

σ-ideals and related Baire systems

bу

R. Daniel Mauldin (Gainesville, Fla.)

Suppose S is a metric space with metric d, R is a proper σ -ideal of subsets of S and G is the collection of all real functions defined on S which are continuous almost everywhere with respect to R. Let $B_0(G)$ be G and for each ordinal number α , $0 < \alpha < \Omega$, let $B_\alpha(G)$ be the collection of all pointwise limits or sequences taken from the collection $\sum_{p < \alpha} B_\alpha(G)$.

In this paper, the collections $B_a(G)$, the analytic representable functions or Baire functions of class α generated by G, are characterized in terms of an associated collection of Baire type sets (Theorem 1). These Baire type sets are characterized by a relation to the classical Baire sets (Theorems 2a, b, and c). In Theorem 3, the collections $B_a(G)$, $\alpha > 0$ are characterized by a relation to Baire's class α . Finally, in case the space S is separable, a theorem of T. Traczyk is used to give another characterization of the collections $B_a(G)$, $\alpha > 0$, (Theorem 4).

Notation. The collection of all sets of the form (a < f < b), where (a, b) is a number segment and f is in G, is denoted by D. If L is a collection of subsets of S, then $W_0(L)$ denotes L and for each ordinal number a, $0 < a < \Omega$, $W_a(L)$ denotes the collection to which X belongs if and only if $X = \sum_{n=1}^{\infty} (\prod_{p=1}^{\infty} X'_{np})$ where, for each np, there is some $\xi_{np} < \alpha$ such that X_{np} is in $W_{\xi_{np}}(L)$ and X'_{np} is the complement of X_{np} .

THEOREM 1. Suppose a is an ordinal number, $0 \le a < \Omega$. A real function f on S is in $B_a(G)$ if and only if for each number segment (a,b), the set (a < f < b) is in $W_a(D)$.

Indication. It is true that G is a linear lattice of real functions on S containing the constant real functions on S. Also, if f is in G and U is a continuous real function on the range of f, then U[f] is in G. Also, it is true that $G = USG \cdot LSG$, where $USG \cdot (LSG)$ is the collection of all limits of nonincreasing (nondecreasing) sequences from G. Using these facts, Theorem 1 for the case $\alpha = 0$ follows from Theorem 11 of [5] and the cases $0 < \alpha < \Omega$ follow from Theorem 9 of [5].

As was pointed out in [5], the collection G is a complete ordinary function system as defined by F. Hausdorff [1, Chapter 9] and we have the following relationships between the method presented here and the method of F. Hausdorff. The functions in $B_{\xi}(G)$ are the functions f^{ξ} , if $0 \leq \xi < \omega$ and are the function $f^{\xi+1}$, if $\omega \leq \xi < \Omega$. Also, the sets in $W_{\xi}(D)$ are the sets M^{ξ} , if $0 \leq \xi < \omega$ and the sets $M^{\xi+1}$, if $\omega \leq \xi < \Omega$.

In case G is C, the continuous functions on S, then $B_a(C)$ is Φ_a , the Baire functions or analytic representable functions of class a as described by K. Kuratowski in [2, p. 392] and the collection D is G_0 , the collection of all open sets. For each a, $0 \le a < \Omega$, let $B_a = B_a(C)$ and let $W_a = W_a(G_0)$. It can be shown by transfinite induction that we have the following relationship between the collections W_a , the analytic representable sets of class a and the Borel sets of class a, as defined in [2, p. 345]:

$$W_{a} = egin{cases} G_{a}, & lpha ext{ is even and finite }, \ F_{a}, & lpha ext{ is odd and finite }, \ F_{a+1}, & lpha ext{ is even and infinite }, \ G_{a+1}, & lpha ext{ is odd and infinite }. \end{cases}$$

Theorem 2 characterizes the collections $W_a(D)$, in the general case, in terms of the collections W_a .

THEOREM 2a. A subset X of S is in the collection $W_0(D)$ if and only if X is a subset of an F_{σ} set in the σ -ideal R, X is in W_0 , or X is the sum of a set in W_0 and a subset of an F_{σ} set in R.

Proof. Suppose X is in $D = W_0(D)$. Let f be a function in $G = B_0(G)$ and (a, b) a segment such that (a < f < b) is X. For each n, let H_n be the set of all points p such that the discontinuity of f at p is $\geqslant 1/n$; H_n is a closed set in the σ -ideal R.

Suppose f is continuous at some point of (a < f < b). For each point p of continuity of f in (a < f < b), let S_p be an open set containing p such that S_p is a subset of (a < f < b). Let K be the sum of all the S_p 's. The set K is an open set and is a subset of (a < f < b). The set K is an open set K or K is an open set K or K is an open set K or K is continuous at some point of K of K is an open set or K is the sum of an open set and a subset of an K in the K-ideal K.

If f is not continuous at any point of (a < f < b), then X = (a < f < b). $\sum_{n=1}^{\infty} H_n$ and X is a subset of an F_{σ} set in R.

Now, suppose that X is an open set. Let f be the function defined as follows:

$$f(p) = \begin{cases} 1, & \text{if} \quad d(p, S - X) \geqslant 1, \\ d(p, S - X), & \text{if} \quad d(p, S - X) < 1, \end{cases}$$

where d(p, S-X) means the distance from the point p to the set S-X. The function f is continuous on S and the set X is (0 < f < 2) and so X is in $W_0(D) = D$.

Suppose X=K+H, where K is an open set and H is a subset of $\sum_{n=1}^{\infty} H_n$, where each H_n is a closed set in the σ -ideal R. For each p, let $M_p=(S-K)\cdot H_p$; M_p is closed and in R and $X=K+(X-K)\cdot H$ $=K+\sum_{p=1}^{\infty} M_p\cdot [(X-K)\cdot H]$. Let f be the function on S, defined as follows:

$$f(p) = \begin{cases} 1, & \text{if } p \text{ is in } K \text{ and } d(p, S - K) \geqslant 1 \\ d(p, S - K), & \text{if } p \text{ is in } K \text{ and } d(p, S - K) < 1 \text{ ,} \\ 1/n, & \text{if } p \text{ is in } (X - K) \cdot H \text{ and } M_n \text{ is the first term of the sequence } M_1, M_2, M_3, \dots \text{ which contains } p \text{ ,} \\ -1/n, & \text{if } p \text{ is in } (\sum_{p=1}^{\infty} M_p) - (X - K) \cdot H \text{ and } M_n \text{ is the first term of the sequence } M_1, M_2, M_3, \dots \text{ which contains } p, \\ 0, & \text{if } p \text{ is in } S - (K + \sum_{p=1}^{\infty} M_p) \text{ .} \end{cases}$$

The function f is continuous at each point of $S - \sum_{p=1}^{\infty} M_p$, f is in $B_0(G) = G$ and (0 < f < 2) is X. The set X is in $D = W_0(D)$. There is a similar argument to show that, if X is a subset of an F_{σ} set in R, then X is in $W_0(D)$.

This completes Theorem 2a.

THEOREM 2b. A subset X of S is in the collection $W_1(D)$ if and only if there is an F_σ set, K in R, a set A in W, and a subset B of K such that $X = A \cdot K' + B$.

Proof. Suppose X is in $W_1(D)$. Then $X = \sum_{n=1}^{\infty} \prod_{p=1}^{\infty} X'_{np}$, where for each n, p, X_{np} is in $D = W_0(D)$. Then $X = \sum_{n=1}^{\infty} (\sum_{p=1}^{\infty} X_{np})'$. But, since the collection $W_0(D)$ is countably additive, $X = \sum_{n=1}^{\infty} X'_n$, where for each n, X_n is in $W_0(D)$. For each n, $X_n = A_n + B_n$, where A_n is an open set and B_n is a subset of an F_{σ} set in the σ -ideal R. $X = \sum_{n=1}^{\infty} X'_n = (\prod_{n=1}^{\infty} (A_n + B_n))'$. So, $X = ((\prod_{n=1}^{\infty} A_n) + C)'$, where C is a subset of an F_{σ} set, K, in K.

So, $X = (\prod_{n=1}^{\infty} A_n)' \cdot C' = (\prod_{n=1}^{\infty} A_n)' \cdot (K' + (K - C))$. Letting $A = (\prod_{n=1}^{\infty} A_n)'$ and $B = A \cdot (K - C)$ we have, $X = A \cdot K' + B$, where A is in W_1 , since A is an F_{σ} set and B is a subset of K, an F_{σ} set in the σ -ideal K.

Now, suppose $X=A\cdot K'+B$, where A is in W_1 , K is an F_σ set in the σ -ideal R and B is a subset of K. Since W_1 is an additive class, E=A+K is in W_1 and $E'=\prod_{n=1}^\infty A_n$, where for each n, A_n is open. So, $X=A\cdot K'+B=E\cdot K'+E\cdot B=E\cdot (K'+B)$. Let $C=K\cdot B'$. Then $X=E\cdot C'=(E')'\cdot C'=(E'+C)'$. $X=\{(\prod_{n=1}^\infty A_n)+C\}'=(\prod_{n=1}^\infty (A_n+C))'=\sum_{n=1}^\infty (A_n+C)'$. It follows from Theorem 2a, that for each n, A_n+C is in $W_0(D)$ and it follows from the definition of $W_1(D)$ that X is in $W_1(D)$. This completes Theorem 2b.

THEOREM 2c. Suppose $1 < \alpha < \Omega$. A subset X of S is in $W_{\alpha}(D)$ if and only if X = A + B, where A is in W_{α} and B is a subset of an F_{σ} set in the σ -ideal R.

Proof for a=2. Suppose X is in $W_2(D)$. Then

(1) $X = \sum_{n=1}^{\infty} \prod_{p=1}^{\infty} X'_{np}$, where for each n, p, X_{np} is in $W_1(D)$. Noting Theorem 2b, for each np, let $X_{np} = A_{np} \cdot K'_{np} + B_{np}$, where A_{np} is in W_1 and B_{np} is a subset of K_{np} , an F_{σ} set in R. For each n, p:

$$X'_{np} = (A_{np} \cdot K'_{np} + B_{np})' = (A'_{np} + K_{np}) \cdot B'_{np}$$

and

$$B'_{np} = K'_{np} + (K_{nn} - B_{nn}).$$

So, $X'_{np} = (A'_{np} + K_{np}) \cdot (K'_{np} + (K_{np} - B_{np}));$

(2) $X'_{np} = A'_{np} \cdot K'_{np} + (A'_{np} + K_{np}) \cdot (K_{np} - B_{np})$. Using (2) in (1) we have $X = \sum_{n=1}^{\infty} \prod_{p=1}^{n} [A'_{np} \cdot K'_{np} + (A'_{np} + K_{np}) \cdot (K_{np} - B_{np})]$ and expanding this we have that $X = (\sum_{n=1}^{\infty} \prod_{p=1}^{n} A'_{np} \cdot K'_{np}) + B$, where B is a subset of an F_{σ} set in R.

For each n, p let $T_{np} = A_{np} + K_{np}$. The set A_{np} is in W_1 and K_{np} is an F_{σ} set. So, K_{np} is in W_1 , and since W_1 is finitely additive, T_{np} is in W_1 .

Since $T'_{np}=A'_{np}\cdot K'_{np}$, for each np, we have $X=\sum\limits_{n=1}^{\infty}\prod\limits_{p=1}^{\infty}T'_{np}+B$. The set $A=\sum\limits_{n=1}^{\infty}\prod\limits_{p=1}^{\infty}T'_{np}$ is in W_2 .

Now, suppose X=A+B, where A is in W_2 and B is a subset of $\sum_{p=1}^{\infty}M_p$, each M_p is a closed set in R.

$$X = \sum_{n=1}^{\infty} \prod_{p=1}^{\infty} A'_{np} + \sum_{n=1}^{\infty} B \cdot M_n;$$

$$X = \sum_{n=1}^{\infty} \left(\prod_{p=1}^{\infty} A'_{np} + B \cdot M_n \right) = \sum_{n=1}^{\infty} \left(\prod_{p=1}^{\infty} \left(A'_{np} + B \cdot M_n \right) \right).$$

But, for each n,

$$B \cdot M_n = (M'_n + (M_n - B \cdot M_n))';$$

so that for each p,

$$A'_{np} + B \cdot M_n = A'_{np} + (M'_n + (M_n - B \cdot M_n))'$$
$$= (A_{np} \cdot M'_n + A_{np} \cdot (M_n - B \cdot M_n))'.$$

Since for each n, M_n is closed, M'_n is in W_0 and since W_1 contains W_0 and W_1 is finitely multiplicative we have that for each p, $A_{np} \cdot M'_n$ is in W_1 . It follows from Theorem 2b that $X_{np} = A_{np} \cdot M'_n + A_{np} \cdot (M_n - B \cdot M_n)$

is in $W_1(D)$. So, $X = \sum_{n=1}^{\infty} \prod_{p=1}^{\infty} X'_{np}$, is in the collection $W_2(D)$. This completes the argument for Theorem 2c for the case $\alpha = 2$.

There are arguments for the cases $\alpha > 2$ similar to the argument given here for the case $\alpha = 2$.

Theorems 2a, b, and c give a characterization of each collection $W_a(D)$ in terms of W_a . From these theorems, we see that if α is a countable ordinal number, other than 1, then X is in $W_a(D)$ if and only if there is a set A in W_a and a set B, which is a subset of an F_σ set in the σ -ideal B such that X = A + B.

Theorem 3 characterizes each collection $B_a(G)$, the analytic representable functions or Baire functions of class a generated by G, in terms of B_a , the Baire function of class a.

THEOREM 3. Suppose f is a function on S and $0 < \alpha < \Omega$. The function f is in $B_{\alpha}(G)$ if and only if there is a function g in B_{α} and an inner limiting set E such that $f_E = g_E$ and S - E belongs to the σ -ideal R.

Proof. Suppose f is in $B_1(G)$. Let $f_1, f_2, f_3, ...$ be a sequence from $B_0(G) = G$ converging to f. For each n, let H_n be the set of all point of discontinuity of f_n and let $H = \sum_{n=1}^{\infty} H_n$; H is in R and H is an F_{σ} set. Let E = S - H; E is an inner limiting set. For each n, f_{nE} , the partial function of f_n over E is in C(E), the collection of all continuous functions over E

So, f_E is in $B_1(C(E))$. It follows by a theorem of K. Kuratowski [2, p. 434] that f_E can be extended to S without changing its class. So, there is a function g in B_1 such that $g_E = f_E$.

Now, suppose E is an inner limiting set, S-E is in R, f is a function of S and there is a function g in B_1 such that $f_E = g_E$. Let g_1, g_2, g_3, \ldots be a sequence from $B_0 = C$ converging to g and let $S-E = \sum_{p=1}^{\infty} K_p$, where each K_p is closed.

For each n, let

$$f_n(x) = \begin{cases} g_n(x), & \text{if } x \text{ is in } S - (K_1 + \dots + K_n), \\ f(x), & \text{if } x \text{ is in } K_1 + K_2 + \dots + K_n. \end{cases}$$

For each n, f_n is continuous at each point of $S-(K_1+\ldots+K_n)$. For each n, f_n is in $B_0(G)=G$ and the sequence f_1,f_2,f_3,\ldots converges to f; f is in $B_1(G)$. This shows that Theorem 3 is true for the case a=1.

Suppose a > 1 and Theorem 3 is true for all cases ξ , $1 \le \xi < \alpha$.

Suppose f is in $B_a(G)$. Let f_1, f_2, f_3, \ldots be a sequence converging to f such that for each n, f_n belongs to $B_{\gamma n}$ and E_n an inner limiting set such that $S-E_n$ is in R and $g_{nE_n}=f_{nE_n}$. The set E is an inner limiting set and S-E is in R. The function f_E is in $B_a(C(E))$. Again using a theorem of Kuratowski [2, p. 434], it follows that there is a function g in B_a such that $f_E=g_E$. Now, suppose f is a function on S and there is an inner limiting set E and a function G in G in G is in G and G in G such that G is in G and G is a sequence of functions converging to G such that for each G is in G in G in G in G and let G is G is in G is in G in

For each n, let

$$f_n(x) = \begin{cases} g_n(x), & \text{if } x \text{ is in } S - (K_1 + K_2 + \dots + K_n) \\ f(x), & \text{if } x \text{ is in } K_1 + \dots + K_n \end{cases},$$

For each $n, f_{nS=(K_1+\ldots+K_n)}=g_{nS-(K_1+\ldots+K_n)}$ and $S-(K_1+\ldots+K_n)$ is an inner limiting set such that $K_1+\ldots+K_n$ is in the σ -ideal R. So, for each n, f_n is in $B_{rn}(G)$ and f is in $B_{\alpha}(G)$. Theorem 3 follows by transfinite induction.

In case S is a separable metric space we can obtain another characterization of the collections $B_{\alpha}(G)$, $\alpha > 0$ from a theorem of T. Traczyk [7]. In [7], Traczyk makes use of the following definition.

DEFINITION. Suppose S is a metric space, I is σ -ideal of subset of S, D is a metric space and f is a mapping from S into D. The function f has property D_a at the point x_0 of S if for every $\varepsilon > 0$, there is a neighborhood R of x_0 , a mapping g of Baire class B_a and a set A in I such that $|f(x)-g(x)| < \varepsilon$, for every x in $A' \cdot R$.

Traczyk gives the following theorem in [7]:

Suppose S is a separable metric space, D is a separable and complete metric space and f is a mapping from S into D. If a>0 and for each closed subset F of S, the mapping f_F has property D_a with respect to F at some point of F, then there is a mapping g in Baire's class B_a and a set A in I such that if x is in S-A, then f(x)=g(x).

This theorem is a generalization of some earlier results of G. Lederer [3] and later Lederer generalized this result [4, Theorem III].

Before using this theorem of Traczyk, consider the following situation. The space S is the real numbers and R is the collection of all sets of Lebesgue measure 0. Suppose we let R be I, the σ -ideal of Traczyk's definition. As can be seen from Theorem 3, if f is in $B_{\alpha}(G)$ and $\alpha > 0$ then f satisfies the hypothesis of Traczyk's theorem. However, every measurable function satisfies the hypothesis of Traczyk's theorem for $\alpha = 2$. But, the Baire system generated by G, the collection of all functions continuous almost everywhere does not contain all the measureable function see [6], Theorem 3]. So, it does not suffice to let R = I.

In order to get a characterization of $B_{\sigma}(G)$ using Traczyk's theorem we do the following. Noting that if f is continuous almost everywhere (with respect to R), then it is continuous except for an F_{σ} set in R, we let R' be the collection of all sets in R which are subsets of F_{σ} sets in R. R' is a σ -ideal. Let R' be the σ -ideal I of Traczyk's definition stated above. Then Theorem 4 follows easily from Traczyk's theorem.

THEOREM 4. Suppose the metric space S is separable and $0 < \alpha$. A function f is in $B_a(G)$ if and only if for each closed subset F of S, the mapping f_F has property D_a (where the σ -ideal I is R') with respect to F at some point of F.

References

- [1] F. Hausdorff, Set Theory, 2nd ed., Chelsea, New York 1962.
- [2] K. Kuratowski, Topology, Vol. 1, New York 1966.
- [3] G. Lederer, A problem on Baire classes, Fund. Math. 48 (1960), pp. 85-59.
- Some theorems on Borel-measurable functions, Coll. Math. 10 (1963), pp. 261-266.
 R. D. Mauldin, On the Baire system generated by a linear lattice of functions, Fund. Math. 68 (1970), pp. 51-59.
- [6] Some examples of σ-ideals and related Baire Systems, Fund. Math., this volume, pp. 179-184.
- [7] T. Traczyk, On the approximation of mappings by Baire mappings, Coll. Math. 8 (1961), pp. 67-70.

UNIVERSITY OF FLORIDA Gainesville, Florida

Reçu par la Rédaction le 12, 2, 1970