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THE BOUNDEDNESS OF THE CANTOR-BENDIXSON
ORDER OF SOME ANALYTIC SETS

R. DANIEL MAULDIN

Let X and Y be complete separable metric spaces (Polish
spaces). If E is a subset of X X Y, and z€ X, then by the
z-section of E, E,, is meant EN ({x} X Y). By Py(FE) is

Py(FE) = {x: E, is scattered} .
In this paper the following uniform boundedness principle
for the Cantor-Bendixson order of analytic sets will be
demonstrated.
. THEOREM L. Let W be an analytic subset of X X Y and
let M be an analytic subset of X such that M c Ps(W). Then

. there is a countable ordinal a such that the ath Cantor-
Bendixson derived set of E. is empty, for each x in M.

Let us recall that if A is a subset of X, then the Cantor-
Bendixson derivatives of A may be defined by transfinite induction
as follows:

AV = A

A = Npeo {®:  is an acculumation point of A and x e 4}.

Recall that a subset, H, of a Polish space is scattered if, and
only if H is a countable G, set, or equivalently, there is a countable
ordinal v such that the vth Cantor-Bendixson derived set, H', of
H is empty [5]. By the Cantor-Bendixson order of a subset H of
a topological space is meant the first ordinal v such that H™ = Hu*,
The Cantor-Bendixson order of every subset of a Polish space is
necessarily less than o, [5].

If Fc X x Yand M C X, then E will be bounded on M provided
there is an ordinal 7, ¥ < w,, such that for each z in M, the Cantor-
Bendixson order of E, is <7v; otherwise E will be said to be un-
bounded on M.

Let us note that in order to prove Theorem L it suffices to show
that if E is an analytic subset of X X Y such that each x-section
of E is scattered then FE is bounded on the X projection of E,
T(H).

Theorem L has the following corollary:

COROLLARY 1. Let X be an uncountable Polish space. Let &
be any class of countable G, subsets of X which contains all the
countable compact subsets of X except possibly countably many.
Then no analytic set in X* can be universal for &.
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Corollary 1 is proven by A. S. Kechris and D. A. Martin in [3].
Also, Corollary 1 has as corollaries:

COROLLARY 2. There ts no analytic set in the plane R® which
18 universal for the countable closed subsets of R.

COROLLARY 3. There ts no Borel set in R, which is universal
for the countable G, subsets of R.

Corollaries 2 and 3 are proven by D. G. Larman and C. A.
Rogers in [6]. A proof of Corollary 2 is given in the first section
of this paper which involves techniques which differ from those used
in [3], [6] and in the following parts of this paper.

The techniques of proof used in the second and third sections of
this paper follow those used by Lusin in his deep book [7]. In fact,
on page 186 of [7], Lusin states Theorem L for the space R™ X R.
However, Lusin does not give a proof.

In the second section a proof of another theorem of Lusin’s is
given [7, p. 247]: ‘

THEOREM C. Let A be an analytic subset of X X Y such that
each X-section of A 1s countable. Then A C B, where B 1s a Borel
subset of X X Y such that each X-section of B is also coumntable.

The proof given here is in a slightly more general setting than
Lusin’s and the binary sieve of Lebesgue is used here instead of
“the elementary sieve” as used by Lusin.

Theorem C is the major key to the proof given here of Theorem

L.

Some definitions and notations are now given.
Let E be a subset of X X Y and M a subset of X.
If @ is an ordinal, then

DE(E) = U (B .

A family 57 of subsets of X X Y is said to be simultaneously
unbounded with respect to E on M provided that for each v < w,,
there is some x € M such that

(HN Dy(E)). # D ,

for all HcC o~

If0<g <gand I'c X X Y, then the ¢,-band of I' with respect
to E is: B, (I'; E) = {(x, ) e I': 3(x, y) € E with the distance from y
to z less than ¢}; the (g, ¢,)-ring of I' with respect to E is;
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R=(I', E){(x, 2) € I': 3(%, y) € E such that the distance from y to z is
between ¢, and &,}.

It is a pleasure to thank Robert R. Kallman for many valuable
discussions concerning descriptive set theory.

Before proceeding to the arguments, the author would like to
pose two of the problems which have occurred to him while working
on this paper;

Is there an analytic subset of I x I which is universal for the
family of all analytic subsets of I of Lebesgue measure zero? of the
first category?

1. Applications of the Arsenin-Kunugui theorem.

In this section, the Arsenin-Kunugui theorem is applied to treat
some problems discussed earlier.

THEOREM 1.1. Let B be a Borel subset of X X Y such that for
each z, B, is a K, set (the union of countably many compact sets.)
Then for each a < w,, Dy (B) ©s a Borel set and each X-section of

Y(B) is @ K, set.

Proof. Let {U,}z-, be a countable base for the topology of Y.
For each n, let W, = {x:[BN (X x U,)], consists of a single point}.
According to a theorem of Braun [1], W, is a Borel subset of X.
Then

Dy(B)=B— U W, x U,),

and D{"(B) is a Borel set. .

Clearly, each X-section of D{(B) is the intersection of a closed
set with the corresponding X-section of B. Thus, D{’(B) has the
properties stated in the conclusion.

If D{(B) has the stated properties, then by the preceding argu-
ment D{#*V(B) has the stated properties.

Now, suppose « is a countable limit ordinal. Let {a,};_, be an
increasing sequence of ordinals coverging to a. Clearly, D{*(B) =
N, D#(B). So, Dy(B) is Borel. Let € X. Then T =B, is a
K, set. If (x,y)eT — (Dy(B)), then there is some = such that
U.NT misses (D¥(B)),. Thus, T — (D¥(B), is open with respect
to T and (D{”(B)), is the intersection of a closed set with the K, set
T. Thus, (D{(B)), is a K, set.

THEOREM 1.2. Let E be a subset of X x Y which ts universal
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for the family of countable, closed subsets of Y. If Y is uncounta-
ble, then E is not analytic.

Proof. Let us suppose that E is analytic and Y is uncountable.
Let P be a compact perfect subset of Y. Let A= (X x P)NE.
Then A is an analytic subset of X X P which is universal for the
countable closed subsets of P.

Let F be a closed subset of (X x P) x I such that for each pair
(x, p)e X X P, F,, is uncountable if and only if (x, p)e 4 [4, p.
497].

Let @ be the map of X into, 27/, the space of closed subsets
of P x I defined by o(x) = F,, where F, is regarded as a closed
subset of X x (P x I). 2P* is considered to have the topology
generated by the Hausdorff metric.

Now, it follows from the Arsenin-Kunugui theorem that @ is a
Borel mapping of X into 2% [2, p. 379].

Let M =][2F x 22! x o(X)]NG, where G ={(D, F, B)e2F x
2PxT 5 2P D = wo(F'), and FC B and if V is open in P and F N
(VxI)+# @, then 3xeV such that F, is uncountable}.

For the moment, let us assume that M is analytic. This implies
that @, (M) = {De€2”: D is countable}, is an analytic subset of 27.
But, this set is known not to be analytic in 27, [5, p. 72].

Thus, the proof will be complete, once M is shown to be analytic.
In order to see this it suffices to show that the set L of the next
lemma is analytic.

LEMMA 1.3. Let L = {Fe2"% if V is an open subset of P and
VNr(F)# @, then there is some x €V such that F, is uncounta-
ble}. Then L is an analytic subset of 2F*1,

Proof. Let {V,}z., be a countable base for the topology of P.
Let L, = {Fe2F*: either V,N7(F)= @ or there is some z¢V,
such that F, is uncountable}. Evidently, L = N, L,.

Let g be the map of P x 27 into 27* defined by g(x, T) = {z} x T.
Let H={T'e2": T is uncountable}. Then H is an analytic set [5,
p. 72]. Clearly, g is continuous and therefore W = ¢g(P x H) is an
analytic subset 277, Let S = {(K, F) €27 x 2°*7: Ke Wand K C F}.
Then S is analytic in 27%7 x 27*7 gnd

L,=m(S)U{Fe2: V,Na(F) = @} .

It follows from this expression that each L, is analytic and there-
fore L is analytic.
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Let us note that by following the arguments of this section, we
have:

THEOREM 1.4. Let Y be Polish and & a family of closed
countable subsets of Y such that each closed countable subset of Y
18 a subset of some member of &. If Y is uncountable and E is
an universal set for & in X X Y, then E s not analytic.

Finally it was noted earlier that if B is Borel in X x P and
each X-section of B is closed, then ¢: X — 2% defined by @(x) = B,
is a Borel map of X into 2°. This leads to the following

ExXAMPLE. There is an analytic subset A of I x I such that
each vertical section of A is closed and yet {A,:x€l} is not an
analytic subset of 27 of 2’ (regard each A, as a subset of I).

Before constructing such a set, let us note the following

LEMMA. If G is an analytic subset of 27, then T = {x:x¢ H,
for some HeG} s an analytic subset of I.

Proof. Let M = {(t, H): te H and He2’}. Then M is a closed
subset of I x 2" and T=n,(M NI X G)).

Construction. Let E be an analytic nonborel subset of I and
let A={(x,¥9): 2=y or (x€F and y = 0)}. Then A is an analytic
subset of I x I.

Suppose J = {A,:xe€l} is analytic in 2. Let S = {{z}:xzel}.
Then S is a closed subset of 27 and W = SN J is an analytic subset
of 2/, Therefore,

T={t: te H, for some He W}

is an analytic subset of I. But, T=I — E. This is a contradiction.

2. Theorem C. In this section Theorem C is proven. The
proof follows to a great extent the outline given by Lusin in [7,
p. 247].

Let A be an analytic subset of X X Y such that each X-section
of A is countable. The proof is by contradiction. Thus, if Bis a
Borel set containing A, then some X-section of B is uncountable.

First, let us realize A as the projection of a G, set. Let {U,}:,
be a decreasing sequence of open subsets of (X x Y) x I, where I
is the unit interval such that

TCXY(G) =A,

where
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s

G=NU,.

n=0

LEmMMA 2.1. There is an open parallelepiped R in X X ¥ x I
such that

(i) diameter (R) < 1.

(ii) RcU,.

(iii) of B 1s a Borel subset of X X Y containing wyx(RNG),
then there are uncountably many x’s such that B, is uncountable.

Proof. Let <& be a countable base for the topology of U,
consisting of open parallelepipeds, B, such that diam (B) <1 and
Bc U, Let {T,)z., be a sequence consisting of all the members of
<& which have nonempty interseetion with G.

Let us suppose that for each n, there are a Borel set B, contain-
ing 74 (T, N G) and a countable subset C, of X such that if x¢C,,
then B,, is countable.

Let B= (U>.. B, — Um=(C, X V) U (AN U= (G, X Y)).

Clearly, B is a Borel set containing A and every X-section of
B is countable. This contradiction establishes Lemma 2.1.

Let L be a sieve which sifts 7,,(RNG@RNG) [5,7]. Thus, L
is a map from the rationals into 2**¥ such that a € 4 if and only
if I, (a) is not well-ordered, where I, (a) = {q: @ € L(q)}. Also, for
each countable ordinal «, let C,L) be the ath constituent of
L: C(L) = {a: the order type of I,(a) is @}. Reinterpreting Lemma
2.1, we have

LEMMA 2.2. For every a < w,, there 1s some x € X (in fact un-
countably many) such that (U.<s Cs(L)), 18 uncountable.

Proof. Let us assume the contrary. Then there is an a, < @,
such that for every =, (U.,<s C(L)), is countable.
But, then

B=Xx Y~ U CyL)

sag

is a Borel set containing 7,,(R N G) and for every z, B, is countable.

Let {F,}7_, be a sequence consisting of all basic open rectangles,
F, lying in w4z (R N U,) such that there is a basic open subinterval,
H, of I such that FX HCcRNU, diam (F x H)<1/2 and
FxHNG# Q.

For each %, let K, map @ into the Borel subsets of X X Y by
K.q) = L@ N F,. Thus, K, is a sieve which sifts 7.,(RNG) N F,.
Moreover, the constituents are related as follows:

Co(K,) = C(L)U (X xY)— F,) and CuK,) =C(L)NF,,
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for a > 0.

LEMMA 2.3. There are positive integers m and p such- that
F,NF,=@ and for every a < w, there is some x such that
(Uw<s C(K,)). and (U.<; Cs(K,)), are both uncountable.

Proof. For each a < w,, let z(a) be a point of X such that
Weo = (Ua<s Cs(Li))zr is uncountable. Let n(a) and p(c) be positive
integers such that F, ., N Foe = @ and both F,, and F,. meet
W, in an uncountable set. There exist » and p such that n = n(a)
and p = p(@) for uncountably many a’s. Clearly, these integers
have the required properties.

Let us reinterpret Lemma 2.3.

LEMMA 2.4. If B, and B, are disjoint Borel sets containing
D =F,nr,(RNG) and D, = F,N7,(RNG) respectively, then there
are uncountably many x’s such that both B,, and B,, are uncountable.

Proof. Let B, and B, be disjoint Borel sets containing D, and
D, respectively. There is an ordinal @ < w, such that

E:=\J Cy(K,)C B, and Ei= | C(K,)CB,.
a< a<

But, there are uncountably many x’s such that E?, and E?Z2, are
uncountable.

LEMMA 2.5. There is an open paraellelepiped R, such that:

(1) diameter (R, < 1/2.

(ii) R,cRnNU.

(iii) m,(R,) C F,.

(iv) if B, and B, are disjoint Borel sets containing

D, =7r,,(R,NG) and D, = F,N7,(RNG) respectively, then there
are uncountably many x’s such that B,, and B,, are uncountable.

Proof. Let {S,};_, be a sequence of all basic open parallelepipeds
satisfying (i), (ii), and (iii) which also have nonempty intersection
with G.

Suppose that for each m, there exist disjoint Borel sets M, and
N, containing 7,,(S, N G) and D, respectively such that C, = {x: M,
and N,, are uncountable} is countable.

Let B, = Uy, M, and B, = Ny, N,. Then B, and B, are disjoint
Borel sets containing D, and D, respectively. Let z be such that
B,, and B,, are uncountable and yet x¢ N, C,. Then each M,, is
countable. This contradiction establishes Lemma 2.5.
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By a similar argument one can show that there is an open paral-
lelepiped R, such that

(i) diameter (R,) < 1/2.

(ii) R.cRNU,.

(iii) 7,,(R,) C F,.

(iv) if B, and B, are disjoint Borel sets containing D, and .
D, = #,,(R, N G) respectively, then there are uncountably many z’s
such that B,, and B,, are uncountable.

Finally, it may be shown by induction:

THEOREM 2.6. For each finite sequence (e, «--, ¢,) of zeros and
ones there s an open parallelepiped R, .., of (XX Y) X I such
that for each m:

(i) all R,,...,.,., have diameter < 1/2",

(i) Ry UR, e n CR, ..oy N Uy s

(iii) Riopg N Ryoocos = O,

(IV) ﬂxﬂ(Reln-enO) N ﬂ:xy(Rel--—e,,;) = o,

(V) 4f B.....cpen.y Where (e, ---, e,.,) €{0, 1}**, are disjoint Borel
sets containing T, (R,,........, N G), then there are uncountably many
«’s such that all the sets (B,,...., ). are uncountable. For each finite
sequence (e, -+ e,) of 0’s and 1’s, let

Ple, ---e,) = (x(e, -~ ¢e,), yle, -+ e,), t(e, -+~ ¢,))

be a point of R, ....,.

It can be checked that for each infinite sequence ¢ = {¢,}z-, from 2°
the sequence {P(e|n)};_, converges to some point P(e) = (x(e), y(e), t(e))
of G. It follows from Theorem 2.6, that if ¢ + ¢’ then y(e) = y(¢').

It is now shown that if e # ¢’, then x(e) = z(¢’):

It follows from the properties listed in Theorem 2.6 that for
each 7, there is some z, of X and points y, and y, of Y such that
(T Ya) € Toy(Re1n) and (2, Yn) € Tuy(Ryrin)-

Therefore x, — x(e) and x, — x(¢’). Thus, x(e) = z(¢).

This last result implies that A,., is uncountable. This contradic-
tion establishes Theorem C.

3. A Proof of Theorem L. In this section, Theorem L, as stated
in the introduction, is proven. As was noted in the introduction, it
suffices to consider the following situation: E is an analytic subset
of X X Y such that each section of E is scattered and for every
a, a < o, DP(E)+ Q.

The aim of this section is to prove Theorem L by showing that
these assumptions concerning E lead to some X-section of E con-



THE BOUNDEDNESS OF THE CANTOR-BENDIXSON ORDER 175

taining a dense-in-itself set. From this contradiction, it follows that
Theorem L holds.

To begin with, we have from Theorem C that E= Uy, I,
where for each %, I', is an analytic set which is uniform with respect
to X. (Recall that I', is uniform means each (I",), has cardinality
less than 2.)

All rings and bands considered in this section are with respect
to E.

Let n be such that I" = I', has the property that for every
countable ordinal «, I' N D¥(K) =+ @. The existence of such a I,
follows from a simple cardinality argument.

LEMMA 3.1. For each ¢ > 0, there is a positive number &', & < ¢
such that I' and Z:(I") are simultaneously unbounded.

Proof. Let ¢ > 0. For each o, @ < w,, let (z,, ¥,) €I’ N Dy"(KE)
and let ¢(a) be a positive rational such that (ZZ%.("))sw N D(E)~ D .
There must be some &' which is &(a) for uncountably many «’s.
Clearly, I' and <#:(I") are simultaneously unbounded.

Now, let ¢’ be such that I" and .Z2.(I") are simultaneously un-
bounded.
According to Theorem C,

@) =UT.,
n=1
where each T, is an analytic set which is uniform with respect to X.

LEMMA 8.2. There exists some k such that I' and T =T, are
stmultaneously unbounded.

This lemma also follows by a simple cardinality argument.

The set of all irrationals will be denoted by J. If & ---k, is a
finite sequence of positive integers, .#%,..., denotes the set of ir-
rationals with %, --- k, as the initial sequence in its continued fraction
expansion.

Let ¢, be a continuous map of J onto I'; ¢, a continuous map
of J onto T, and + a continuous map of J onto wy ().

Let § = min (¢//2, 1/2). Then the bands B;(p,(J)) and Bj(p(J))
are disjoint.

LEMMA 38.8. There is a positive rational &', 6" < o, such that the
sets (), @), Bl(p(])) and Bi(p(J)) are simultaneously un-
bounded on (J).
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Proof. For each a, a < w,, let x(a) be a point of X such that
(@i())ater N DFTI(E) + ¢, © = 0,1. For each countable ordinal «, let
6(cx) be a rational, 0 < §(a) < 0 such that the intersection of D¥(E)
with each of (p())., (P())er (P (@(J)). and (P (@) is
nonempty. There must be some ¢’ which is d(a@) for uncountably
many &’s. Clearly, ¢’ satisfies the requirements of the lemma.

Since the two rings of the preceding lemma, may be expressed
as the union of countably many analytic sets which are uniform
with respect to X, we have:

LEMMA 3.4. There exist continuous functions @, and @, of J
into B such that ¢, (J) C 25 (pfJ])), P C Fipi(])) and (J), @.(J),
pu(), and @,(J) are simultaneously unbounded on X.

Since 7,(E) = Uz, ¥(+3), there must be some ¢, such that ¢u(J),
o), pu(J), and @,(J) are simultaneously unbounded on (_7#7%).
There must be an integer s} such that @(_#%), Pi(J), Pu(J) and @u(J)
are simultaneously unbounded on ¥(_7#7). Continuing in this manner,
we have:

LeMMA 3.5. There exist integers t,, s}, si, si', s such that
%(%g% Py Pu(A1), and @(A12) are simultaneously unbound-
ed on Y(A4%). Also, there is a positive number e, such that the e-
bands of the first four sets are disjoint.

This completes the first stage of an induction process. The
second stage is completed by the following procedure. First, let
0 = min (¢, 1/4). Second, obtain a ¢, 0 < ¢’ < 6 such that the eight
sets: @0(./V;<1)), 4’1(-/1/:;})9 @11(%}1)’ @12(%{2); g'(?’o(f%‘f)): §1(¢1‘(./f/,})),
B pu(A) and FZi(p(452) are simultaneously unbounded on
W(47%). Third, obtain continuous functions @,, @n, @6 @u of J
into the respective rings such that the first four sets of the pre-
ceding sentence and ¢,,(J), 2 =1, 2, 3, 4, are simultaneously unbounded
on Y(+#4,,). Fourth, fix ¢, so that these eight graphs are unbounded
on ¥(_7%,,). Finally obtain integers: s}, si, s, s¥’ and integer pairs:
(st 83), (s, 87°), (s, 82°), (s¥!, si') such that the sets: @ (A7%0) P A7)
and @;(45), ©=1,2, j<2 are simultaneously unbounded on
Y(A 1)

Continuing this process by induction, we have:

THEOREM 3.6. For each n€ N and p < 2, there 1s a continuous
mep Pn, of J into A, a point o™ = (sI?, s3?, ---) of J and points
0= (s, 8, ), 0 = (s}, 8y +++), and T = (¢, t, ts, -++) of J such that
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(i) the sets @,,(J) are disjoint and uniform with respect to
X,

(ii) 4f meN, then the sets @ (ANon,), E=n, p =2 and
P A oim) and p(A,) are simultaneously unbounded on (47,),

(il) of L2k <!l and p < 2%, then there is some j < 2' such
that @,(J) lies tn the 27%-band of Pu(. AW okr,).

We now proceed with the

Proof of Theorem L. Let x = y(7) and (Xy,, Yip) = Pr,(0%?), k€ N,
p < 2. Thus, (% Yup) € E, for ke N and p < 2%,

It is now shown that z,, = 2. For each 7 >k, @i (Ao, is
unbounded on (#7.). Let z,€ 40w, with @(2) = (2, y) and
%; € Y( A7), As T — oo, 2,— 0" and therefore z, — x,,. But z,— .
So, © = x,.

Thus, E, contains D = {(%4,, Yip): k€N and p < 2F}.

It is now shown that D is dense-in-itself. To see this consider
a point (x, ¥,,) of D and a positive number e. Pick % > k so that
2" < ¢. By property (iii) of Theorem 3.6, there is some j < 2"
such that ¢,;(J) lies in the 1/2n-band of ¢, ,( A#%ks,). Thus, @,;(c™)
and @,,(6*?) both lie in this band. Since the points are different and
have the same X-coordinate, y,, lies in the e-neighborhood of ¥,, and
Yut F Yoo

But, by the hypothesis of Theorem L, E, is scattered. This
contradiction implies that the conclusion of Theorem L holds.
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