On the Borel Subspaces of Algebraic
Structures

R. DANIEL MAULDIN

Introduction. Let G be a connected abelian Polish group which admits
an element of infinite order. Theorem 1; for each ordinal o, 1 = a < w0,
there is a subgroup of G which is of exactly additive class o in G. For
each ordinal, o, 2 = a < w,, there is a subgroup of G which is of exactly
multiplicative (ambiguous) class « in G. Theorem 2; if X is an infinite
dimensional separable Banach space, then there are subspaces of X of exactly
the same Borel classes as in the previous theorem.

Let us recall that the sets of multiplicative (additive) class 0 in a metric
space are the closed (open) sets; the sets of multiplicative (additive) class
a, a > 0 are those sets which can be expressed as the intersection (union)
of countably many sets of additive (multiplicative) class less than «; the
sets of ambiguous class o are the sets which are of both multiplicative and
additive class «; a set is of exactly multiplicative (additive) class o provided
it is of that class but is not of additive (multiplicative) class «; a set is
of exactly ambiguous class a provided it is of ambiguous class a, but is
not of any lower class [3].

Let us recall that a subset H of an abelian group G is said to be independent
provided that if A, ..., h, are elements of H, b, ..., b, are integers and

i bh,=e,
i=1

thenb, = b,=..=b,=0.

The idea of the proof of Theorem 1 is first to obtain a compact, perfect,
totally disconnected subset M of G which is independent (Theorem 0) and
then to simply take a subset H of M of a given Borel class and show that
(H), the subgroup of G generated by H, is of the same class.

Theorem 0. Let G be a connected, abelian Polish group which has an
element of infinite order. Then there is an independent compact, perfect, totally
disconnected subset M of G.

Proof. For each integer a, set
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T(a) = {y:ay = e}.
Clearly, each set T'(a) is closed. Also, each set T(a) is nowhere dense.
Otherwise, T'(a) would then be a clopen subgroup of the connected group
G and G would not have an element of infinite order.

Suppose n is a positive integer and for each sequence a,, ..., @, of integers,
the set

T(a,,...,a,) = {(xl,...,x,,) € GX..XG: 2 ax,= e}
i=1

is a nowhere dense subset of G”. Let b,, ..., b
and consider

.» b,., be positive integers

T(bys..sbpib ) = (FpoooXer)) 0 D, byx, = €}
i=1

Clearly, T'(b,,...,b,, ) is a closed set. If this set is not nowhere dense, then

there are nonempty open subsets V,, ..., V,, V.., of G so that
ViXV,X..XV,  ,CT®b,..b,, ).

Fix x,,, € V,,,.If z, = x, — x|, where x,, x, € V,, fori =1, ..., n,

then

n
2 bi'xi + bn+l xn+l =6

i=1

n

’ —
2 bixl' + bn+l xn+l =e.
i=1

Thus,

n
2 bz, =e
i=1

for all z, € V, — V.. This means
V,=-vy..(v,-V,)c T@®,,...b,).

This contradiction establishes that each of the ‘‘hyperplanes”
a, x, + ... + a,x, = eis meager. The existence of a Cantor set of independent
elements now follows from a result of J. Mycielski [4]. O

Let us remark that if G is a connected locally compact abelian group,
then G certainly has an element of infinite order [1, page 389].

Theorem 1. For each ordinal o, 1 = a < w,, there is a subgroup of
G which is of exactly additive class o in G. For each ordinal o, 2 = a <
w,, there is a subgroup of G which is of exactly multiplicative (ambiguous)
class o in G.



BOREL SUBSPACES 263

Proof. In order to proceed with the proof of Theorem 1, let us make
the following conventions and notations.

Let < be a linear ordering on M U (—M) so that {(x,y) €
MU M 'Y :x=yisclosed). If EC G, then —E = {—t: t € E}
and E" = {(¢,,...,t,) : t, € E, 1 =i =< n}. For each n, let

W,={(x5..x,) EMU (-M))" :x, =x,=< ...<x,}
and
T,={(x),...x,) E(M U (-M))" : x,# —x,, for 1=i=j=n}.

Clearly, W, is closed with respect to (M U (—M))" and T, is open with
respect to (M U (—M))". For each n, let f,:G" — G by f, (x,,...,x,) =
X, + ...+ ox,.

Notice that each element x € (M), x # e, has a unique representation
as

where each x, € M U (-M), x, = x, = ... = x,and x, # —x;, if 1 =
i<j=n.
For each subset H of M, set

S,(Hy=w,NT, NHU(—H))
and

Z,(H) =£,(S, (H)).

Notice that: (1) f,|S,(H) is a homeomorphism of S, (H) onto Z (H), (2)
ZH)NZ, H)=9¢,if n# m, 3)U Z,(H)=(H) — {e}, and 4) (H)
N M=H.

Let H be a subset of M of exactly additive class a in M for some «,
l = a = w,. Of course, H is of the same class in G. It can be checked
that each of the sets S, (H) is also of additive class a. If a = 1, then the
sets S, (H) are actually K_ sets, the union of countably many compact sets.
Thus, each of sets Z,(H) is a K_ set. Therefore, (H) is a K_ set and since
(HY " M = H, (H) cannot be of any lower class or a G, set in G. If
a > 1, then the sets Z (H) are of additive class « in G since this property
is an intrinsic invariant [2, page 432]. Thus, (H) is of additive class « in
G. Also, since (H) N M = H, (H) cannot be of any lower class in G
or of multiplicative class « in G. Thus, for each a > 1, G has a subgroup
of exactly additive class a.

Now, let | < a < w, and take H to be a subset of M of exactly multiplicative
class a in M (and therefore in G). As before, each of the sets Z, (H) is
of multiplicative class o in G. Thus, (H) is a Borel subgroup of G and
since (H) N M = H, (H) cannot be of lower class than o and cannot
be of additive class «. Thus, all that need be shown is that the class of
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(H) does not go up. To see this, notice the following. The sets V, = Z (M)
are pairwise disjoint F, subsets of Gand Z (H) C V,.
If o is not a limit ordinal, let

o

Z,(H)= N A4,,

pr=1

where each An,, is of additive class « — 1. For each p, set B, =

iCs

1

(4, N V,). Each set B, is of additive class a — 1 and ﬁ B, =
'p p=1

U Z,(H) = (H). Thus, (H) is of exactly multiplicative class «.

n=1

If « is a limit ordinal, let {a,},_, be an increasing sequence of ordinals

converging to a such that a, > 1 for each p. For each n, let Z (H) =
(\ A4,, where 4, is of additive class a,. As before, the sets B, are
1 P

=
of additive class a,. Thus, (H) is of exactly multiplicative class a.

The existence of subgroups of G of exactly ambiguous class a, 1 < a <
, can be shown in exactly the same manner.

Thus, the only real restriction on the Borel subgroups of the groups under
consideration is that every open or G, subgroup is closed. It seems that
the same results should hold for nonabelian groups.

Our second theorem is a simple extension of the result of Klee [2]. Klee
proved that each separable infinite-dimensional Banach space has a subspace
of exactly additive class o, | = a < ,. Klee left open the problem of
subspaces of other classes [2, page 198]. However, we will indicate how
Klee’s procedure settles the other cases also.

The essential ingredient is the existence of a special lineraly independent
arc.

Theorem 2. Let X be an infinite-dimensional separable Banach space. For
each ordinal o, 1 = o < w,, there is a dense subspace A, of X which is
exactly of additive class o in X. For each ordinal o, 2 = a < w,, there
is a subspace M_(E ) of X which is exactly of multiplicative (ambiguous)
class o in X.

Proof. Let ¢ be a continuous one-to-one map of the closed interval [0,1]
into X so that 4 = ¢([0,1]) is a linearly independent subset of X and if
Z is an infinite subset of A, then sp(Z), the linear span of Z, is dense in
X [2].

For each n, let

W,={(d@)d(),....00)0=1t <t,<..<t,= 1}

and set

T, =R — {0})".
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For each n, let f,:R” X X" — X by
Fal@iseist)s (isosX,)) = D 1,

i=1

For each subset H of A, set
S H)=T, x(W,Nn H"

and
Z,(H) =f,(S,(H)).

Notice that: (1) f, | S,(H) is a homeomorphism of S, (H) onto Z, (H),
@ ZMHYNZ, (H) =9, if n#m 3 U Z,(H) = sp(H) — {0} and
4@ sp(H) N A =H.

The remainder of the argument proceeds exactly as in the argument for
the preceding theorem. Od

Finally, we note that if G is a connected abelian Polish group which admits
elements of arbitrarily high finite order, then it admits an element of infinite
order. Also, R. R. Kallman points out that there is a connected abelian Polish
group which does not admit an element of infinite order. In fact, every element
has order two. One such group consists of the measure algebra on the unit
interval. Let .# be the family of Lebesgue measurable subsets of [0,1] and
let .4~ be the family of null sets. Consider the space G = .#/.#" provided
with the distance function p([4], [B]) = n(4 A B). Then G is complete
and separable under the metric p. Define [4A] - [B] = [4 A B]. Clearly,
G is a group under this operation and every element has order two. It can
be checked that the map ([4],[B]) — [4] ° [B] is continuous. Thus, G
is a Polish group. Finally, G is connected since if [B] € G, then the map
f(x) = [B N [0,x]] is a continuous map from [0,1] into G with f(0) =
e, the identity in G and f(1) = [B]. It is also true that G is an exotic
group in the sense of Christensen and Herer [5], i.e., G has no strongly
continuous unitary representations in L (H)H being some Hilbert space. This
is true since G is abelian and therefore, if ¢ were such a representation,
then ¢ would be a continuous character. But G has no continuous characters.
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