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ANALYSIS AND GEOMETRY
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Abstract. I review a meager few of the many problems and ideas
Erdős proposed over the years involving a mixture of measure the-
ory, geometry, and set theory.

1. Introduction

I have selected a few topics from Erdős’ many problems and ideas in
this area. Some were selected just for the sake of promoting them and
others because they have led to several developments and connections.
Three sources for some additional problems of Erdős in these areas may
be found in [17, 4, 14].

2. Similar copies of sequences.

Even in his article of 1978 in [17], Erdős says he had made the
following conjecture for a long time:

Conjecture 2.1. Let {xn} be a sequence of positive numbers decreasing
to 0. Is there a Lebesgue measurable set E with positive measure which
does not contain any affine copy of the sequence?

In his lecture at the Scottish Book conference in 1979, Erdős said
that the problem has been open for so long that he should offer $100
for its solution. He also said at that time that he didn’t think the
problem was difficult. However, this well known and much studied
problem remains open. This problem is discussed in some detail in [21]
and more recently in the survey article [32].

3. Additive number theory and effective dimension.

Erdős conjectured that to each infinite set of positive integers A,
there corresponds a complementary set B, an infinite set of positive
integers B with density 0 such that the sum set A+ B contains every
sufficiently large integer. Lorentz proved the conjecture in [1]. In fact,
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letting A(n) be the number of elements of A not exceeding n, Lorentz
proved the following

Theorem 3.1. There is a constant c such that every infinite set A ⊂ N,
there corresponds an infinite set B ⊂ N such that A+B contains every
sufficiently large integer and for each n:

(1) B(n) ≤ c

n∑
k=1

logA(k)

A(k)
.

Inequality (1) clearly shows B has density 0. Erdős in [3] shows that
inequality (1) is the best possible if one only takes into account the
rate of increase of A(n) but not its structural properties:

Theorem 3.2. There is a sequence A of positive integers with positive
lower density such that for every complementary set B satisfies B(n) >
C1(log n)2. This is in agreement with estimate (1).

Erdős also made an improvement if A is the set of primes. For this
set, Lorentz’s estimate yields the existence of a complementary set B
with B(n) < C2(log n)3. Erdős shows there is some B with B(n) <
C3(log n)2.

By the way, in [3] Erdős posed the following problem.

Problem 3.3. Is there a set B of positive integers with B(n) < C4
n

logn

such that the sets B + 2k cover all but finitely many positive integers?

In [33] Ruzsa gave an affirmative answer and later in [34], he even
determined the best constant

Lorentz proceeds to prove Theorem 3.1 by first proving a finite ver-
sion of it:

Theorem 3.4. There is a constant C such that if m and n are integers,
k is a positive integer, and A is a set of integers with A ⊂ [m,m + k)
with card(A) ≥ l ≥ 2, then there are integers b1 < b2 < . . . < bK in the
interval (n− k, n+ k) such that the translates A+ bi cover the integers
in the interval (m+ n,m+ n+ k) and

(2) K ≤ Ck
log l

l
.

The idea is to select the b′s greedily and estimate the number of
steps required until the interval is covered. An immediate consequence
of Lorentz’s estimate is:
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Theorem 3.5. Let n be a positive integer. If a1, . . . , al is a set of in-
congruent residues modulo n, there is another set of residues b1, . . . , bk
with

(3) k ≤ Cn
log l

l
such that each residue modulo n is of the form ai + bj.

If one would like to somehow measure the structural properties of
A, a finite set of, say, positive integers with cardinality at least 2, one
could consider what Randall Dougherty calls dencover(A), the ’covering
density of A.’ This is defined as follows. For each n, let C(A, n) be the
minimal number of translated copies of A needed to cover [1, n] ∩ N.
Then

(4) dencover(A) = lim
n→∞

card(A)C(A, n)

n
.

Clearly, dencover({1, 2, 3}) = 1. But, dencover({1, 2, 4}) = 6/5.
In another direction, Erdős, Kunen and I in [13] used Lorentz’s the-

orem to prove the following:

Theorem 3.6. Let P be a nonempty perfect subset of R. Then there
is a perfect set M with Lebesgue measure zero such that P +M = R.

One could consider extensions of these theorems and ideas to groups
other than R.

P. Elias in [9] has obtained a stronger form of Theorem 3.6. Using
Kronecker’s approximation theorem, he has shown that the set M of
the theorem may be taken to be Dirichlet set. A set M is said to be a
Dirichlet set if there exists an increasing sequence of positive integers
{nk} such that the sequence of functions {sin nkx} converges uniformly
to 0 on M.

Also, Lorentz’s theorem has a direct application in effective geomet-
ric measure theory. The Kolmogorov complexity of a string σ, denoted
K(σ), is the length (in this paper we will measure length in ternary
units) of the shortest program (under a fixed universal machine) which
outputs σ [16]. For a real number x, x � n denotes the first n digits
in a ternary expansion of x. Martin-Löf random reals have high initial
segment complexity [23]; indeed every Martin-Löf random real r satis-
fies limnK(r � n)/n = 1. This fact conforms with our intuition that
the M-L random objects do not compress much.

Recall some classical dimension notions. Let E ⊆ Rn. The diameter
of E, denoted |E|, is the supremum of the distances between any two
points in E. A cover G for a set E is a collection of sets whose union
contains E, and G is a δ-mesh cover if the diameter of each member
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G is at most δ. For a number β ≥ 0, the β-dimensional Hausdorff
measure of E, written Hβ(E), is given by limδ→0Hβ

δ (E) where

(5) Hβ
δ (E) = inf

{∑
G∈G

|G|β : G is a countable δ-mesh cover of E

}
.

The Hausdorff dimension of a set E, denoted dimH(E), is the unique
number α where the α-dimensional Hausdorff measure of E transitions
from being negligible to being infinitely large; if β < α, then Hβ(E) =
∞ and if β > α, then Hβ(E) = 0 [26].

The effective (or constructive) β-dimensional Hausdorff measure of a
set E, cHβ(E), is defined exactly in the same way as Hausdorff measure
with the restriction that the covers be uniformly c.e. (= computably
enumerable) open sets [23, Definition 13.3.3]. This yields the corre-
sponding notion of the effective (or constructive) Hausdorff dimension
of a set E, cdimHE. Lutz [22] showed that constructive dimension of
a set is determined by the constructive dimension of its points:

(6) cdimHE = sup{cdimH{x} : x ∈ E},

and from work of Mayordomo [19](≥) and Levin [20](≤) (also see [23])
we have for any real number x,

(7) cdimH{x} = lim inf
n→∞

K(x � n)

n
.

We define the constructive dimension of a point x to be the effective
Hausdorff dimension of the singleton {x}. In [18], Lorentz’s theorem
plays a central role in the proof of the following.

Theorem 3.7. Let C be the standard middle-third Cantor set. For any
α satisfying 1 − dimH(C) ≤ α ≤ 1, and for any Martin-Löf random
r ∈ [0, 1], we have

dimH((C + r) ∩ E=α) = dimH((C + r) ∩ E≤α) = α− 1 + dimH(C),

where E=α consists of all real numbers with constructible dimension α
and E≤α is the set of reals of dimension at most α.

The constructive dimension of (C+r)∩E=α) is α whereas the Haus-
dorff dimension of this set is α − 1 + dimH(C). This means that for
a given M-L random real r there are many points x in the Cantor set
which cancels the randomness of r, i.e., x + r has lower constructive
dimension; the initial strings of r + x have a factor less Kolmogorov
complexity than the corresponding initial strings of r.
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It seems that we have just begun to delve into the possibilities in this
direction. For example, one could investigate analogues of Theorem 3.7
for other totally disconnected self similar or self conformal sets in R or
Rn.

4. Dimension of subgroups and Rings

Erdős and Volkmann in [12] proved the following theorem.

Theorem 4.1. For each α with 0 < α < 1, there is an additive Borel
subgroup of the reals with Hausdorff dimension α.

Several proofs of this fact have now been given. They all involve
some set of numbers which are well approximated by rationals. For
example, (see [26]), fix 0 < α < 1 and let nk be a sequence of positive
integers which increases sufficiently rapidly. Let

(8) x ∈ G ⇐⇒ ∃M∀k∃ integer p : |x− p

nk
| < M

nαk
.

Clearly, G is an additive subgroup of R and it can be shown that
dimH(G) = α. However, if one asks about subrings of R, Edgar and
Miller [25] showed the answer is quite different.

Theorem 4.2. If the Borel set F is a subring of R, then either dimH(F ) =
0 or dimHF = 1.

In fact, Edgar and Miller show that

Theorem 4.3. If the Borel set F is a subring of C, then either dimH(F ) =
0 or F = R or F = C.

This leads to the following problem.

Problem 4.4. For which α other than 0, 1 or 2 are there subrings of
R or C with Hausdorff dimension α?

This is really a question about transfinite constructions. Things are
not so clear for other rings. Consider the example of D. Goldstein.

Example 4.5. Let the Borel set G be an additive subgroup of R with
dimH(G) = α. Let F consist of all 2× 2 matrices M of the form

M =

[
m x
0 n

]
,

where x ∈ G and m,n ∈ Z.
Then for any matrix norm, we have for the Borel subring F , dimH(F ) =

α.
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Thus, for every α with 0 ≤ α ≤ 1, there are Borel subrings of the
space of 2 × 2 with dimension α. But we don’t know the answer for
larger α.

Problem 4.6. For which α > 1 does the space of 2×2 real valued ma-
trices have a (Borel) subring with Hausdorff dimension α? Of course,
one can consider this problem in a more general context.

Buhler, Butler, de Launey and Graham in [24] investigated ‘Origami
rings’ in C generated as follows. Let Lα(p) be the line in the complex
plane through p with angle α. Given a collection U of angles, let R(U)
be the points that can be obtained by starting with 0 and 1, and then
recursively adding intersection points of the form Lα(p)∩Lβ(q), where
p, q have been already been generated, and α, β are in U and the lines
are distinct. For each n, let Un be the group of the n equally spaces
angles kπ/n, 0 ≤ k < n. They characterize the subrings of C generated
by the finite subgroups U where 3 ≤ card(U) as follows.

Theorem 4.7. Let n ≥ 3 If n is prime, the R(Un) = Z[ζn], the cyclo-
tomic integer ring. If n is not a prime, then R(Un) = Z[1/n, ζn], the
cyclotomic integer ring localized aat the primes dividing n. Moreover,
if N > 3, then R(Un) is dense in the plane.

This led Goldstein and I to construct uncountable subgroups G of the
circle group which are the union of countably many compact sets each
with box counting dimension 0 (Actually, such subgroups had been
constructed much earlier by Laczkovich and Ruzsa in [28].) It follows
from this that the subring of C generated by G still has Hausdorff
dimension 0. This leads to the following problem.

Problem 4.8. Is there a subgroup G of the circle group with dimH(G) =
0 such that G is not the union of countably many sets with lower box
counting dimension 0 and yet the ring generated by G still has dimen-
sion 0?

5. Sets containing the vertices of a triangle of area 1

Many years ago Erdős noted that if E is a Lebesgue measurable
subset of the plane with infinite measure, then for every c > 0, E
contains the vertices of a triangle of area c. As several people have
noted, this remains true if E has positive measure and is unbounded.

In [17] and again in [4, 14], Erdős poses what he said was an inter-
esting and perhaps difficult problem, even though, as far as I know, he
never did offer any money for its solution.
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Problem 5.1. Is there a finite constant C such that if a Lebesgue
measurable set E has measure greater than C, then E contains the
vertices of a triangle of area 1? Moreover, is it true that the best
constant is c0 = 4π/3

√
3, the area of the disk such that the area of the

inscribed equilateral triangle is 1?

Chris Freiling and I have studied this problem. Using some standard
approximations in measure theory, Erdős’ problem is equivalent to the
following problem.

Problem 5.2. Is there a finite constant c such that for every n ∈ N if
E is the union of the interiors of no more than n compact convex sets
and E has measure greater than c, then E contains the vertices of a
triangle of area 1. Moveover, is c0 the best possible constant?

We showed in [29] that the constant c0 is the best possible if n is 1.
I reiterate the argument here. Suppose one has then a compact convex
set K of positive area which is ”‘small”’ meaning K does contain the
vertices of a triangle of area greater than 1. If one takes a line l, then
the Steiner symmetrical of K about l has the same area as K and also
does not contain the vertices of a triangle of area greater than 1. There
is a sequence Kn, each of which is obtained by iterating the process of
taking Steiner symmetrizations of K about a finite number of lines
through the origin which converges to the closed disk centered at the
origin with the same area as K, (see [31]). From this, it follows that
the area of K is no more than c0. So, Erdős’ conjecture is true if n = 1.

Let E be the union of the interiors of the compact convex sets
K1, . . . , Kn and suppose E does not contain the vertices of a trian-
gle of area 1. Then the area of any triangle whose vertices belong to
two of the sets Ki must be less than 1. If i, j, k are different, then either
the area of every triangle with one vertex from each of Ki, Kj, Kk is at
most 1, or the areas of all such triangles is at least 1.

For n = 2, c0 is still the best constant. If we have two compact
convex bodies K1 and K2 such that their union does not contain the
vertices of a triangle of area greater than 1, then their compact convex
hull doesn’t either, (see [29]).

Even for n = 3, we may argue c0 is the best constant. Suppose
E = E1 ∪ E2 ∪ E3, where each set Ei is the interior of a compact
convex set Ki. If E1, E2, and E3 form a ”small” triple, i.e., the area of
every triangle with its vertices in different sets Ei has area less than
1, then since their closed convex hull would have no triangle with area
greater than 1 (see [29]), we are reduced to the case n = 1. On the
other hand, if E1, E2, and E3 form a ”large” triple, we use the following
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redistribution of mass argument. Let us suppose K1 has the smallest
area of the three bodies. There must be a line L which supports both
K2 and K3 such that E2and lie in one half plane determined by L and
K1 lies in the interior of the other half plane. Let A ∈ L ∩ K2 and
B ∈ L∩K3. Let C ∈ K1. The triangle with vertices A,B and C must
have area at least 1. Let us take lines l parallel to L and cutting the
interior of both K2 and K3. The line l intersect K2 in points A1 and A2

and meets K3 in points B1 and B2, where A2 and B1 are closer together
than A1 and B2. Since the area of triangle A1A2C is no more than one
and the area of triangle A2B1C is at least 1, ||A1 −A2|| ≤ ||A2 −B1||.
Similarly, ||B1−B2|| ≤ ||A2−B1||. This is so for lines l until we reach
a line that is a support line to either K2 or to K3. In either case, this
implies the area we have swept out between K2 and K3 is at least the
area of the smaller of the areas of K2 and K3 and therefore the area is
at least as large as the area of K1. So, if we replace the three bodies
K1, K2, and K3 with the single body formed by K2, K3 and the area
between them, we are back to the case n = 1.

6. Partitions of Lines and PLanes

In generalizing a result of Sierpinski, Erdős in [11] proved the follow-
ing.

Theorem 6.1. The following two statements are equivalent:

(1) CH, the continuum hypothesis holds: 2ω = ω1.
(2) If the lines in R2 (R3) are colored with 2 colors, then there exists

a coloring of R2 (R3) with the same colors such that each line
contains only countably many points with its color.

Erdős, Jackson and I answered one of Erdős’ question in [11] by
proving the following.

Theorem 6.2. The following two statements are equivalent:

(1) CH, the continuum hypothesis holds: 2ω = ω1.
(2) If the lines in R2 (R3) are colored with three colors, then there

exists a coloring of R2 (R3) with the same colors such that each
line contains only finitely many points with its color.

These results and several others involving flats in Rn, n ≥ 2 are dis-
cussed in [29]. Recently, Humke and Laczkovich used Erdős’s original
result to show that assuming CH holds there are subsets of the plane
with some very unusual linear density properties [27]. One can imag-
ine that there are several other types of strange examples using other
partition results.
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7. Exact Dimension of continued fractions using only the
primes

In [30], Urbanski and I studied SI , the set of continued fractions of
the form

1

b1 +
1

b2 +
1

b3 +
1

. . .

where I is a fixed subset of N and each bn ∈ I. We developed a
pressure function which allowed us to determine the Hausdorff dimen-
sion α = αI of SI . We showed that for those sets I for which the
pressure function has a zero, there is a natural conformal probability
measure supported on SI and a corresponding Gauss measure, a mea-
sure supported on SI equivalent to the conformal measure and which
is invariant under the shift map on SI . Using futher properties such
as the generalized density of I we found some conditions to determine
whether Hα(SI) is 0, positive and finite, or ∞. We also found some
conditions such as some properties of the gaps in I which help to deter-
mine whether the α-dimensional packing measure Pα(SI) is 0, positive
and finite, or ∞. For example, if p ≥ 2 and I = {np : n ∈ N},
then 0 < Hα(SI) < ∞ and Pα(SI) = ∞. On the other hand, if I has
bounded gaps, then Pα(SI) <∞. If I is the set of primes, using Erdős’
theorem that there are arbitrarily large two sided gaps in the sequence
of primes [2], we showed that there is a conformal measure and a cor-
responding Gauss measure for this system, and yet 0 = Hα(SI) and
Pα(SI) =∞. A natural question which we posed in [30] is:

Problem 7.1. Let S be the set of all standard continued fractions of
the form

1

b1 +
1

b2 +
1

b3 +
1

. . .

where each bi is a prime. Is there a Hausdorff gauge function g of the
form g(t) = tαL(t), where L(t) is slowly varying such that 0 < Hg(S) <
∞?
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If I is a finite subset of N or if I = N, then both Hα(SI) and Pα(SI)
are positive and finite. We also don’t know the answer to the following
problem:

Problem 7.2. Is there a proper infinite subset I of N such that both
Hα(SI) and Pα(SI) are positive and finite?
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