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o-ideals and related Baire systems

by
R. Daniel Mauldin (Gainesville, Fla.)

Suppose § is a metric space with metric d, B is a proper o-ideal
of subsets of § and & is the collection of all real functions defined on &
which are continuous almost everywhere with respect to R. Let. By(@)
be G and for each ordinal number o, 0 < a< @, let B.(G) be the
collection of all pointwise limits or sequences taken from the collection

2 Bd@.

y<a

In this paper, the collections B,(G), the analytic representable
functions or Baire functions of class a generated by @, are characterized
in terms of an associated collection of Baire type sets (Theorem 1). These
Baire type sets are characterized by a relation to the classical Baire sets
(Theorems 2a, b, and ¢). In Theorem 3, the collections By(G), a'> 0 are
characterized by a relation to Baire’s class a. Finally, in case the space S
is separable, a theorem of T. Traczyk is used to give another characteri-
zation of the collections By(@), « > 0, (Theorem 4).

Notation. The collection of all sets of the form (a < f << b), where
(a,b) is a number segment and f is in @, is denoted by D. If L is a col-
lection of subsets of §, then W(IL) denotes' L and for each ordinal
number a, 0 < a < 9, W,(L) denotes the collection to which X belongs

oo [}

if and only if X = 3 (] X7,) where, for each np, there is some &, < a
such that X, is in WZ,,;(L) and X7, is the complement of X,;.

THEOREM 1. Suppose a_is an ordinal number, 0 < o< . A real
function f on S is in By(&) if and only if for each number segment (a, b),
the set (@ <f<b) is in Wl(D).

Indieation. It is true that G is a linear lattice of real functions on §
containing the constant real functions on 8. Also, if f is in @ and U is
& continuous real function on the range of f, then U[f] is in G Also, it
is true that @ = USG -LSG, where USG (LSG) i the collection of all
limits of nonincreasing (nondecreasing) sequences from @. Using these
facts, Theorem 1 for the case a — 0 follows from Theorem 11 of [6] and
the cases 0 < a< Q follow from Theorem 9 of [5].


GUEST


172 ’ R.D. Mauldin

As was pointed out in [3], the collection @ is a complete ordinary
function system as defined by F. Hausdorff [1, Chapter 9] and we have
the following relationships between the method presented here and the
method of F. Hausdorff. The functions in B(@) are the functions f°,
if 0 <£< w and are the function f* if o < &< Q. Also, the sets in
W4D) ave the sets I’ if 0 < £ < w and the sets M it o <E< Q.

In case @ is €, the continuous functions on §, then By(C) is @, the
Baive functions or analytic representable functions of elass « as deseribed
by K. Kuratowski in [2, p. 392] and the collection D is G, the collection
of all open sets. For each a, 0 < « < 2, let B, = By(C) and let Wy = W(G,).
Tt can be shown by transfinite induction that we have the following re-
lationship between the collections W., the analytic representable setsy
of class « and the Borel sets of class «, as defined in [2, p. 345]:

(6., a iy even and finite,

- ¥, a is odd and finite,
‘ iF +1, ais even and infinite ,
| Gur1, @ is odd and infinite .

Theorem 2 characterizes the collections WD), in the general case,
in terms of the collections W,. :

THEOREM 2a. A subset X of S is in the collection Wo(D) if and only
if X is a subset of an F, set in the o-ideal B, X is in Wy, or X is the sum
of a set in W, and a subset of an F, set in R.

Proof. Suppose X is in D = Wy(D). Let f be a function in G = By(@)
and (a, b) a segment such that (a < f < b) is X. For each =, let H, be the
set of all points p such that the discontinuity of f at p is >1/n; H, is
a elosed set in the o-ideal R.

Suppose f is continuous at some point of (a < f< b). For each
point p of continuity of f in (@ < f < b), let 8, be an open set containing p
such that 8, is a subset of (¢ <f < D). Let K Dbe the sum of all the §,’s.
The set K is an open set and is a subset of ( a<f< b). The set X

=@a<f<bhisKEor X=(a<f<b) =Kf+(a<f<bh). ZHn So, if fis

continuous at some point of (a < f< D), then X is an open set or X i
the sum of an open set and a suhset of an F, in the o-ideal R.
If f is not continuous at any point of (a<f<b), then X

={a<f<b). yHn and X is a subset of an F, set in R.

Now, nuppme that X i3 an open set. Let f be the function defined
as follows:
f1, it d(p,8-X)=1,

f(P)={(l(p’g_X), it d(p,8-X)<1,
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where d(p, §—X) means the distance from the point p to the set §—X.
The function f is continuous on § and the set X is (0 < f < 2) and so X is
in Wo(D)=

Suppose X = K +4-H, where K is an open set and H is a subset

of 2 H,, where each Hy is a closed set in the o-ideal R. For each p, let
(S K)-Hp; Mp is closed and in R and X=EK-+(X—K)-H

= K+Z My [(X—K)-H]. Let f be the function on 8, defined as follows:
p=1

1, if pisin K and d(p,8~K)=1

dp,S—K), if pis in K and d(p,8—K)< 1,

.1/n, if pisin (X —K)-H and M, is the first term of
the sequence M,, M,, M;,... which contains p,

foy=1 _ypm, it p isin (3 M,)— (X — K)-H and M, is the first
p=1

term of the sequence 3, M,, M, ... which con-
taing p,

0, if pis in §—{E+ 3 11,).

p=1

0

The function f is continuous at each point of §— Y M,, f is in
p=1

By(@) = @ and (0 <f<2) is X. The set X is in D = W,(D). There is
a similar argument to show that, if X is a subset of an #, set in R,
then X is in W(D).

This completes Theorem 2a.

THEOREM 2b. A subset X of 8 is in the collection Wo(D) if and only

if there is an F, set, K in R, a set A in W, and a subset B of K such that
X=A-K'4B.

Proof. Suppose X is in W(D). Then X = Y [] X;,, where for

n=1p=1

18
8

each n,p, X,, is in D = Wy(D). Then X = 3 (3 X,,). But, since the
. D=

n=1

..A

collection W(D) is countably additive, X = Z X, where for each n,

n=1

X, is in Wy(D). For each n, X, = A, By, where A,, is an open set and
By is a subset of an F, set in the o-ideal R. X = 2 X, = H (An—i—Bn))

=1

S0, X = ((n A,)+ ), where C is a subset of an F, set, K, in R.
n=1
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8o, X = ﬁl An) -0 = Jz A (B (B — 0)). Letting A= (nlj; Ay

and B = A4 -(K—C) we have, X = A-K'- B, where 4 is in Wy, since 4 is
an F, set and B is a subset of K, an F, set in the ¢-ideal R.

Now, suppose X = A-K'-+B, where 4 is in Wy, K is an F, set in
the o-ideal B and B is a subset of K. Since W, is an additive class,

E=A+K is in Wy and B’ = [] A,, where for each n, A, is_open. So,

n=1

X=A-K'+B=E-K'+E-B=E-(K'4+B).Let 0 = K-B’. Then X=F. ¢/

=(B)-C=(E+0). X= (<ﬂ]]1 An)+0) = ( [T (4 o) =3 (4at0y.

It follows from Theorem 2a, that for eachinm, 4,+C is in W,(D) and it
follows from the definition of Wy(D) that X is in Wy(D). This completes
Theorem 2b.

THEOREM 2¢. Suppose 1< a< Q. A subset X of § is in Wo(D) if
and only if X' = A+-B, where 4 is in W, and B is a subset of an F, set
in the o-ideal R.

Proof for a=2. Suppose X is in Wy(D). Then

1y xX=2 HX,’I,,, where for each #,p, X,, is in W.(D). Noting

n=1p=1
Theorem 2b, for each np, let X,, = Anp-Enp+Bnp, where Ay, is in W,
and By is a subset of Kyp, an F, set in R. For each n,p:
chm = (Anp '-K;m"f—Bnp)l = (A;mp+Knp) 'Brle
and
B;lp = K;lpT' (Knp ‘Bnp)-

80, Xip = (dnp+ Kup)(Krp+ (Knp— By
(?') X;l—pw‘—:wA;lp'-K;m’f‘(A;zf;“‘Knp) '(Knp—.Bmp). Using (2) in (l) we
have X = 3 ] [Anp - Eap+ (Anp + Enp) - (Kup— Bap)] and expanding this

n=1p=1
o0 o
we have that X =( 21 ]_IIA,‘,p-K;p) + B, where B is a subset of an 7, set in .
n=1p=
For each 2, p let Thy = Aup-+K,p. The set Anp is in W, and K,y is
an F, set. S0, Kp, is in Wy, and since W, is finitely additive, Ty, is in Ww,.

T v 1 4 & e
Since Ty = 4,5 Khp, for each np, we have X = 3 [] Typ+ B.

o o n=1 p==1
The set 4= 3 [] T, is in W,.
n=1 p=1
o0

Now, suppose X = A+ B, where 4 isin W, and Bis a subset of > M Dy
. =t
each M, is a closed set in E.

e ©
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Since 4 is in W,, A=Z ”A,’Lp, where for each n,p Anp i3

n=1p=1
in W;. So,
X = 2 HAAZJ’{‘ZB'M?L;
n=1p=1 n=1
X= (] Aip+B- )= 3 ([ (Aip+B- M) .
n=1 p=1 n=1 p=1

But, for each =,
B My = (Myp+(My—B-My))';
so that for each o,
Anp+B - My = Ap+(Mp+ (Mp—B- M)’
= (Anp* Mp+Anp-(My—B- M) .

Since for each n, M, is closed, M, is in W, and since W, contains W,
and W, is finitely multiplicative we have that for each p, Any- M) is
in W;. It follows from Theorem 2b that Xpp = Anp- M+ Aup - (My—B - My,)

is in Wy(D). 8o, X = 3 [] Xy, is in the collection T,(D). This completes

n=1np=1
the argument for Theorem 2¢ for the case a = 2.

There are arguments for the cases a> 2 similar to the argument
given here for the case o= 2.

Theorems 2a, b, and ¢ give a characterization of each collection W,(D)
in terms of W,. From these theorems, we see that if a is a countable
ordinal number, other than 1, then X is in W,(D) if and only if there is
a seb 4 in W, and a set B, which is a subset of an ¥, set in the o-ideal R
such that X = 4L B.

Theorem 3 characterizes each collection B,(@), the analytic re-
presentable functions or Baire functions of class « generated by &, in
terms of B, the Baire function of class a.

THEOREM 3. Suppose f is a function on 8 and 0 < a < Q. The func-
tion f is in Bo(@) if and only if there is @ fumction g in B, and an inner
limiting set B such that fz = gg and 8—F belongs to the o-ideal R.

Proof. Suppose f is in By(G). Let f,,f, S, -.. be a sequence from
By@) = G converging to f. For each n, let H, be the set of all point of

ed .
discontinuity of f, and let H = 3 H,; H is in R and H is an F, set. Let
n=1

E = 8—H; E is an inner limiting set. For each #, faz, the partial function
of f, over ¥ is in ¢(F), the collection of all continuous functions over &,
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So, fz is in By(C(E)). It follows by a theorem of K. Kuratowski [2, p. 434]
that fg can be extended to § without changing its class. So, there is
a function ¢ in B; such that gz = fz.

Now, suppose F is an inner limiting set, §—F is in R, f is a function
of § and there is a function ¢ in B, such that fr= gz. Letcogl, G2y Gy oo

be a sequence from By = (' converging to ¢ and let S—F = 3 K, where
p=1

each K, is closed.

For each #, let
gul®), if x isin S§— (K + ... +Hy),
Jule) = {f(m),r it 2 s in KKy .. +K,.

For each =, f, is continuous at each point of 88— (K, ... +Ky).
For each n, fn is in By(G) = & and the sequence fi, fy, f, ... converges to 7
fis in By(@). This shows that Theorem 3 is true for the case a = 1.

Suppose « > 1 and Theorem 3 is true for all cases £, 1 < &£ < a.

Suppose f is in Bu(@). Let fi,f,fs, ... be a sequence converging
to f such that for each #, f, belongs to B,, and H, an inner limiting set
such that S—F, is in R and gug, = fup,. The set E is an inner limiting
set and § —F is in R. The function fg is in Ba( G(E)). Again using a theorem
of Kuratowski [2, p. 434], it follows that there is a function ¢ in B, such
that fz = gg. Now, suppose f is a funetion on S and there is an inner
limiting set ¥ and a function g in B, such that §—F is in R and fe=gs.
Let g, 62y 85, ... De a sequence of functions converging to ¢ such that
for each n,gn is in B, where p, < a, and let §—F = 3 K,, where-
each K, is closed. v

For each =, let

_ o),

For each n, fus—x, .ok = Ins— B+t En) ADA 8 — (K + ... +K,) is an
inner limiting set such that K+ ... +K, is in the o-ideal R. So, for
each #, f, is in B, (@) and f isin By(@#). Theorem 3 follows by transfinite
induction.

In case § is a separable metric space we can obtain another characteri-
zation of the collections Bi{@), a> 0 from a theorem of T. Traczyk [7].
In [7], Traczyk makes use of the following definition.

DEFINITION. Suppose S is a metric space, I'is o-ideal of subset of 8,
D is a metric space and f is a mapping from S into D. The function f has
property D, at the point x, of & if for every &> 0, there is a neighbor-
hood R of z,, a mapping ¢ of Baire class B, and a set 4 in 7 such that
f(@)—g(x)] < &, for every ¢ in 4'-R

if @isin S—(K,+K,+ ... +Hy),
if iy in K- ... +K,.

Tal)

. .
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Traczyk gives the following thegrem in [7}:

Suppose 8 is a separable metric space, D is a separable and complete
metric space and f1s a mapping from 8 into D. If « > 0 and for each closed
subset I of 8, the mapping fr has property D, with respect to B at some
point of F, then there is a mapping g in Baire's dlass B, and a set 4 in T such
that if » is in S—A, then f(z) = g(2). '

This theorem is a generalization of some earlier results of G. Te-
derer [3] and later Lederer generalized this result [4, Theorem I11].

Before using this theorem of Traczyk, consider the following situ-
ation. The space § is the real numbers and R is the collection of all sets
of Lebesgue measure 0. Suppose we let R be I, the o-ideal of Traczyk’s
definition. As can be seen from Theorem 3, if f is in By G)and a>0
then f satisfies the hypothesis of Traczyk’s theorem. However, every
measurable function satisfies the hypothesis of Traczyk’s theorem for
a = 2. But, the Baire system generated by @, the collection of all functions
continuous almost everywhere does not contain all the measureable
function see [6, Theorem 3]. So, it does not suffice to let B = I.

In order to get a characterization of B,() using Traczyk’s theorem
we do the following. Noting that if f is continuous almost everywhere
(with respect to R), then it.is continuous except for an F, set in R, we
let: B’ be the collection of all sets in R which are subsets of F, sets in R.
R’ is a o-ideal. Let R’ be the c-ideal I of Traczyk’s definition stated
above. Then Theorem 4 follows easily from Traczyk’s theorem.

TreorREM 4. Suppose the meiric space S is separable and 0 < a.
A function f is in Bo(@) if and only if for each closed subset F of 8, the
mapping fr has property D, (where the o-ideal I is R') with respect to F at
some point of F.
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