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THE SET OF CONTINUOUS NOWHERE
DIFFERENTIABLE FUNCTIONS

R. DANIEL MAULDIN

Let M be the set of all continuous real-valued func-
tions defined on the interval [0,1] which do not have a finite
derivative anywhere. It is shown that M forms a coanalytic,
non-Bore 1, subset in the space of all real-valued continuous
functions on [0,1] provided with the uniform norm.

Let C be the space of all real-valued continuous functions defined
on the unit interval provided with the uniform norm. In the
Scottish Book, Banach raised the question of the descriptive class
of the subset D of C consisting of all functions which are dif-
ferentiable at each point of [0,1]. Banach pointed out that D
forms a coanalytic subset of C and asked whether D is a Borel set.
Later Mazurkiewicz showed that D is not a Borel set [3].

In this paper, we shall investigate the subset M of C consisting
of all functions which do not have a finite derivative at any point
of [0,1]. It is well known that M is residual in C [2]. We shall
prove the following theorem.

THEOREM A. Let M = {/ e C: / does not have a finite derivative
at any point of [0, 1]}. The set M is a coanalytic subset of C which
is not a Borel set.

In order to see that C — M is an analytic set, notice that a
continuous function / has a finite derivative at some point x of
[0,1] if and only if for each positive integer n, there is a positive
integer m so that (*) if 0 < \hλ\9 \h2\ < 1/m and x + hλ and x + h2

are both in [0, 1], then

f(x + K) - f(x)
h2 n

For each pair of positive integers {n, m), let E(n, m) = {(/, x) e
C x [0,1]: (*) holds}. Then C - M is the projection into C of
n»=i Um=i E{n, m). It may be checked that each set E{n, m) is a
closed subset of C x [0,1], Thus, AT is a coanalytic subset of C
The remainder of this paper is devoted to demonstrating that M is
not a Borel set.

Let us make the following conventions. The set of positive
integers will be denoted by N; by iV* shall be meant the set of all
finite sequences of positive integers. We shall denote elements of
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J = NN by Greek letters and the terms of such a sequence by its
nearest Roman equivalent. Also, if σ = <sfc>~=1 e J and neN, then
σ\n = (slf •••, sΛ>.

For each element s = (slf , 8fc> of JV*, let /(s) be the left open,
right closed interval with left end point

a(s) = 2~Sl + 2*~(Sl+S2) + 4- 2~~(Sl+"'+SA;)

and with right end point

6(β) = a(s) + 2~ί 1 + - *) .

Notice, that (0, 1] - U ? β l / « p » , /«81, - , 8*» - UϊU/««i, •••,**, P »
and if s and t are distinct elements of N* having the same length,
then I(s) and I(t) are disjoint. For each σeJ, let x(σ) be the point
of intersection of Γ\t=il(σ\k). We have x(σ) = Σΐ=ι2~{Sl+'"+H)- F ° r
each interval (α, 6], set

x — α, if a < a? ^ (α + 6)/2 ,

6 — cc, if (α + δ)/2 ^ ^ ^ 6 ,

0, otherwise .

For each positive integer n, let hn = ΣφIis), where the summa-
tion is taken over all elements of N* which have length n. Also,
let us set hQ(x) = 1/2 — \x ~ 1/21, for α e [0, 1]. For each n, hn is a
"sawtooth" function on [0, 1]. First we give three lemmas concern-
ing these functions.

LEMMA 1. For each n, hn is nonnegative and hn(x) <£ x/(2n^ — 1),
for each x in [0, 1].

Proof. It can be checked that the line through (0, 0) and the
highest point of the graph of hn over the interval I((su , sn)) has
slope 1/1 + 2(1 + Σ L 1 2 8 ^ - + S - ) ^ l/(2 +1 - 1). This means hn(x) ^
x/(2n+1 - 1 ) , for a? 6 [0,1].

We will also require the fact that the action of the functions
hp is being reproduced on each of the intervals I((q19 , qn}). This
is the content of the next lemma which may be proven by induction.

LEMMA 2. Let (qlf , qn) e N* and let

g{x) = 2q^~ +9*x - (— + + ) .

Then g maps I((q
u
 , q

n
)) onto (0, 1] and for each p ̂  0, h

p
(g(x)) =

(2 i
+
-

+
 )*.

+
,(*), for x e ί ^ , -•-,?.».
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LEMMA 3. Let (ql9 , q2k) e ΛΓ*, then

for each x e I((qlf , q2k)).

Proof. By Lemma 2, for xsl((q19

where # is the appropriate function denned in Lemma 2. According
to Lemma 1,

Substituting for g(x) and noting that 22& < 2*k+1 - 1:

Kk+ί(x) ^ —r(x - (-r— + H

It can be shown that Σhn does not have a finite derivative at
any x in the (0, 1], although we shall not use this fact. However,
Theorem A will be demonstrated by continuously modifying a sub-
sequence of {hn}n=i- We proceed as follows.

Let E be an analytic subset of the Cantor set K. Let H be a
map from N* into the clopen subsets of K so that

E= U ΠH(σ\k).
σej k=l

We may assume that H(σ|k) 2 H(σ\n) if n > k and diam (H(σ|&)) <
Ilk [2].

For each g = (qlf q2, , g2ί> e iV2\ set

where A(q) = U {H(β): s 6 AT and | a(s) - 6(g) | < 27(22i+1 - 1 + 2*)}. Of
course, 1B denotes the characteristic function of B on the Cantor set
K.

For each ne N, set

Ux, t) = Σχ.(typIM(X.),

where summation is taken over all elements s of N* of length 2".
Let G(x, t) = Σ»=iΛ(z, ί) and F(x, t) = t + V~x + G(x, t), for

(*, ί) e [0,1] x K. Finally, define the map Γ from K into C by
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setting Γ(t) — F{ , ί), for each t in K. We next note three elementary-
properties of Γ.

First, notice that since fn(x, t) ^ hi%(x) < 2~n, for each n, the
series Σfn(x, t) converges uniformly over [0, 1] x K. Since, for each
t, the functions /n( , t) are continuous, the function Γ(t) is an ele-
ment of C. Since F(0, t) — t, Γ is one-to-one.

Second, notice that Γ(t) does not have a finite derivative at 0.
This is because (τ/ΊΓ)'(O) = +oo and (?(&, ί) - G(0, ί) ^ 0.

Third, notice that Γ is a Borel measurable map of K into C.
This may be seen by as follows. Define Γn: K-+C by

= t + Vχ

Then {ΓJ~=1 converges uniformly to Γ. Also, note that if (X, M) is
a measurable space, Y is a metric space and {/*}«=i is a sequence of
measurable maps from X into Y and this sequence converges uniform-
ly to /, then / is a measurable map. This last fact may be used
to verify that each function Γn is Borel measurable and then applied
once again to show that Γ is Borel measurable.

We shall require some deeper properties of the function Γ.

LEMMA 4. Suppose σeJ and {t} = Γl*=iH(σ\n) and xQ = x(σ).
Then Γ(t) has a left derivative at x0 and G( , t) has left derivative
zero at x0.

Proof. It suffices to show that G( ,t) has left derivative zero
at x0.

Let ε > 0. Let n be a positive integer so that 2"w < ε. Let δ
be a positive number so that (x0 — <5, x0] £ I(σ\2n). Since/,(a?0> *) — 0,
for all ΐ,

a? - x0

VII Σ
x —

ί)

Xo
+ Σ Jn+p

x -
(X,

- #0

Let x0 — δ < x < xQ. If 1 ^ i ^ n, then /*.(#, t) = 0. Suppose
p ^ 1. Set α = 22%+p+1 - 1, £ = 2*+2) and d - (α/α + iβ)a?0. If a? ^ d,
then

X. — X

Using Lemma 1 and the fact that l/(xQ — x) <; l/(xQ — d), we have

^ d 1
= 2 ~ ( ί H

α

If (Z < x < »o, then there is some z — {zu • , z2n+r) so that
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fn+p(x, t) == ̂ z{t)φnz)(x) .

If z = σ\2n'p then fn+p(x, t) = 0. Otherwise, d < b(z) ̂  a(σ\2n+p) < x0.
Thus, \a(σ\2n+p) - b(z)\ <xQ~d = xo(l - a/(a + β)) ^ β/(a + /3). This
implies that t is in A(z) and therefore fn+p(x, t) = 0. These considera-
tions lead to the conclusion that (?(•,<) has left derivative zero at
T ΓΊ

Let us make the following conventions. The set of all elements
of J which are equal to one from some term on will be denoted by
Q. Let R(Q) denote the set of all x in [0,1] such that there is some
element σeQ for which x = x(σ). Notice that Q and R(Q) are
countable sets and σeJ — Q if and only if x{σ) is in the interior of
I(σ\k), for each k.

LEMMA 5. Suppose σeJ — Q, {t} = f)H(σ\k), and xQ = x(σ).
Then Γ(t) is differentiable at x0.

Proof. In view of Lemma 4, it suffices to show that (?( , t) has
right derivative zero at x0.

Let ε > 0. Let n be a positive integer so that 2~n < e. Since
σeJ—Q, x0 is in the interior of /(σ^"""1). Let 3 be a positive
number so that [x0, x0 + 3) £ I(σ \ 2n~1) and let x be between x0 and
x0 + 3. Since fk(x0, t) — 0, for all k, we have

G(x, t) - G(x0, t)
X XQ

It can be checked that if 1 ̂  i ^ n, then ft(x, t) = 0.
Suppose p ^ 1. If xel(σ\2n+p~γ), then fn+p(x, t) = 0. Suppose

6(cr|2ίt+?>~1) < x < ίc0 + <5. There is some q = <^, , g^+p-i) so that
x e I(q). Using Lemma 3, we have

- hzn+p(x) = h2n+p(x) # a? - α(g) 2 - 2 U + P - D . 2-(»+p>

^ Σ /<(«, t)
- a? 0

+ Σ
ί>=l

/»•+ p(α, t)

~ Xo

x — x — XQ x — a(q) x — XQ

It follows from these considerations that G( , ί) has right derivative
zero at x0.

LEMMA 6. If t is in K — E, then Γ(t) does not have a finite
derivative at any point of [0, 1] — R(Q).

Proof. We have already noted that Γ(t) does not have a finite
derivative at 0. Thus, it suffices to show that G( , t) does not have
a finite derivative at any point of (0,1) — R(Q).

Let σ be an element of / — Q and let xQ = x(σ).
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Suppose there is a positive integer pQ so that if p ^ p0, then
K\2p(t) = 0. If p ^ P o , then ί is in A(σ\2p) or ί [is in H(a\2p"1).
If £ were in H(σ\2*~ι), for infinitely many p, then £ would be in
E. Thus, we may assume that if p ^ p0, then ί is in A(σ|2p).
For each j> >̂ po> there is a point qp = <gf, , g*,> in ΛΓ2?> so that t
is in #(?*) and \a(qp) - 6(σ|2*)| < 2*/(2ίP+1 - 1 + 2P). This implies
that the sequence {a(gp)}"=1 converges to x0. Since #0 is in the interior
of I(σ\ϊ), this implies that there is a positive integer nt so that if
p > n19 then gf = «1# This means that t is in H(σ\ϊ). Similar con-
siderations show that for each ί, t is in H(σ\i). This implies that
t is in E. This contradicts the assumption that t is not in E. Thus,
there are infinitely many p such that λσ(2p(ί) = 1.

Let <5 > 0. Choose p so that λσ,2Z>(£) = 1 and (α, 6] = /(σ|2p) is a
subset of (x0 — δ/2, x0 + δ/2). Let m = (α + 6)/2. Since m ^ ^0 and

G(b, t)
b

— Cτ(d, t)

— a

Ub, t) -
b-

b -

C

G(a
a

a

fp(t
a,

Kb, t)
b

ι,t)

ι,t)

- G(m, t)
— m

G(m, t) -
m -

f,{b, t) -
b-

m -

- G(a, t)
- a

fP(m, t)
m

- a
= 1,

it follows that G( ,t) does not have a finite derivative at
114-116].

Let us collect the preceding lemmas together.

[4, pp.

THEOREM B. There is a countable subset Y of [0, 1] such that
for each analytic subset E of K there is a one-to-one Borel measura-
ble map Γ of K into C and a countable subset S of E so that (1)
if t is in E — S, then Γ(t) has a finite derivative at some point of
[0, 1] — Y and (2) if t is in K — Ef then Γ(t) does not have a finite
derivative at any point of [0, 1] — Y.

A proof of Theorem A can now be given. Let Y = {yn}n=1 be a
countable subset of [0, 1] so that Theorem B holds. Let D( Y) =
{feC:f has a finite derivative at some point of [0,1] — Y}. It can
be shown that D{ Y) is an analytic subset of C (in fact, if Y is any
coanalytic subset of [0,1], then D(Y) is an analytic subset of C).
Now, if D(Y) were a Borel subset of C, then by applying Theorem
B, every analytic subset of K would be a Borel subset of K. This
contradiction establishes that D(Y) is not a Borel subset of C. If
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ilίwere a Borel subset of C, then D(Y) would be a Borel set, since

where Dn — {/ eC: f has a finite derivative at yn}, and each set Dn

is an Fσδ subset of C. This contradiction establishes Theorem A.
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