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- A- homeomorphii .of R” &to;.it&f is cailed positively regular (or EC+) iff its family of 
’ non-ne&ttive:it&etenteg ispbint@e e&&&inuous. For EC+ homeomorphisms of R” such that 

some ‘$int of R?‘htii bounded ‘pot&e semi-orbit, the &eus M is defined, and the following theorems a& p,,&di j . . I ( , i 
Theoran 1.. If such a homeomoqMm h :R” *R” has compact nucleus M, then M is a fully 
invariant compw AR. I+ther;fw n f 4.5, h : RR/M * R”/M is conjugate to a contraction on 
R”. 
TImrem 2. In RR, n # 4,5, M i- wmpact iff there exists a disk D such that h(D) s Int 0. 
Tborem 3. In RF, either M is u &isk and h 1 M is a rotation, or h 1 M is periodic. The relationship 
between M and the irregular set G*: * % aiso studied. 
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ubd 

r(r) - r’r(R”)s r’(r). 

horG stqpoe z -we*0 h”((X) for #art mboquew (1,) d ti podtb 
inteprs. Let I be a dwtcr point d {h’(‘}. IBy cqdamtta~, z(z) r x [fog, 
bt 8 ~0; chow 8 ao tkt if d(z, w)<b, tba d(h’(z), h’(w))<)@ foe dl I*O. 
Cbooa j, m thu d(z, hk(z))< 8 and d(r(z); hh(z))+. ‘them d(t(z), X)G 
d(z(z), h”(z))+d(hd(z), h'lhi'(x))<e). By Lumm 2.3, x aM, 
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invariant, lkally connected, non-separating continuum K such that 
(I) hIKisEC, 
(2) h is EC+ at all points of Bd K, and 
(3) 6 S”IK -n R2 JK (= R2) is conjugate to a contraction. Moreover, in this case, K 

isM. 

ploof, M is fully invariant by 2163 andlocally connected, snon-separating, since 
M= image r, and r is a retraction. Further; any locally connected, non-separating 
continuum X in R2 satisfies R2/X = R2. 

The converse is clear. 

Remade Condition 2 is necessary because of the following example: 

Let h(r, 0) = (I, 8) 

=($e+(i+) 

if ObrSl, 

ifr>l. 

Then h is the identity on M, the unit disk, and h’ is conjugate to a contraction. But h is 
not EC+ at any point of the unit circle. 

3. Thenudewof h nbR* 

Let h : R2 * R2 be an EC+ homeomorphism such that O+(lco) is bounded for some 
point XGER’. Using equicontinuity and &-sequential growths as in [SJ and [6], one 
can show that R2 can be filled up with an increasing sequence of disks D1 E Int D2 G 
D2HntD3~D~E-,suchthath(D&Di. 

In this section, we will show that the nucleus can be defined in terms of these disks 
(3.2) and that M is compact iff there exists a disk D such that h(D) G 1nt D (Theorem 
5.4). We have not been able to prove this latter result for R”, n = 4,5. We also make 
some observations about the relationship between’ the nucleus and the irregular set 
of h. 

3.1. LHWIYL LetXbe a compacturn rin R2 such that h(X) SGPXI Then nz~ h’(X) is 
M nX. In ~artikukar, n:l h’(D,) = M n D,,, where M is the nucleus of R2 under h, 
and D,, is as above. s 

Pxoof. Let x E ni,, h’(X); then $ = h’(xi) for some xi E X. %hoose a subsequence 
{x4} so that lim x4 = z. Let s be a cluster point of {hij},, thus limJ++ti hii(r) = s(z). It 

follows from EC+ that S(Z) =x [cf. proof of lemma 2.5). Hence nz, h’(X) E: 
MnX 

Let x E M n AC Consider E, = {fi X: f E E}t 4nce, X is compact, E, is me&able. 
Thus riX =lim&.&h 1*X)‘” for some, &sequence .‘ {iti}. _ Herbi ‘Y=‘r(ll) = 
I&,, h”(x). It is easily checked that x E n(pp,., h’(X). 

. . 

3.2. Theoreru. LetlM,, = r)&~h’iiiD,)~lznd3etN = Uz-1 M,. ?%en N = M; that-is, i \r 
is the nuckus of IIt2 under h. (Here D,,, is as ii the introduction to this section.) 
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Proof. iV= fi M,= fi (Mn.D,)=Mn fi o,=M. 
?#=I n=l n-l 

3.3. Theorem. (1) h 1 M.is EC on M. 
(2) M = {x 1 O(x) is bounded). 

Proof. (1) It is well known that an EC+ homeomorphism on a compact space is EC. 
See, for example, 112, p. 1241. 

(2) Clear. 

3.4. Theorem. M is compact iff there exists a disk D such that h(D) G Int D. (l%is 
argument works for R”, E # 4,5.) 

Proof. (=J) (We thank the referee for this shorter proof of (+).) Let K be the unit 
disk in R*/M; then by Theorem 2.6, g(K) G Int K. Let D be the preimage of K in 
R*; then h(D) GInt D. 

(e) We will show that R* = D u h-‘(D) u h’*(D) u.. . . Suppose that K = 
D u lJ?=l hwk(D) f FL*. Let p be a boundary point of K. We show tha,t h is not EC+ 
atp.LetND=n?!& h ‘(D) be calizd the nucleus of D. The nucleus No of D is a subset 
of Int D. Therefore d(ND, Bd K) = E > 0. Thus d(h”(p), NO) 3 E, for all n. But 
arbitrarily close to p there are points whose nth iterates get arbitrarily close to ND. 
Therefore small neighborhoods of p have large images. This contradicts the fact that 
h is EC+ at p;. It follows that K = R*. 

Thus ND = MS so M is compact. 

3.5. Irregular sets. We note that in [16], and in other papers, Husch studies 
positively regular homeomorphisms and their irregular sets. The irregular set, Irr(h), 
is the set of points at which the full family {h”} neI is not regular. He defines the set 
K(X) = Ai,o Oi(x), where Oi(X) is the orbit closure of x under hi, i 20. From 
Theorem 2.7 of the present paper, it is easy to see that the nucleus of h is just 
uxe~2 K(x), if k is a homeomorphism of R*. 

it follows from our results in this paper that K =def UpaR2 K(x) is the set Irr(h) 
provided Irr(h) does not separate R*, where the metric on R* is that of the one-point 
compactification - that is, the metric inherited from S*. 

We also note that it is not unusual that Irr(h) separates the plane, as the following 
simple example from differential equations shows, Consider the differential equation 

r 0 

a(21 cos @I- t) if r* > 4 cos* 8, 

0 * de 
z 

= 0, 

and e(O) = 60. 
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Here we are considering the plane with polar coordinates and r 30. This could be 
written (r’(t), e’(t)) = A@(t), e(t)), where A is jointly continuous in I and 8. Now, the 
critical values CL this equation consist of those points (ro, 60) such that ri G 4 cos* 00; 
i.e., the solution (t(t), 0(t)) of (9) at these points is 0(t) = 00, r(t) = ro, for all t. Thus, 
the critical values of (*) consist of the two disks of radius 1 and centers (1,O) and 
(1, r) (in polar coordinates). 

If ri> 4 cos* 00, then the solution of (*) is: 

r(t)=(~o-21~~ eel> e+*+ 21~0s eel; e(t)= eo. 

Now consider the time one homeomorphism, h, induced by (*). For each (ro, &J in 
Eq let h(ro, &) = (r(l), e(l)), where (r(t), e(t)) is the corresponding solution of (*). It 
can be easily checked that h is positively regular under the usual Euclidean metric or 
under the metric inherited from the usual metric on S*. The nucleus, A& of h consists 
of the critical values of the differential equation (*). Under the Euclidean metric, the 
irregular set of h is the closure of the complement of the nucleus. Under the metric 
inherited from S*, the irregular set of h is the boundary of the nucleus of h. 

3.S.l. Theorem. Let Irr(h) denote the set of points at which h is not regular. Then 
k(h) = Bd IfM, if the metric inherited from R* is used. 

3.5.2. Theotern. 77ie class of sets which can be irregular sets of h in R* (where the 
metric on R” is inherited from S*) is precisely the class of all locally connected continua 
I such that I = Bd(1 v Int I). 

This follows from Corollary 4.3 below. 

4. The action ol h on M 

In this section we fist show that any locally connected continuum which doesn’t 
separate E** can be the nucleus of some EC+ homeomorphism h of E* onto itself, 
with h IA4 = identity. 

We then study the action of an arbitraryBC+ homeomorphism, h, on its nucleus, 
and show that if M is bounded, then eithcx 

(1) h IM is petiodic, CI 
(2) 1M is a disk and h IM is an irrational rotation. 
These results are proved using pri ne end theory. See [7, 8, 17, 18, 253 for a 

diiion of prime ends and for the necessary definitions. See also [29, Section 23. 
Our use of prime end theory was motivated by the work of Mason [NJ. See also 

1193 
By a C-map from the interior of the unit disk B onto a simply connected region, we 

mean a l-l continuous function such &at 
(1) inverses of crosscuts are crosscuts, and 
(2) the endpoints of inuerses of crosscuts are dense on Bd B. 
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Remark. The following theorem establishes the converse of the Corollary to 
Theorem 2.21 of [17, p. 681. We have recently become aware that a version of this 
theorem appears in Univalent Functions by Chr. Pommerenke, Vandenhoeck and 
Ruprecht in Gottingen, 1975, Theorem 9.8 page 279. We proved this theorem 
independently as a lemma for Theorem 4.2, where we use it to show that Q can be 
extended to the closed disk B. We refer to this on p. 340 of our announcement in [27]. 

4.1. Theorem. Let U be a simply connected domain in S* such that the boundary, K 
of U is locally connected. Then every prime end of U is of the first kind. 

Proof. Let P be a prime end of U and {C’i}z1 a chain of crosscuts of U defining P. 
ThUS, U - Ci = Ui v (U - Us) and Ui+l v Ci+l G Ui. Let limi,, Ci = X. 

Assume P is not of the first kind. This means there is a point y E nE1 Ui = I(P), 
the impression of P, and x # y. 

Since K is locally arcwise connected [ 111, it is possible to obtain a neighborhalod V 
of x such that y & v and v n ca = 0 and a neighborhood W of x such that W s V and 
every point of K n W can be joined to x by an arc lying in V n K. 

Now pick n so that cm c W. Since the endpoints of Cn are points of K n ?Y, it 
follows that there is an arc B, lying in V n K which joins the endpoints of C,. 

Let J = C, u B,,. Notice that Int J c V and J n Urn = 8. Thus, U, G Int J 0:” ii, s 
Ext J. Since y E Um and y E Ext J, L&, G Ext J. 

Let Q be a point of C,. Let 6 and c be points of C, on opposite sides of a. Let (Y be 
an arc lying in U, except for its endpoints connecting b to c and let p be an arc lying in 
U - ( Urn u Cn) except for its endpoints connecting b to c. Let T = a w fl and let 
D = Int T. The arc, T, from b to c on C, cuts D into two connected open sets 
D=SuR,withScU, andRcU-(U,uC,,),BdS=cuuqBdR:=Pu~. 

Since S = U, G Ext J and J locally separates Int J from Ext J, it follows that 
RG1nt.K 

Let y be an arc connecting a to a point of Cl such that y -{a) c U - ( Un u C,). 
Notice that y n R # 0. Thus, there is a subarc y1 of y connecting a point of the Int J to 
a point of Cr. c_ Ext J. But, y1 nJ = 0. This contradiction establishes the theorem. 

4.2. Theorem. Let M be a locally connected, non-separating continuum in E*. Then 
there exists u sequence of disks {Di)E+ with bounduries (Ci)E-m and u homeomor- 
phism h : E* + E* such that 

(1) Di-1 G Int Dip 
(2) (JDi = E”, 
(3) nz-00 Di = M, 
(4) k(Di+l) = Dip and 
(5) h 1 M = identity. 

Proof, We use prime end theory by approaching M from the exterior. Let U = 
S* - M. See [25]. Then U is a simply connected region and there exists a C-map 
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(IP : Int J5 +P U, hiuhere B is the unit disk in E? Further Bd U is locally connected 126, 
Theorem VI.2.23, and therefore each prime end of U is of the first kind by Theorem 
6.1. Thus Q can be extended to a continuous function 4 : B 4~ U. See 1317, Theorem 
2.211. 

Let {&):-uy be a sequence of circular disks centered at the origin such that 
(1) u:-_cio & = Int B, 
(2) n 8 =I019 
(3) Bi G Int &+I, 
(4) lirnl+* Bi = unit c&e. 

Let g : B -r) B be a homeomorphism such that g(0) = 0, g IBd B = identity, and 
g(BJ = B:+l carrying radial segments onto themselves. Then pgp-’ can be extended 
toahomeomorphismz* .o + 0 by making it the identity on Bd M = Bd a Let 
Di =tp(BJ and let h =zIS2-{0}, where “0” is the point nz_,&Pj. The 
sequence {Di} and homeomorphism h satisfy the theorem. 

4.3. coaollruy of hoof. Any locally connected, non-separating continuum M can 
be the nucleus of same EC+ homeomorphism of E2 onto itself, in such a way that 
k IM is the identity. 

4.4a Notation for remainder of this section. We assume that h is an EC’ 
homeomorphism of R2 onto R2 whose nucleus M is a continuum. In Section 3, it is 
shown that M is IocaHy connected. Thus by [26, Theorem VI 2.21, Bd M is also a 
locally connected continuer;. 

We again use prime end theory by approaching M from the exterior. Let B be the 
unit disk in E2, and leg 9 : Int B * U = S2 -M be a “C-map”. By Theorem 4.1, each 
prime end of U is of tine tist kind, so by [17, Theorem 2.211, Q can be extended to a 
continuous function $ : B +D fi Now we think of h as defined on S2 by /z(m) = 00, 
(note that 00 E U), and let ?P = (P?z~ and !P : Int B -n Int B. Then, see [ 181, P can 
be extended to ia honmeomorphism fzr l B -u B, since h is a homeomorphism of 0 
onto itself. Sin- #P :z~: hq, QY = he. Thu$$ the following lemma holds. 

4.5. Lemma. If p is a 3ixed or periodic pairzt of 7i), then $ ( p) is a fixed or periodic point 
of h, respectively. 

4.6. Lemma. If @ lBr$ B has a periodic point, then @ 1 Bd B is periodic. 

Proof. Suppose @ is not of finite order. Let p be a point of Bd B, of order k. Now 
@’ = (@)‘, since [(cp-‘hrp)k]w= (cp?bkq) on Int B, and the extension to the 
boundary is unique. 

Let g = hk, and note that g is EC on M, and (Q"~Q)- has a fixed point, p, on Bd B. 
By Lemma 4.5 g($( p)) = Q(p). Let [ paa qo] be a maximal interval (possibly PO = 40) 
on Bd B such that (p”gcp)- has no fixed points on the open interval (PO, &. Then if 
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DOE (PO, 401, then xn -PO bay), where xn = K1gd’(x,-dm Clearly &,)+d(Po). 

We observe that QJI = hQ which implies $4 = h@. Thus @ek = hk$ which implies 
@(qk) = h k# = g@. It follows that @(%#+I) = g(@(q,)). But this implies that g is not EC 
on M This is a contradiction, and it follows that @IBd B is periodic. 

4e7. Lemma. If @ 1 Bd B is not periodic, then each point on Bd B has a dense orbit. 

Proof. Suppose there exists an x0 e Bd B such that 0(x0) is not dense. Since d(lro) is 
fully invariant, it follows that C(d(x0)) is also fully invariant. Now C@(Q)) = u{ &} 
is a countable union of open intervals. Suppose there are n, i such that @a( Vi) = Vi. 
Then there exists y E vi such that @“(y) = y, and # IBd B has a periodic point. But 
by Lemma 4.6, this means that @ (Bd B is periodic, and this is a contradiction. 

Thus {Vi} is a countably infinite collection of open intervals, and for any x E u V;:, 
O(X) meets infinitely many members of the collection. Further, the diameters of the 
V;:‘s have limit 0, and $ is continuous, so diam $( Vi) have limit 0. Let x E u Vr, and let 
(Wi) be the subcollection of {K} whose elements contain images of X. Let di = 
diam @( Wi). Then diam Wi + 0 and diam g( Wi) + 0. 

Now let E = 3 max(di}. There exists 6 > 0 such that h n (&set) has diameter less than 
E for all integers n, since h is EC on M Also there exists y > 0 such that $(y-set) has 
diameter ~8, by the uniform continuity of $. Let (di) be named so that 81 = max{dJ. 
There exists W;: such that diam Wr; c ‘y, and there exists n such that !Pn( Wi) = WI. 
Thu~h”(~(W~))=$(W~).But$(Wi) hasdiameter <S and$(Wl) hasdiam>E.This 
contradicts the fact that h is EC on M. 

It follows that each point of Bd B must have a dense orbit. 

4.8. Lemma. If M has interior points and each interior knint of M is a periodic point, 
then # 1 Bd B is periodic. 

Proof. Since M is a locally connected continuum, the components { Wj} of Int M 
have diameters with limit 0, by [26, IV 4.21. Thus since h is EC on M, we see that for 
each Wd, there exists ni such that h “‘( Wd) = Wi. Now Wj is a manifold, and h is 
pointwise periodic on W, so h”i is also pointwise periodic on Wt. Thus by [22], h ni is 
periodic on Wi and on Wj. Thus 9’‘(Bd Wi) is a union of non-degenerate continua 
on Bd B, and is fully invariant in Bd B. It follows that any orbit of the complement of 
this set on Bd B is not dense. Thus by Lemma 4.7, @ lBd B is periodic. 

4.9. Lemma. If M has no interior points, then $1 Bd B is periodic. 

Proof. M is a locally connected, non-separating continuum with no interior points. 
Therefore M is a dendrite. Thus there exists an x E M such that h(x) = x. Then 
$-l(x) is a closed, fully invariant subset of Bd B, whose complement is nongempty 
and fully invariant. Thus @ 1 Bd B has a point whose orbit isnot dense. Therefore, by 
Lemma 4.7, $ IBd B is periodic. 
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4.10. Lemmma. If M has interior points, and each interior point of M is periodic, then 
h IBd M is periodic. 

Proof. By Lemma 4.8, # l[Bd B is periodic, say of period k. Let E be any prime end 
of S*-M, and let e E Bd 13 be the corresponding point. By Theorem 4.1, I(E) is a 
singleton {x}, so that g(e) =x. Now, as in the proof of Lemma 4.6, $$’ = h’@, so 
$@k(e)=$(e)=x=hk+(e)=hk(x). Thus h&(x)=x. 

Since this holds for each prime end, and each prime end is accessible, h 1 Bd IU is of 
period Sk on a dense sublset of Bd A& It follows that h (Bd M is of period ok. 

4.11. Theorem. If M has interior points, then either 
(1) M is a disk and h 1 M is an irrational rotation, or 
(2) h 1 M is periodic. 

Roof. (1) If there exists a non-periodic interior point of M, then M is a disk and 
h 1 M is an irrational rotation, by Theorem 5.1 of [ 121. 

(2) If each interior point of M is a periodic point, then by Lemma 4.11 h 1 Bd M is 
periodic. Thus there exists an integer n such that hn I Bd M is the identity. Therefore, 
if W is any component of Int M, then h”( @) = w, h” jBd w is the identity, and 
h” 1 W is pointwise periodic. But w is homeomorphic to R2 by Theorem 15 of [21], 
and therefore by [22], h” I W must be periodic. Now suppose h n is not the identity on 
W; say it is of period k > 1. Let g :R” +P R* be defined by 

g(x) = I 
h”(x) XE w, 
X XEC(tv~ 

Then g is periodic of period k on E’. We will show that this is impossible. 
Let E =b 0, Q : R2 +t R* be a homeomorphism carrying l&nto the E-neighborhood 

of the origin. Then cpgcp-l is a homeomorphism of R2 onto itself, which is periodic 
and e-close to the identity. But this contradicts Newman’s theorem [23 j, which says 
that there does not exist arbitrarily small periodic homeomorphisms of E* onto itself. 

If follow that h” IM is the identity, and h I M is periodic. 

4.12. Theorem. If M has no intetior points, then h 1 M is periodic. 

Proof. By Lemma 4.9, Ik IBd B in periodic. Thus, as in the proof of 4.11, h i M is 

periodic. 

4.13. Remark. We observe that if W is 8 component of Int M, then Bd w is a 
simple closed curve by [26, Theorem VI. 2d] and therefore w is a disk. 

4.14. Theorem. Let K be a locu!& connected, non-separating continuum in R*, and 
let h : K * K be an EC homeomc:Pphism. I;p?hen 

(1) If K is a disk, h is a rota&l ip, 
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(2) If K is not a disk and h is extendable to a homeomorphism H : R2 -u) R*, then h is 
periodic, and 

(3) If K is not a disk and h is not extendable, then h is not necessarily periodic. 

Proof. (1) This is proved in [12]. 
(2) We note that our arguments of 4.5-4.13 of this section, only require that 

h = H (M be EC. It is not necessary that the extension to R* be EC+. Thus (2) 
follows. 

(3) If h is not extendable to the plane, it is not necessarily periodic. For example, 
let K be a dendrite which is the union of a countable sequence of arcs {Ai}: whose 
diameters tend to 0, the arcs Ai all meeting at the only branch point of K. Let 

B1=A1; B2=A2uA3; . . . ; B, = union of first n arcs of {Al} not in u;G’f BP Let 
h 1 B, be of period n, interchanging cyclicly, the n arcs in B,. Then h is pointwise 
periodic, but not periodic. Yet h is EC on K. Note that h cannot be extended to a 
homeomorphism of R* onto itself. 

5. Questions 

(1) If M is not compact, and h is o.p., can h be imbedded in a flow? 
(2) Let h:R”-,R”, n = 4,5, be an EC+ homeomorphism such that some point 

has a bounded positive semi-orbit. Does there exist a disk D such that h(D) s D? 
such that h(D) G Int D? 
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