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INTRODUCTION

This paper consists of some cbservations concerning the effect that various
set-theoretical assumptions have on measure theory and descriptive set theory.
The author was led to the considerations here by a problem stated to him by
his advisor, the late Professor H. S. Wall of the University of Texas. The
problem as stated by him was to find an integral representation of the dual of
functions of bounded variation on the unit interval. This problem has attracted
the attention of 2 number of authors and is stated explicitly by Dunford and
Schwartz in their treatise [}, p. 374]. Earlier, in {2, 3] this problem was studied
by the author with the aid of the continuum hypothesis.. We shall continue
here in a similar vein but replace the continuum hypothesis by Martin’s axiom
or the assumption that the continuum is a real-valued measurable cardinal.

We shall consider infegral representations of a more gencral class of spaces:
those spaces consisting of countably additive measures of bounded variation
whosc values lie in a Banach space having the Radon-Nikodym property. The
integral representation problem has led to the study of extensions of various
vector-valued measures. Some of the pertinent theorems needed are developed
in Section 1. '

The problem has also led to the study of a rather natural object, the c-algebra

generated by the open subsets of the unit interval. In case the continuum

hypothesis holds, this algebra is the classical family of Borel sets. But in case
the continuum hvpothesis does not hold, the c-algebra is much larger than
the Borel algebra and seems to be a natural object of study, particularly if one
assumes in addition, the c-additivity of Lebesgue measure or of a c-additive
extension of Lebesgue measure to this algebra. Some theorems concerning’the
generation of this algebra are given in Section 4. :
In Section S, we show that Martin'’s axiom together with the negaticn of the
continuum hypothesis implies the existence of 2 lifting of L () into B(Z),
the Banach space of all Z-measurable functions provided with the supremum
norm. It is also shown that the Banach spaces B(Z) and B(Z) are not iso-
metrically isomorphic. Finally, a characterization of bimeasurable mappings
using Martin's axiom is noted. ' ‘
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In connection with the integral representation problem the author realizes
that there are other approaches which employ only ZFC. The recent results of
MacNerney [4] do not involve the cardinality considerations which appear here.
The reader is referred to [4] and the references given there and to the discussion

given by Dunford and Schwartz [1]. ‘
The author would like to thank D. R. Lewis for 2 number of interesting

conversations concerning the results given here. In particular, the use of the
conditional cxpectation operator in Theorem 1.1 was suggested by him. It
considerably simplifics an carlier argument of the author. Also, the author
wishes to thank K. Kunen for providing Example 3.9.

NOTATION

We shall use the following notations.

r, %: infinite cardinal numbers: cardinals are regarded s initial
ordinals.
¢: the cardinality of the continuum:
X: aset.
I: the unit interval.
S- an uncountable standard topological space: S is 2 Hausdorft
topological space such that there is 2 continuous injection of
a Polish space onto S.
X: the o-algebra of Borel subsets of S.

X : the x-algebra generated by Z: 2. is the smallest family F
containing Z which s closed under complements and under
unions of less than « sets from # (thus, zZ,, =2Z)

E: a Banach space. ‘
E*: the conjugate space of E.
xa(S, Z,, E): the space of all x-additive functions g from Z, into E: if
{4 ),r are disjoint sets inZ,, | I'l <xand 4 = U4d.eZ.,
then (1) = Toer i1
wa(S, Z,): «a{S, £, , R), where R is the reals.
bz;:::a(S, Z.,E): the space of all w-additive E-valued measures p on Z, which ¢
T are of bounded variation: there is 2 number M such that
Zh pEJ < M, for every T -measurable partition of S. This
space will be regarded as a Banach space under the variation
norm (which it is).
ca(l,Z): isin pa.rticular the space of all ¢c-additive real-valued measures
7 This is in contrast with the usual notation of analysts.

-




ppcrrere s 4

SET-THEORETICAL ASSUMPTIONS oL
1. Extension THEOREMS

In this section we derive some theorems concerning extensions of vector-
valued-measures which will be needed in the sequel. By a vector-valued measure,
we mean a countabiy additive function from a o-algebra or w,-algebra, &, of
subsets of a set  into a Banach space Z. Let us recall that if m is a vector-valued
measure from  inte F, then

(1) thereis a nonnegative countably additive measurc g on such that
lim, (g i m(-A)l = 0 (m is absolutely continuous with respect 10 #h

(2) therangeof misa conditionally weakly compact subsct of E.

These results may be found in {5].

Taeorem 1.1. Let X be a sub-wy-algebra of the wy-algebra A of subsets of X.
Let ps be a nonnegative countably additive measure on Ay € wa*(X, 4)) and let
m € wya(X, Z, E). Then:

(1) ifmis absolutely continuous with respect to p | X, then m has an extension
7 10 A suck that #t is absolutely continuous with respect to i -

(2) if each measure ve w,a(X, X) which is absolutely continuous with respect
to p | Z kas a unique extension v to A which is absolutely continuous with respect
to p, then the extension ¥ of (1) is unigue. '

Proof. Define the operator U from L.(z]Z) into E¥* by

U =* = [ fdkm, -

Now, U is continuous and linear. Also since the range of m is a conditionally
weakly compact subset of Eand U{lx.s]) = m(-A), for each A in Z, it follows that
U actually maps L,(p | Z) into E and U is a weakly compact operator.

Let « be the conditional expectation aperator of L,(¢) into Ly(z 1 X). Define
#{A) = Ua™([x.]), for each A in 4. Clearly, m is 2 finitely additive function
from 4 into E and i extends m. '

To see that 7 is countably additive, 1t is enough to show that # is weakly
countably additive. Notice that Uis 2 weak*~weak continuous operator, because
U*(E*) CLy(p | Z) (identify U*(z*) with dm, x*3/d | Z). i

So, if A;e4 and A;l¢, then x.]—0 weak* in L (u). This implies
a*([x.]—0 weak* in L. (| X), and this implies Ue*([x.) — 0 weakly in E.

Thus, m is weakly countably zdditive and therefore countably additive
{1, IV.10.1]-

Finally, to-see that # is absolutely continuous with respect to i, it is enough
to show that the set of numerical measures K = (¢, x*y: &% is in E¥ and
fx*t < 1} is uniformly absolutely continuous with respect to p. But, since
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is 2 closed subspace of buxa(S, Z, . E)- Of course, m is absolutely continuous

with respect to its variation function.

Turorent 2.2,  The dual of brea(S, ., E} 1s isometrically isomorphic to the

substitution space P;_unN.™

‘This follows dircctly from Theorem 1 and the theory of substitution spaces
(8, p. 35}

It should be noted that the decompositions of the type given in Theorems 2.1
and 2.2 were first obtained (to the best of my knowledge) by Artemenko [10].
This decomposition was also obtained by Sreider {11} in a different form and
was used by him to study the spectrum of A(G). Also, it follows from Kakutani's
Al-space theory [12] that xa*(8, X,) is isometrically isomorphic to a space C(K),
where K is a compact T, space. Jt is possible to construct this space from the
decomposition given in- Theorem 2.2 as follows: In the case of scalar measures,
N, * = L.(pn)- So, let K, be the Stone space of L(i). Let X be the disjoint

- union of the spaces K, LeaG={flfis bounded and f | K, € C(K.)- Then

is a uniformly closed algebra of ceal-valued functions on X. Let K be the
“compactification” of .X such that the extension map f — f takes & onto C(K)
[13]. Then, xa*(S. Z,) = C(K). o ;

Let us consider now the dual of spaces of vector-valued measures. .

Suppose p is a probability measure in xa(S, Z,). Let H(S, Z,, E*, i) be the
space of all additive functions » from Z, into E* for which there is 2 number
such that | {E} < op(E), for every E € Z. Also, for each ve H(S, Z,, E*, p),
tet [ ]| = sup{[l {EN(EN] | #(E) > O}. - -

The space H(S, Z,, E*, p) is a Banach space under this norm [3, 9]. Also,”
if ve H(S, Z, , E*, p), then v € buka(S, Z, . E*).

We will need the following théorem of Uhl [9].

Tueoren 2.3. Suppose E has the Radon-Nikodym property and p s a
positive measure in xa(S, Z,). Then for each T€ N XS, Z, , E) there is only one
function v in H(S, X, E*, ) such that

(©) T = [ [@NE@)d] 5

for all X in NAS.Z.. E) Moreover, if (U) holds, then | Tt =1iv} and the
mapping of N, into H(Z, p, X) defined by (U) is onto.

A proof of this theorem appears in Uhl's paper {9] and in [3, Theorem 5]
The integral appearing in (U) is a Hellinger-type integral. The theory of
this integral is developed in [3, 9].
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DerixiTion. A function f from Z, into a linear space X' is said to be p-
additive, where g is a nonnegative measure on X, , provided f(E,) + f(E;) =
{{E, U E;), whenever E; and E, are disjoint sets in X, with both u(E,) and

1
p(E,) positive.

DesinirioN,  If @ is a selector for H — {ug}, then M(S, 2, , ¢, E*) consists
- of all functions ¢ from X, into E* which are bounded and

(1) pod is pg-additive on S,

(2) paf is padditive on B, = ¢{g,), for each c€ T,

(3) if pn(B_) = 0 and there is no y € I' such that ¢ (B) >0 and BC B, ,
then J{B) =

The space M(S, Z, , ¢ E*) is a Banach space under the uniform norm.

Tueoxem 2.4. Suppose there is a maximal collection of mutually singular

positive measure H = {p} U {i, : y € I'} in xa($, Z,) such that there is a selector
Jor H — {,uﬂ} If E kas the Radon-Nikedym property, then for each T € buca™(S,
Z, , E) there is only one function s in M(S, Z, , o, E*) such that

®) Tw) = [ $do

Jor all w in boxa(S, Z, , E). Moreover, if (R) holds, then | T | = | §|| ‘and the
spaces M(S, X, , 9, E¥) and boxa*(S, Z, , E) are wometncal]y isomorphic via the

mapping deﬁned by (R)
This is [3 Theorem 7).

There is 2 simple argument to show the existence of 2 se!ector on certain
measure spaces.

TueoREM 2.5. Suppose H is a maximal collection of mutual{);sz'ngular measures
from xa(S, 2} and poe H. If | H | g x, then there is a selector for H — {y,}.

. Proof. Let H — {pg} be well ordered into an initial type (we start with the
ordmal I):
H—{F’O} =ty g Ha oy Py e Byoaeens Y <@g, w <«
Foreichyando,0 < ¥ < « < w,,let B, beasetin X, such that pr,(B,,}) =0

and p(B,,) = 0. For each o, 1 < & < w,, let B, = [},ca By~ Since each
proper initial segment of w, has cardinality less than « we have

p(B) =0 and  p(B.) =0 -
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ify < o Let @ be defined by o{p.) = Ba s 0<a<uw,.ltfollowsthatgisa

sclector for H — {po}-
In particular,

TueoreM 2.6.  The contimuum Iypothesis implies that there is a selector for
wa(l, Z). '

3. Tue EFFECT OF SOME "AX10MS

In [3], the continuum hypothesis was used to obtain the rcprcsematim; {U)
provided | wa(S, DN <Le=o- In fact, the cardinality of the space of scalar
calued measures is the only restriction in case CH is assumed as is shown in [3].
We shall see that a similar representation can be obtained under other assump-
tions, but we restrict S to be standard in these cases.

- Tupoxem 3.1. If Martin's axiom holds, then each p € wya{l, Z) has a unigue
extension 10 @ measure in ca(l, 2.).

This theorem is due to Martin and Solovay. In {14, p. 168], they show that
Lebesgue measure is c-additive and consequently the o-algebra of Lebesgue
measurable sets is 2 ¢-algebra. In fact the argument given by them can be used
to show that if p is any regular Borel measure in a separable space then the
family of all p-measurable sets forms a c-algebra. Martin and Solovay note this
effect on [14, p- 169]. Thus, U, the family of all imiversally measurable sets is
a c-algebra and each Borel measure has an extension to a c-additive measure
on U. Notice that X, C U and if g, and g, are c-additive on U and agree on Z,-
then py == g5 / ‘

The next theorem is an easy corollary of Theorem 3.1 by applying 2 Borel
isomorphism of S onto I and noticing that it defines 2 X_isomorphism. The
theorems given below way extend to a larger class of spaces, for example, the
analytic Hausdorff spaces 2s defined in [32], but the author has not checked

them.

Tuporem 3.2. Assume Martin's axiom. Let S be a standard s';pace, then each
measure p. € wya(S, 2} has a unique extension to @ c-additive measure on X .
In view of Theorem 3.2 and the theorems of Sections 1 and 2 we have the

following theorems.

Turorem 3.3. Suppose Martin's axiom holds and S is standard., Then
(1) if mena(S, Z,E)yand m <, ¢ € wya(S, X), then m has a umque
extension 1 in ca(S, Z. , E) such that & i, where i is the unique extension of pt
in ca(S, Z.)- :




. \
(2) if mebvwa(S, X, E), then m kas a unigue extension fo a measure

i € brea(S, L, , E) and var(m) = || m|| = var(m) = || s |).

f HEOREM 3 4.  Assume Martin's axiom, E has the Radon—-hzkodym property,
and S is standard. Then

(1) bvwa(S, Z, L‘) is isometrically isomorphic to buca(S, X, , E) via the ex-

tension operator,
(2) bvwe™(S, I, £} o bvea™(S, 2, , E),
() bvea™(S, 2, , E) = M(S, Z,, 9, E*) via the representation (U).

Thus, we see that Martin’s axiom + 7 CH gives the same type representation
as one obtains using CH, however, in order to obtain an integral representation
of w,a*(S, X, E) we must first make the identification indicated in part (1).

In the remainder of this section we assume that ¢ is a real-valued measurable
cardinal. We assume that there is a free probability measure g defined on P(I),
the family of all subsets of I which is c-additive. Recall that a measure p is said
to be free if p{{x}) = O, for every x in X. In the next two theorems we show
that every nonatomic Borel measure has the maximum number of extensions

t0 P(I).

THEOREM 3.5.  There are 2° nonatomic ( free) measures on P(I).

Proof. For each ACI with | 4] == ¢, let ¢ be a 1-1 map between [ and 4.
Define p(E) = p(e~(E 0 4)). Then g, is a c-additive measure on P(I). If
14, =14, =cand |4, 0 A4,| <e, then ,;.A(A_)_uo and ra(4) = L.
Thus, if 4, and A, are almost disjoint, then g 4, 7 i, - Prikry has shown that
if + < ¢, then 27 < ¢ [15). Thus, by Tarski's theorem [29] there are 2¢ almost
disjoint subsets of I. Then theorem follows. I

THEOREM 3.6. Every nonatomic Borel measure on I has at least 2¢ extensions
to_c-additive measures on P(I).

Proof. 1f vewa(l, Z) and v is free, then there are Borel sets N and M,
#{N) =0, v(AM) = 0, and a Borel isomorphism ¢ of / — N with I — M such
that if B is a Borel subset of I — M, then W(B) = p(y—(B)).

Thus v can be extended to a c-additive measure defined on all subscts of L

If v; and v, are two nonatomic Borel measures on I, then by using the iso-
morphism map described above it follows that v, and v, have the same number
of extensions to members of ca(Z, P(I)).

Since there are only ¢ nonatomic Borel measures on 1, the theorem follows. J

Once again, we find that each Borel measure on I has 2 unique extension to a
¢-additive measure on X, . Thus, we have the following theorem.



Trrorem 3.7, Theorems 3.1, 3.2, 3.3, and 3.4 all hold, if Martin's axiom is
replaced by the hypothesis that ¢ is a real-valued measurable cardinal.

Also, in accordance with the theorems of Séction 1, let us mention

Tueorem 3.8. If m is s-bounded on Z, the Borel subsets of I, then m has an
s-bounded extension to all subsets of I.

We would like to péiﬂt out the speciat role plaved by the Borel sets by the
following example. '

TueoreM 3.9. There is a countably generated and separated o-algebra of
subsets of the unit-interval, €7, and a free countably additive probability measure,
"g, defined on ¥ which cannot be extended to be a countably additive measure
defined on all subsets of I. This can be argued as follows. First, if there is no
real-valued measurable cardinal « < ¢, then Lebesgue measure on the Borel
sets is such an example. Otherwise, et « be the least real-valued measurable
cardinal <e. Let X CJ with | X' | < x and X has outer Lebesgue measure 1.
The existence of such a set was proven by Kunen in his thesis [27]. Let & =
{F = (XN B)V (X' C): B, C are Borel subsets of I}. Then ( is a countably
generated and separated o-algebra of subsets of I. Let G be a Borel set containing
X and define u(E) = MG n B), where E = (X N B) U (X' N C). It follows
that g is a countably additive probability measure which agrees with Lebesgue
measure A on the Borel sets. If i could be extended to all subsets of I, then p
would be «-additive and thus p(X) = 0 7= p(X).

Example 3.9 is due to Kunen who described it in a letter. )

It should also be pointed out that E. R. Fisher has carried out a study in his
dissertation {17] of the effects of the continuum being a real-valued measurable
cardinal. Some implications of various set-theoretical assumptions may be found

in {14, 17, 18, 27].

t

4. GENERATION SCHEMES

In this section, we consider a generation scheme for the c-algebra gcncmﬁed
by a family of subsets of a set X. We give some sufficient conditions under
which new sets are continually generated by this scheme. The method of proof
involves the construction of universal sets.

Let % be a family of subsets of a set X. We may generate (7 (), the smallest
¢-algebra containing % by successively closing & with respect to the complement
operator, C, and the operator M, , which maps (P(X))* — P(X), by mapping a
point of (P(X)) to the intersection of its coordinates.

We shall follow the classical procedure for generating a,.(F):
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Let 7 = Z; and for each ordinal o, « <'w,;, It Z, = AJ ((U,,,:,z CZ. ).
Thus, we have the following criss-cross diagram:

F =2z, Z, A z,

o

cz, cz, cz, cz,

Then {J,c., Z, is A, (¥), the o-algebra generated by &. In order to generate
() we continue as follows. For each o << ¢, ; < a < ¢, let

zZ. = Z,, if « 1s a cardinal,

r<a

and if k < &« < «*, where x is a cardinal, let

nenfye)

Thus, in the second case, Z, is the family of all sets which are the union of «
sets taken from {),.. CZ, .

In case « is a cardmal x <c, then Z, = @, +(3") Also, it is clear that
{Us<c Z, is the c-algebra generated by #. The problem discuused here is whether
all these iterations are necessary. We give some sufficient conditions in order
that all these iterations are necessary in case the family # is the family of all
closed subsets of z standard space. It is of course only necessary to argue this
for the unit interval.

THEOREM 4.1. Suppose that for each cardinal X < ¢, there is an CL(X)-
measurable map, g, , from I onto I*. Then, for each o, 0, < o« < cand x < a < x*,
there is a subset G, of I x I, suck that G, € (2 x Z),and if F € Z, , then there
is some x € I such that F is the section of G, over x. F = { y: (x, 3} € G,}.

Proof. The proof proceeds by transfinite induction. Let G, be an anpalytic
subset of the unit square which is universal for all analytic subsets of I [16.
p- 253]. G, has the required properties for a = w, .

Suppose w; < a << ¢ and the sets G, have heen constructed for each ordinal

Y,y < o
Let H = G, .

Case . s Ky <y+1=a<

Let g, be given by its coordinate functions g, = (g«!, g.2,..., £.%,...) 0 < «.
For each o < x, define T, : I X I — I X I by T(=,7) = (g, (..) 7)- 1t follows
that for each o < «, £,71s an 7, +(Z)-measurable function and T is an {2 X Z)-
measurable mapping of the square.
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Thus T;Y(H,)) is an A {(Z x Z)-measurzble subset of 7 x [ and. G, =
Ueew T (H,) is an (7, (2 x Z)-measurable subset of I x 1.

Now, suppose F e Z, = M (CZ,)).
it should be noted here that Z,C Z , if wy < ¢ << p and that this rclauon

holds actually for all ordinals ¢, p,0 < 0 < p.

Let F = ), A, where 4, € CZ, . For each ¢ < «, let x, be a point of 7 such
that the section of /1, over x, is 4, .

Let x be 2 point of 7 such that g,°(x) = 'x, . It can be checked that the section
of G, over x is F. ‘

Case II. x < a <u* and « is a himit ordmzl Let f map x onto « and let
Gy = Uner T (Hyio):

Clearly, G, is an & (X X Z}-measurable subset of I X I.

I FeZ, ,then F can be expressed as { ), A, , where 4,€ CZ,,) . Let x be a
- point of I such that for each o < «, the section of H,, over g,;’(r) is A,

It follows that G, is universal.

Treorent 4.2, If for each « < ¢, there is a subset G, af I x I ewhich is universal
Jor the family Z, in the sense described in Theorem 4.1, then for each o« < ¢, Z, u a
proper subset of Z__, .

Proof. Suppose « < o < «*. If .'E.’,,l 1 = Z,, then Z, would be the «x-algebra
generated by 2.

Let 4 be the main diagonalof I X I'andlet B = G, 4. Then Bisa [ (X x X))
set. Let D be the projection of B onto the first I-coordinate. Since the projection
map restricted to 4 is a homeomorphzsm it follows that D is a (,«(%) set. Let
C=I-D

If 2, =2Z,,then Ce Z,. Let x be a point of I such that C is the section
of G, over x. .

If xe C, then (x, x) € G, " 4 and x would be a point of D = I — C.

If x¢ C, then (x, x) ¢ G, N 4 and x would be a point of C. .

This contradiction proves the theorem,

Tueorem 4.3, Assume Aartin's axiom together with the negation of CH.
Then for each cardinal X, A < C, there is an Q {Z)-measurable map of I onto I~.

Proof. The proof of this theorem follows from an examination of the argu-
ment given by Solovay and Martin in {14] to show that for each A < ¢, 2* = ¢,

" We consider the space 2% under the product topology.

Let 4 = {4}, be a family of A almost disjoint infinite subsets of 2«. For

each £ €29, let
0 if tn A, is finite
(e())=) = 11 if 0 A, is infinite.

Thus, g maps 2« into 22,
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Let us consider a typical subbasic set for the topolog) of 2, V,o =
(fe2* () = 0.

Then gV, o) ={te2«{tn A_is finztc}.

For each finite subset K of Aa,let M, = {fe2«{tn A4, = K}. Clearly, AL,
is closed in 2«and (J M, = g"( «.0)- Thus, g3(F_) is an F, set and g7V, ;)
is a G set.

Therefore, if U is a basic open set, U = ()., V. o, s then g }(U) is an F s set. -

Finally, if I¥ is an open subset of 2%, then W is the union of no more than A
basic open subsets of 2* and g1V} is an &, ,(Z) set.

Thus, g'is &, .(X) measurable. .

Theorem 1 of paragraph 3 in [14] states that g is onto.

Let f be a Borel isomorphism of I onto 2=. Let & be an Q’A{_(Z'}-xsomorphxsm
of 2*.= (2«)* onto JA, .

* The map hgf from I onto I* has the required properties.

5. SoME APPLICATIONS OF MARTIN'S Axtom

In closing, I would like to point out some easy applications of. Martin’s axiom.
The first concerns the notion of a lifting [19]. Let us suppose that (S, Z, p1) is a
measure space and that pis o-firiite and has no atoms and X' is separated and
countably generated. Let ., be the c-—aigcbra of p~-measurable subsets of S.
Since (S, A, , 1) is complete, there is a lifting of L%(S, 4, , 1) into the space of
all bounded ,u.-mcasurablc functions {19]. Assuming CH L‘" has a hftmg into
B(S, Z) provided S is Polish and p is 2 Radon measure [19 p- 182] n fact, the
" following theorem holds: )

Turorey 5.1. Let (S, X} be Borel isomorphic to a universally measurable
subset of I. Assuming CH, there is a lifting of L=(S, #, p) into B(S, X).

If we weaken our assumption from CH to Martin's axiom, then we have:

THeOREM 5.2. Let (S, X} be Borel isomorphic to a universally measurable
subset of I. Assuming Martin's axiom, there is a lifting of L™(S, 4, p) into B(S Z, )

. The proof of Theorems 5.1 and 5.2 follow von Neumann’s original argument
for Lebesgue measure {28]. There are only some small details to be accounted
" for. We can and do assume that g is 2 probability measure. _

First, let us show the existence of a lower density map of the Boolean algebra
M A, , where A, is the ideal of all sets of p-measure zero, into the Boolean
algebra Z; in other words, a map 8: 4] A" — X such that

(1) §[A)dA4AeH,

(2} U[S]) = S, 6((¢]) = ¢, and
(3) 4([A] A [B]) = 6([4]) N &({B]).
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To this end, lct ¢ be a Borel isomorphism of (S, Z) with (T, &7) where Tis a
universally measurable subsct of I and €7 is the relative Borel structure on 7.
Define m(A) = p{p~(A)), for each Borel subsct of T. It is easy to check that a
subset E of T is m-measurable if and only if ¢7)(E) is g-measurable and if.  is

m-measurable, then m{E) = u(p~(E)). This implies that if there is 2 lower
density map of M, /A%, into , then thcrc isa Iovu:r density map. of A [./V

“into L.

Let us define #w(B) = m(B N T) for each Borel subset B of I. Then i is a

. free probability measure on the Borel subsets of I. Since T is universally

measurable, it follows that if 4 €, then 4 is universally measurable and
#(A) = m(A). Finally, if 4 is m-measurable, then 4 is mi-measurable and
m(A) = 7 A).

Since 7 is 2 free probability measure defined on the Borel subscts of the unit
interval, there 2 Boret isomorphism = of I onto 7 such that #(B) = A((B)), for
each Borel subset B of 1. As before + defines a measure preserving map between
the #-measurable sets and the .\-mcasurab!c subscts of 1. Here, of course, A

denotes Lebesgue measure.
Let us define § from /A4 into B, the Borel subsets of [ by, BUED =

7-3({x | 7(E) has lower dcns:ty 1 at x}). Then 8 is a lower density of M | A

into B.
Now let us define the map ¢ from A A into S [ A by H([4]) =

[Bedg| A A Be A It follows that :,b is a2 Boolean homomorphism of

A | ANy 0010 M A
So, if we let ¢{4] = 6(${A)) N T, then £isa Iowcr density of 4[4}, into OL.

By following the appropriate maps one more time, we find that there is a lower’

density map 6 of 4[4, into Z.
Once we have the existence of 2 lower density 6, then we may proceed (follow-

ing von Neumann) by first well ordering ., /.4, into type ¢

[A]o ] [Alx 3=ey [AL ey O < .

Second, it is shown by transfinite induction that there is a transfnite sequence
of typecof setsin X, ¢
Bo goney Bn grony & << c

such that for each « < ¢ and for all choices ay ,ee, O 5 V) 4oy Yo s & » ¥i < a the

following relation holds:
@)@ m)er(fm)(Ar)] o

where

#([4]) = (6[4])-
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That there is such of choice of B,’s is the heart of von Neumann's argument.

* Following von Neumann it can be shown that if the B’s, 7 < « ha\.e been

chosen so that {*) holds, then one may set:

s Ul [(Re) s (e o) 2

=1

where the union is taken over all positive integers p, ¢, and oy ey @, , ¥y sores Yo
less than a. Of course, by this method of procedure it follows that B, € X, {(and

"if CH is assumed, B, € X),

It follows that the map ¢: M| A" — X, defined by ¢({4],) = B, is a lifting of
A into X, and therefore there is a lifting of L*(S, ., m) into B(S, Z,).
One can check [20] or [28] for details.

- So, we have the obvious questions:

Question 5.1. Suppose (S, Z, m) is a o-finite measure space. Is there 2 lower
density § of . {A4" into Z, if X is countably generated ? :

Question 5.2. Assume Martin's axiom together with the negation of the
continuum hypothesis. Under this assumption is there 2 hfnng of L=(S, 4, m)
into B(S, X)?

\We note:

Tueorem 5.3. If S is standard, then there &s no isometric isomorphisin of
B(S, X)) onte B(S, Z).

Proof. Assume there is an isometric isomorphism of B(S, Z,) 3&0%(8, x).
Let B(S) be the “‘compactifications” of § such that each fe B(S, 2) has a

_ unique extension to a continuous function t on B(S) [1, p. 274]. Let B(S) be
. the corresponding “‘compactification” of S for B(S, X). If follows that there is

a-homeomorphism ¢ of B(S) onto B{S) such that T(f) = f ¢ ¢ is an isometric
isomorphism of C(C(S)) with C(B(S)) [1, p. 442].

Next note .that if x€ S, then X1z € C(BLAS)) and thus x¢ -1 € C(B(S)).
Therefore, ¢~}(x) must actually be a point of S. A similar consndcmtlon of ¢!
shows that’e maps Sonto S.

If I is a Borel subset of S, then §g ¢ ¢ = ¥, -1 € C(B(S)) and thcreforc the
testriction of @ to S is Borel measurable. Thus, @ 1s 2 Borel isomorphism of S
onto S such that if fe B(S, X)), then fo ¢ is Borel measurable,

However, since S is an uncountable standard space, there is an analytic non-
Borel subset of S, 4. Then ¢(4) is analytic and £, EB(S Z,) since every
analytic sef 1s the union of &, Borel sets. Then £ _(yop = £,is Borel measurable.
This contradiction proves the theorem..

I have been unable to answer the following:

Question 5.3. s there an isometric isomorphism of B(S, Z,) into B(S, Z)?




—"
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Recently, Daschiell has studied this type of question for the classical spaces
of Baire functions regarded as Banach spaces [21] and these results have been

extended by Jayne in [31].
In attempting to solve this question, the author came upon the following

curious sct:

Tueorem 5.4. Martin's axiom plus the negation of CH fmplies the existence
«/ a subset K of I such that | K| = ¢ and every subsct of K of cardinality less than ¢
is a Gy with respect to K.

Proof. Let H be the family of all subsets of I of cardinality fess than c. Since
Alartin's axiom implies 2% < ¢ if A << ¢, i H | = ¢. Martin’s axiom also implies

there is a countable family G = {1,}%_, of subscts of I such that the family }/

-and every Borel subset of [ is in the family G, . These results may be found

in [22].
Let g{x) =3, (2/3") x4 (%) It follows from the properties of the charac-

 teristic function of a sequence - of sets [23] that the sct A = @{I) has the required

properties. -

It may be noted that the family G has Bore! order «,; [22, Theorem 12] and
consequently there are Borel sets of arbitrarily high class with respect to K.

In [24] a study is made of various problems in classical descriptive set theory
employing the characteristic function of a sequence of sets. It is well known that
CH implies the existence of subsets of the interval which have Borel orders 1
and 2 {13, p. 443]. It is apparently unLnovm whether Martin’s axiom implies
the existence of such sets. -~

Finally, we note an application of Martin’s axiom to bimeasurable functions.
Let us recall that a Borel function f mapping 2 Borel subset, D, , of separable
complete metric space, M, , into a separable complete metric space M., is called
bimeasurable if f maps Borel subsets of I); onto Borel subsets of A7;.

Purves proved that f is bimeasurable if and only if U(f) is countable, where
LA f)is the set of all y € M, such that f~I( v) is uncountable [26]. Later assuming
CH, Darst showed that f is bimeasurable if and only if f maps universally

measurable subsets of D, onto universally measurable subsets of A7, {27]. We
' i

note:

TuroreM 5.5. . Assume Martin’s axiom. Then [ is bimeasurable if and only if f
maps universally measurable subsets of D, onto universally measurable subsets of M, .

Proof. We shall follow the proof given by Darst and prescrve his notation.
The argument remains unchanged until the last two paragraphs on {26, p. 570].
The completion of the proof depends on showing the existence of a universal
null set N in K X C such that the projection of N onto K is K. It is at this

point that Darst uses the continuum hypothesis.
We note that the existence of such a set follows from MNlartin's axiom.

' .
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First Martin's axiom implies the existence of a subset L of the Cantor set C
such that |L | == ¢2nd L intersects each of first category subset of C in a set of
cardinality less.than ¢ This was shown by Kunen in [27, Theorem 14.5}.

Let ¢ be a I-1 map of L onto K and let N = {{p(x). x){x€ C}. Clearly,
N C K » C and the projection rﬁap takes N onto K.

It remnains to show that N is a universal null set.

For each nonatomic prabability measure, g, on the Borel subsets of K xC,’
there is a first category subset F of C such that p(R xF)==1. Since | IWNF{< G,
we have | NN (K x F)i < ¢ Also, Martin's axiom implies that sets of car-
dinality fess than ¢ ar¢ universal null sets in any standard space. Thus, N is a
universal null set and the theorem follows. a
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