#j
) diam(P;), diam(Q;) < e
B)x€P;, — NA, N Q) >0

(4) NUP;) > N(P) — 6.

(S MUQ)) < 6.
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Proof. Lete > 0andé > 0. Let {(H;, y;)};~, be a sequence satisfy-
ing the conclusion of Theorem 3 with respect to A. Choose n so that
MU{H;:1 < i < n}) > MP) — 6. Choose pairwise disjoint closed inter-

vals (a;, b;), i = 1, ..., n so that X(b; — a;) < 6, and a; < y; < b; and
b; —a; < e. Let P, = H;and Q; = (a;, b;) N Q. The sets P; and Q; satisfy
the conclusion of the theorem. Q.E.D.

By Seq we mean the space of all finite sequences of positive integers
which is a tree rooted at (0), the empty sequence, when provided with the
lexicographical order.

THEOREM 4. Let R be a Lebesgue measurable subset of I X I such
that N({x:\R,) > 0}) = 1. Then for each ¢ > 0, there exist a closed
subset D of I and a one-to-one continuous function f from D into I whose
graph is a subset of R such that N(D) = 1 — e and \(f(D)) = 0.

Proof. Lete > 0. Let {F,},—; be an increasing sequence of closed
sets such that UF,, C R and N(R — UF,) = 0. For each n, let K, =
{x:\(F,,) > 0}. Since A(UK,,) = 1, there is some » so that \(K,,) > 1 —
€. Let P be a closed subset of K, so that A(P) > 1 — e.

By iterating Theorem 3, we find that there is a subset T of Seq and
maps P, Q from T into the space of closed subsets of I such that

(1) P(0)) = P and Q(K0)) =1,
(2) T is a tree rooted at (0) and each vertex of T has only finitely
many edges emerging from it,

(3) if <y, ..., i) is a vertex of T, then there is a positive integer n
such that {7y, ..., i, ),i = 1, 2, ..., n form the set of all vertices of T
with one edge at <iy, ..., i) and

(@) P((iy, ..., i, 0)), QKiy, .., Iy, [)) are closed subsets of I
with diameters < 1/2*

(b) the sets P(iy, ..., iy, £)); i = 1, ..., n are pairwise disjoint
subsets of P({iy, ..., i)),

(c) the sets Q(Kiy, ..., ik, )); i = 1, ..., n are pairwise disjoint

subsets of Q(Kiy, ..., i;)),
(d) if x € P(i, ..., 0, )), then N(R, N Q(iy, ..., i, ))) > 0.
(e) UP((iy, .oy i, D)) C Py, - ..y ),

(4) for each k, N(U{P((iy, ..., ix)): ity -, ix) €T} > 1 — e
(5) for each k, N(U{Q((iy, ..., ix)): iy, .., ix) € T}) < 27K,
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Now, for each n, let
H(n) = U{P(iy «oy i) X Qg ey 0y)): gy o ons i) € T

Let G = NH(n) and let D = 7(G).
It is easy to check that G is the graph of a one-to-one continuous
function f of D into I such that N\(D) = 1 — e and A(f(D)) = 0. Q.E.D.

THEOREM 5. Let A be a Lebesgue measurable subset of I X I such
that N({x:N(A,) > 0}) = 1. Then there is a Borel set D and a one-to-one
Borel measurable map f of D into I such that N\(D) = 1, A\(f(D)) = 0 and
the graph of f is a subset of A.

Proof. Let W be the family of all 3C such that 3C is a collection of
pairs (E, g) such that E is a closed subset of I, g is a one-to-one function
from E into I, N(E) > 0, the graph of g is a subset of 4, N(g(E)) = 0, and
if (F, k) € 3C and (F, h) # (E, g), then F N E = ¢ and h(F) N g(E) = ¢.
Consider W to be partially ordered by inclusion. Clearly, if C is a chain in
W, then UC € W. It follows that if I is a maximal element in W, then
AD) = 1, where D = U{E:3g[(E, g) € M]} and the function f defined by
f|E = g, where (E, g) € M satisfy the conclusion of the theorem. Q.E.D.

THEOREM 6. Let A be a Lebesgue measurable subset of I X I such
that N(F1) = N(F,) = 1, where F; = {x:\A,) > 0} and F, = {y:\A4?)
> 0}. Then there are Borel subsets E and F of I with measure one and a
Borel isomorphism of E onto F whose graph is a subset of A.

Proof. Let D; be a Borel subset of F; and g a one-to-one Borel mea-
surable map of D; onto a Borel subset F; of I such that N\(D;) = 1, N(E})
= 0. Let D, be a Borel subset of F, and 4 a one-to-one Borel measurable
map of D, onto E, so that (Gr(k)) ! C A, N\(D,) = 1, and A\(E,) = 0. Let
K, = h(D, — E,) and define fon K; U D; by f|K; = h~ ' and f| D, —
K, = g|D; — K. Clearly, f is a Borel isomorphism of K; U D, into I
whose graph is a subset of A and the domain and range of f have measure
one. Q.E.D.

These results suggest other possibilities.

Question 1. Let B be a Borel subset of I X I such that for each x,
A(B,) > 0 and N(B*) > 0. Is there a Borel (or universally measurable)
isomorphism of I onto I whose graph is a subset of B?

We note that such a set B does contain the graph of a Borel map from
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I into I and much more [1, 4]. Of course, category analogues of the
measure theorem are also suggested. For example:

Question 2. Let A be a Borel subset of I X I such that for each x, B,
and B* are not meager. Is there a Borel (or universally measurable)
isomorphism of I onto I whose graph is a subset of B?

Again, there are some results along these lines [4, 6].

Finally, one could consider purely descriptive set theoretic properties.

Question 3. Let A be a Borel subset of I X I such that for each x, A,
and A* are uncountable. Does the conclusion of Theorem 6 hold?
Concerning this last question we give the following example.

Example. There is a Borel subset B of I X I such that for each x in
I, B and B, are uncountable and B does not contain the graph of a Borel
measurable map of [ into I.

Construction. Let C be the standard Cantor middle third set. Let D
be a G subset of (I — C) X Isuch that for each x in I — C, D, is uncount-
able and such that D does not contain the graph of a Borel measurable
map from I — Cinto I [4]. Let B = (C X I) U D.

Added in proof. The author has determined that Question 3 has a
positive answer.

NORTH TEXAS STATE UNIVERSITY
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