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rR")=rs(R")cr(R").
2.4. Lommme. If 2 ¢ im sup{A'(x): i » 1), then 2 € M.,

Preel. Suppose z = lim, ..« h*(x) for some subsequence { /) of the positive integers.
Since E is compact, {h*} has a cluster point s ¢ K ; note that s(x) = z. By Lemma 2.3,
ze M.

28, Lemma. Ifzclimsuplh~'(x):i>1), thenxe M.

Proel. Suppose z =lim,..oh /(x) for some subsequence {f,} of the positive
integers. Let s be a cluster point of (h*). By equicontinuity, s(z)=x [for,
let ¢ >0; choose 8 s0 that if d(z, w)<8, then d(h'(z), A'(w))<}e for all i >0.
Choose j, s0 that d(z, A“(x))<8 and d(s(z), A*(z))<le. Then d(s(2),x)®
d(s(z), K (z))+d(h"(z), k"R ~4(x))< ¢). By Lemma 2.3, x ¢ M.

2.6. Theerem. Leth:R" = R" beano.p. EC* homeomorphism such that there exises
x0€ R" such that O* (xo) is bounded. Suppose M is compact. Then M is a compact AR
which does not separase R®, and h(M)=M. If n ¥4, S, then the induced map
A :R*/M — R"/M is confugate to the contraction x — ix on R".

Proel. Since r* =7, 7 is a retraction of R" onto M. Let B be an n-cell in R" such that
McintB. Let V be a neighborhood of M in R". Since r is a cluster point of
{A':i>1), there exists i > 1 such that A'(B)s V [Could aleo use Lemma 2.4 and
compectness of B and equicoatinuity to show this]. Hence M is cellular in R® and
R"/M is bomeomorphic to R".
We show that A(M) =M. Since K is an ideal in E, rh ¢ K. Let s € K such that
(rh)s = 7. Then

h(M)=hr(R")=rh(R")S r(R") = M
and

M =r(R") = rhsr(R") = hr s7(R") S hr(R") = h(M).
Hence A induces a homeomorpbiim & : R*/M — R*/M. If we ideatity [M] =0,
then it follows from Lemmas 2.4 and 2.5 that f x € R*/M, x # 0, then

tim F(x)=0 2d lim Kix)= o0
Hence, if n # 4, 5, A is top. equivalent to the contraction [13, 14, 15].

2.7. Covellary. If his 0.p. on R such that the positive semi-orbit of some point is
bounded, then h is EC* with compact nucleus M if and only if there exists a fully
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invariant, locally connected non-separatmg continuum K such that

(1) h|K is EC,

(2) his EC* at all points of Bd K, and

3) h: RQ/ K »RYK (=RYis conjugate to a contraction. Moreaver, in thts case, K
isM. v v ,

Proof. M is fully mvanant by 2.6, and’ locally connected non-separatmg, since
M =image r, and r is a retraction. Further, any locally connected non-separating
continaum X in R? satisfies R>/X =R?,

The converse is clcar.

Rema:k. Condition 2 is necessary because of the follosving ekainple: |

Let h,0)=(0) - ifosrsy,
(o) e

Then h is the identity on M, the unit disk, and / is conjugate to a contraction. But 4 is
not EC” at any point of the unit circle.

3. The nucleus of h in R®

Let i :R? -» R? be an EC* homeomorphism such that O™ (xo) is bounded for some
point xo€R?. Using equicontinuity and ¢-sequential growths as in {5] and [6], one
can show that R? can be filled up with an increasing sequence of disks D, € Int D,c
D;cintD;cD;<c- - -, such that h(D,) c D, ‘

In this section, we will show that the nucleus can be defined in terms of these disks
(3.2) and that M is compact iff there exists a disk D such that h (D) c Int D (Theorem
3.4). We have not been able to prove this latter result for R", =4,5. We also make

some observations about the relationship between the nucleus and the nregular set
of h.

3.1. Loemma. Let X be a compactum in R? such that h(X )& X Then ﬂ.,l h(X)is

M nX. In particular, (21 h'(D,) =M A D,, where M is the nucleus of R* under h,
and D, is as above.

Proof. Let x €( ;=1 h'(X); then x = h'(x;) for some x; € X. Choose a subsequence
{x} so that lim x, = 2. Let s be  cluster point of {#%}, thus lim;. +& h%(z) = s(z). It
follows from EC* that s(z)=x (cf. proof of lemma 2.5). Hence ﬂ?’-l h'(X)c
MnX

Let x€ M n X. Consider E, ={f| X: f €E}: “ince X is compact, E, is metrizable.
Thus r|X =limg; (k| X)*  for some su.:sequence {z,,} Hence x=7r(x) =
hmk..m h *(x) Itis easxly checked 'chat xe ﬂ;.,, h (X ).

3.2. Theorem. LetM ﬂ,-1 h'(D, )ami et '\7 U;,'°.1 Mn ThenN -M thatzs, W
is the nucleus of R? under h. (Here D, is as in the introduction to this section.)
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Proof. N = UM U(MnD,.) MnUD =M.

n=1 ) n=1

3.3. Theorem. (1) h|Mis ECon M.
{,\ M Ir I n{r\ u' hnunllprn»

bl ¥ &

Proof. (1) Itis well knoWn that an EC* homeomorphism on a compact space is EC.
See, for example, [12, p. 124]
(2) Clear.

34. T-heorem. M_is compact iff there exists a disk D such that h(D) < Int D. (This
argument works for R", n #4,5.)

Proof. (:) (We thank the referee for this shorter proof of (=>).) Let K be the unit
disk in R‘/M then by Theorem 2 6, h(K )< Int K. Let D be the preimage of K in
R% then h(D)cIntD.

(&) We will show that R*=Duh ™ (D)uh™>(D)u.... Suppose that K =
DuUi-1 h™%(D) #R2. Let p be a boundary point of K. We show that k isnot EC*
at p. Let Np =( )i~ h‘(D) be canad the nucleus of D. The nucleus Np of D is a subset
of Int D. Therefore d(Np, Bd K)=¢>0. Thus d(h"(p), Np)=¢, for all n. But
arbitrarily close to p there are points whose nth iterates get arbitrarily close to Np.
Therefore small neighborhoods of p have large images. This contradicts the fact that
h is EC* at p. It follows that K =R?>.

Thus Np = M, so M is compact.

3.5. Irregular sets. We note that in [16], and in other papers, Husch studies
positively regular homeomorphisms and their irregular sets. The irregular set, Irr(h),
is the set of points at which the full family {#"},; is not regular. He defines the set
K(x)=Ni=0 O;(x), where O; (x) i is the orbit closure of x under k', i=0. From
Theorem 2.7 of the present paper, it is easy to see that the nucleus of 4 is just
Uxer? K (x), if h is a homeomorphism of R,

It follows from our results in this paper that K =% U,,enz K (x) is the set Irr(h)
provided Irr(k) does not separate R, where the metric on R? is that of the one-point
compactification - that is, the metric inherited from $2.

We also note that it is not unusual that Irr(h) separates the plane, as the following
sunple example from differentiai equatlons shows. Consider the differential equation

o if <4 cos® 6,
dr_
de |, L g3 2
" 32| cos 8| -r) if r*>-4 cos® 6,
() S do _ 0
dr R
LriB)=r, and 6(0)= 6.
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Here we are considering the plane with polar coordinates and 7= 0. This could be
written (r'(¢), 6'(2)) = A(r(¢), 6(t)), where A is jointly continuous in 7 and 8. Now, the
critical values ¢ this equation consist of those points (7o, ) such that r3 <4 cos? 6o;
i.e., the solution (r(r), 8(¢)) of (*) at these points is 6() = 6o, r(t) = ro, for all 7. Thus,
the critical values of (*) consist of the two disks of radius 1 and centers (1, 0) and
(1, 7) (in polar coordinates).

If r2> 4 cos® 6o, then the solution of *) is: _
r(t) = (ro—2|cos 8o) e ™2 +2|cos 8o;  6(t) = bo.

Now consider the time one homeomorphism, &, induced by (*). For each (ro, 8o) in
EZ,let h(ro, 8,) = (r{1), (1)), where (r(¢), 6(¢)) is the corresponding solution of (*). It
can be easily checked that A is positively regular under the usual Euclidean metric or
under the metric inherited from the usual metric on S2. The nucleus, M, of & consists
of the critical values of the differential equation (*). Under the Euclidean metric, the
irregular set of 4 is the closure of the compiement of the nucieus. Under the metric
inherited from $2, the irregular set of # is the boundary of the nucleus of A.

3.5.1. Theorem. Let Irr(h) denote the set of points at which h is not regular. Then
Irr(h) = BAd M, if the metric inherited from R? is used.

3.8.2. Theorem. The class of sets which can be irregular sets of h in R? (where the
metric on R is inherited from S?) is precisely the class of all locally connected continua
Isuchthat I =Bd(f ulIntI).

This follows from Corollary 4.3 below.

4. The action of k on M

In this section we first show that any locally connected continuum which doesn’t
separate EZ, can be the nucleus of some EC* homeomorphism 4 of E onto itself,
with k| M =identity.

We then study the action of an arbitrary EC" homeomorphism, , on its nucleus,
and show that if M is bounded, then either

(1) h|M is periodic, cr ‘ ,

(2) M is a disk and & |M is an irrational rotation.

These results are proved using pri-ae end theory. See [7, 8, 17, 18, 25] for a
discussion of prime ends and for the necessary definitions. See also [29, Section 2].
[ (;ur use of prime end theory was motivated by the work of Mason [1 8] See also

19

By a C-map from the interior of the unit disk B ontoa snmply oonnected reglon, we
mean a 1-1 continuous function such that

(1) inverses of crosscuts are crosscuts, and

(2) the endpoints of inverses of crosscuts are dense on Bd B.
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Remark. The following theorem establishes the converse of the Corollary to
Theorem 2.21 of [17, p. 68]. We have recently become aware that a version of this
theorem appears in Univalent Functions by Chr. Pommerenke, Vandenhoeck and
Ruprecht in Gottingen, 1975, Theorem 9.8 page 279. We proved this thecrem
independently as a lemma for Theorem 4.2, where we use it to show that ¢ can be
extended to the closed disk B. We refer to this on p. 340 of our announcement in [27].

4.1. Theorem. Let U be asimply connected domain in S2such that the boundary, K
of U is locally connected. Then every prime end of U is of the first kind.

Proof. Let P be a prime end of U and {C;};2, a chain of crosscuts of U defining P.
Thus, U-C;=U; w(U-U;) and U1 v Ciy1 € U, Let lim;.e Ci=x.

Assume P is not of the first kind. This m:eans there is a point y e(\i=y U; = I(P),
the impression of P, and x # y.

Since K is locally arcwise connected [11], it is possible to obtain a neighborhood V
of x such that y¢ V and V n C; =@ and a neighborhood W of x such that W < V and
every point of K n W can be joined to x by an arc lyingin VK.

Now pick 7 so that C, = W. Since the endpoints of C, are points of K N W, it
follows that there is an arc B, lying in V n K which joins the endpoints of C,.

LetJ=C,uUB,. Notice that IntJ <V and Jn U, =0. Thus, U, cIntJ or U, &
Ext J. Since y € U, and y e Ext J, U, < Ext J.

Let a be a point of C,.. Let b and ¢ be points of C,, on opposite sides of a. Let a be
anarclyingin U, except for its endpoints connecting b to c and let 8 be an arclyingin
U - (U, v C,) except for its endpoints connecting b to ¢. Let T=a U B and let
D=IntT. The arc, 7, from b to c on C, cuts D into two connected open sets
D=SuUR,withScU,andRcU~-(U,v(C,),BdS=aur,BdR=8uUT.

Since S < U, <ExtJ and J locally separates IntJ from ExtJ, it follows that
RcintJ.

Let y be an arc connecting a to a point of C; such that y—{a}< U - (U, v G,).
Notice that y N R #@. Thus, there is a subarc y, of y connecting a point of the Int J to
a point of C; < ExtJ. But, y; nJ =@. This contradiction establishes the theorem.

4.2. Theorem. Let M be a locally connected, non-separating continuum in E 2, Then
there exists a sequence of disks {D,}{~ -« with boundaries {Ci}i= -~ and a homeomor-
phism h : E* > E? such that

(1) Dy int D,

2) UD:=E,

(3) ﬂf—-—w D:=M,

(4) h(Dis1)=D;, and

(5) h|M =identity.

Proof. We use prime end theory by approaching M from the exterior. Let U =
$2—~M., See [25). Then U is a simply connected region and there exists a C-map
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¢ :Int B -» U, where B is the unit disk in E% Further Bd U is locally connected [26,
Theorem V1.2.2), and therefore each prime end of U is of the first kind by Theorem
6.1. Thus ¢ can be extended to a continuous function g : B » U See [17, Theorem
2.21]. ,
Let {B;}i~ - be a sequence of cir cular dlsks centered at the orlgm such that

(1) U?—-«» B;=IntB,

(2) N B;={0},

(3) B,cInt B;,,,

(4; lim;.. B; = unit circle.
Let g:B -» B be a homeomorphism such that g(0)= 0 g IBd B = jdentity, and
g(B;) = B.,4 carrying radial segments onto themselves. Then ¢g¢ " can be extended
to a homeomorphism gge : U -» U7 by makingit the identityon Bd M =Bd U. Let
Di=¢(B;) and let h=¢gp '|S>—{0}, where “0” is the point (-« D:. The
sequence {D;} and homeomorphism A satisfy the theorem.

4.3. Corollary of Proof. Any locally connected, non-separating continuum M can
be the nucleus of some EC* homeomorphism of E? onto itself, in such a way that
i | M is the identity.

4.4. Notation for remainder of this section. We assume that k& is an EC"
homeomorphism of R? onto R? whose nucleus M is a continuum. In Section 3, it is
shown that M is locally connected. Thus by [26, Theorem VI 2.2), Bd M is also a
locally connected corntinuum..

We again use prime end theory by approaching M from the exterior. Let B be the
unitdisk in E?, andlei ¢ : Int B » U = $>~ M be a “C-map”. By Theorem 4.1, each
prime end of U is of tise first kind, so by [17, Theorem 2.21), ¢ can be extended to a
continuous function ¢ : B -» U. Now we think of & as defined on S by k(o) = o,
(note that o U), and let ¥ = ¢ 1h«p and ¥ :Int B -» Int B. Then, see [18], ¥ can
be extended to a homeomorphism ¥ :B —» B, since & is a homeomorphlsm of U
onto itself. Since ¢ ¥ = ho, ¥ = h¢. Thus, the following lemma holds.

4.5. Lemma. If pis a ixed or periodic point of ¥, then §(p) is a fixed or periodic point
of h, respectively.

4.6. Lemma. If ¥|BiBhasa periodic point, then ¥|Bd B is periodic.

Proof. Suppose ¥ is not of finite order. Let p be a point of Bd B, of order k. Now
&  =(¥*)", since [(¢ he)*T =(¢ 'h*p) on Int B, and the extension to the
boundary is umque
Let g =h", and note that g is ECon M, and (¢ "'g¢)™ has a fixed point, p,on Bd B.
By Lemma 4.5 g(¢(pj) = (p). Let [ pc, 0] be a maximal interval (possibly po = qo)
on Bd B such that (¢ " g¢)™ has no fixed points on the open interval (po, go)- Then if
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x0€ (po, qo), then x, - po (say), where x, = (¢ '8¢}~ (Xn-1). Clearly @(x,) - &(po).

We observe that gy = he which implies i = h@. Thus G¢* = h*@ which implies
#(W*) = h"*g = g@. It follows that G(x,+1) = g(F(x,)). But this implies that g is not EC
on M. This is a contradiction, and it follows that ¥|Bd B is periodic.

4.7. Lemma. If ¥|Bd B is not periodic, then each point on Bd B has a dense orbit.

Proof. Suppose there exists an xo € Bd B such that O(xo) is not dense. Since O(x,) is
fully invariant, it follows that C(O(xo)) is also fully invariant. Now C(O(xo)) = u{V;}
is a countable union of open intervals. Suppose there are n, i such that T(V)=V,
Then there exists y € V; such that ¥"(y)=y,and ¥ |Bd B has a periodic point. But
by Lemma 4.6, this means that ¥ |Bd B is periodic, and this is a contradiction.

Thus {V;} is a countably infinite collection of open intervals, and for any xe UV},
O(x) meets infinitely many members of the collection. Further, the diameters of the
V:’s have limit 0, and @ is continuous, so diam @(V;) have limit 0. Let x € U V}, and let
{W;} be the subcollection of {V;} whose elements contain images of x. Let d; =
diam ¢(W,;). Then diam W; — 0 and diam ¢(W;) — 0.

Now let ¢ =3 max{d;}. There exists & > 0 such that 4" (5-set) has diameter less than
¢ for all integers n, since A is EC on M. Also there exists y > 0 such that ¢ (y-set) has
diameter <48, by the uniform continuity of . Let {d;} be named so that d, = max{d,}.
There exists W; such that diam W; <y, and there exists n such that f’”(W,-) =W,.
Thus 2" (G(W;)) = §(W,). But g(W,;) has diameter <8 and ¢(W,;) has diam > ¢. This
contradicts the fact that 4 is EC on M.

It follows that each point of Bd B must have a dense orbit.

4.8. Lemma. If M has interior points and each interior .vint of M is a periodic point,
then ¥ |Bd B is periodic.

Proof. Since M is a locally connected continuum, the components {W;} of Int M
have diameters with limit 0, by [26, IV 4.2]. Thus since & is EC on M, we see that for
each W, there exists n; such that A™(W;)= W,. Now W; is a manifold, and 4 is
pointwise periodic on W;, so A" is also pointwise periodic on W;. Thus by [22], 1™ is
periodic on W; and on W,. Thus é"l(Bd W,) is a union of non-degenerate continua
on Bd B, and is fully invariant in Bd B. It follows that any orbit of the complement of
this set on Bd B is not dense. Thus by Lemma 4.7, ¥|Bd B is periodic.

4.9. Lemma. If M has no interior points, then ¥ |Bd B is periodic.

Proof. M is a locally connected, non-separating continuum with no interior points.
Therefore M is a dendrite. Thus there exists an x € M such that h(x)=x. Then
& 1(x) is a closed, fully invariant subset of Bd B, whose complement is now -empty
and fully invariant. Thus ¥ |Bd B has a point whose orbit is not dense. Therefore, by
Lemma 4.7, ¥|Bd B is periodic.
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4.10. Lemma. If M has interior points, and each interior point of M is periodic, then
h|Bd M is periodic.

Proof. By Lemma 4.8, ¥ |Bd B is periodic, say of period k. Let E be any prime end
of $2—M, and let e € Bd B be the corresponding point. By Theorem 4.1, I(E) is a
singleton {x}, so that (e) = x. Now, as in the proof of Lemma 4.6, ¥* = h*g, so
7V (e)=@(e)=x = h*&(e) = h*(x). Thus h*(x) =1x.

Sinice this holds for each prime end, and each prime end is accessible, 4 |Bd M is of
period <k on a dense subset of Bd M. It follows that 4 |Bd M is of period <k.

4.11. Theorem. If M has interior points, then either
(1) M is a disk and h|M is an irrational rotation, or
(2) h|Mis perindic.

Proof. (1) If there exists a non-periodic interior point of M, then M is a disk and
h|M is an irrational rotation, by Theorem 5.1 of [12].

(2) If each interior point of M is a periodic point, then by Lemma 4.11 £ |Bd M is
periodic. Thus there exists an integer n such that 4" | Bd M is the identity. Therefore,
if W is any component of Int M, then h"(W)=W, h"|Bd W is the identity, and
k" | W is pointwise periodic. But W is homeomorphic to R? by Theorem 15 of [21],
and therefore by [22], 2" | W must be periodic. Now suppose k" is not the identity on
W ; say it is of period k > 1. Let g :R? -» R? be defined by

h"(x) xeW,
g("’={x x € C(W).

Then g is periodic of period k on E>. We will show that this is impossible.

Let >0, ¢ : R? -» R? be a homeomorphism carrying W into the e-neighborhood
of the origin. Then (pg¢-1 is a homeomorphism of R? onto itself, which is periodic
and e-close to the identity. But this contradicts Newman’s theorem [23], which says
that there does not exist arbitrarily small periodic homeomorphisms of E> onto itself.

If follows that h" | M is the identity, and & |M is periodic.

4.12. Theorem. If M has no interior points, then h|M is periodic.

Proof. By Lemma 4.9, ¥|Bd B is periodic. Thus, as in the proof of 4.11, A |M is
periodic.

4.13. Remark. We observe that if W is a2 component of Int M, then Bd W is a
simple closed curve by [26, Theorem VI. 2.3] and therefore W is a disk.

4.14. Theorem. Let K be a locally connected, non-separating continuum in R?, and
let h: K - K be an EC homeom:rphism. Then
(1) If K is a disk, h is a rotatic s,



B. Brechner and R. Mauldin / Positively regular homeomorphisms 241

(2) IfKisnot a disk and h is extendable to a homeomorphism H : R* » R?, then h is
periodic, and

(3) If K is not a disk and h is not extendable, then h is not necessarily periodic.

Proof. (1) This is proved in [12].
(2) We note that our arguments of 4.5-4.13 of this section, only require that

h=H|M be EC. It is not necessary that the extension to R? be EC*. Thus (2)
follows.

(3) If k is not extendable to the plane, it is not necessarily periodic. For example,
let K be a dendrite which is the union of a countable sequence of arcs {A;};~; whose
diameters tend to 0, the arcs A; all meeting at the only branch point of K. Let
Bi=A;; B,=A;UAs3;...;B,=union of first n arcs of {A;} not in | J}_ B, Let
h|B, be of period n, interchanging cyclicly, the n arcs in B,. Then h is pointwise
periodic, but not periodic. Yet 4 is EC on K. Note that 4 cannot be extended to a
homeomorphism of R? onto itself.

5. Questions

(1) If M is not compact, and h is 0.p., can h be imbedded in a flow?

(2) Let h:R" > R", n =4, 5, be an EC* homeomorphism such that some point
has a bounded positive semi-orbit. Does there exist a disk D such that h(D)< D?
such that A(D)< int D?
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