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MNON-ISOMORPHIC PROJECTIVE SETS

R. DANIEL MAULDIN

It is well known that two Borel subsets of the unit interval are Borel isomorphic,
if, and only if; they have the same cardinality. The problem of the existence of analytic,
non-Borelian subsets of the unit interval, which are not Borel isomorphic, has not
been resolved within ZFC. With the additional assumption of the existence of an
uncountable coanalyiic set which does not contain a perfect set, it has been shows
that there are at Jeast three Borel isomorphism classes of analytic non-Borelian sets
[4, 5]

Tu this paper, the somorphism classes of projective sets are considered under both
Borel isomorphisms and under projective isomorphisms.

Two projective subsets, G and H, of I the unit interval, are said to be Borel iso-
morphic if there is a bijection, f, of & onto H such that when U is open with respect to
H, then f ~*(U) is Borelian with respect to G, and when ¥ is open with respect to G,
then f (V) is Borelian with respect to H. Thus, G and H are Borel isomorphic, if, and
only if, there is a generalised homeomorphism of G onto H [%, p. 374]. The sets G and
H are szid to be projectively isomorphic if there is a positive integer # and a bijection
¢ of G onto I such that, when U is open with respect to H, then ¢~ 1(U) is a projective
set of class Y2, and when V is open with respect to H, then $(V) is a projective set of
class WL

It can be seen that fwo projective sets G and H are projectively isomorphie, if,
and only if, tliere is a bijection ¢ of G onto H whose graph is a projective subset of {he
unit square. This same condition does not hold for Borel isomorphisms; i.e., it may be
possible to have & bijection of G onto H whose graph is Borelian in 6« H, but ¢ is
not a Borel isomorphism of G onto H.

In [3), Sierpinski examined a prlem of Kuratowski which may be phrased as.
follows: !

If 4 and B are projecis ve subsets of the unit interval, e'u:h of cardinality 2%, then
are 4 and B projectively isomorphic?

I [3), Sierpitiski shows that, if both A and B contain perfect sets, then the answer
is yes. Thus, if 4 and B are vocouniable analytic sets, then A and B are projectively
isomorphic. However, in [2], Kuratowski showed that the existence of a projective
weli-ordering of the vnit interval into type o, implies the existence of uncountable
pro Jectwe sets which do not contain any perfect set, The existence of such a well-
ordering follows {rom V = L [6] and from the existence of a measurable cardinal [7].
Under this assumption, it is shown in Theorem 1 of this paper, that the answer to
Youoratowski's guestion is yes. Of course, it is enough to show that, if E is an unconnt-
able projective set, then E is projectively isomorphic to the unit inferval. This is
because the relation of projective isomorphism is an equivalence relation. In fact, if
fis a projective isomorphism of 4 onto B and g a projective isomorphism of B onto
C, then gofis a bijection of 4 onto € and the graph, T, of gofis a projective set,
since

I = H13(H},
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where
He={(xp2:y=Fxrz=ghk

Finally, in Theorem 2 of this paper it is shown that there are 2% projective subscts
of I, no two of which are Borel isomorphic.

Notation and Definitions. Throughout this paper, it is assumed that there hag been
given 5 well-ordering of the unit interval, I, into type o, such that theset W = HEADK
x < y}is a projective subset of I x 1.

Hxel AE) = {11t <x}

If X < I, then p(X) denotes the first element of X.

The main diagonal of the product space X% will always be denoted by D.

For each permutation m of the first n positive integers, M, denotes the corres-
ponding induced map of X" onto X"

Tn general, sequences will be denoted by lower case Greek letters and the terms of
the sequence by corresponding lower case Latin letiers,

Tacore 1. If E is a projective subset of I and \E| = c, then there is a projective
isomorphism of I onto E. Thus, two projective seis are projectively isomorphic, if, and
only if, they have the same cardinality.

Proof. Let H be the subset of I X I® consisting of all pairs of sequences (e, B)
such that for every pair of positive ntegers i and j, @; < if, and only if, b; < &;.
For each pair of positive integers (i, /), let

‘Kfj = {{o, )1 a; < & and 5, = bj},

and : :
Jig = {0 B 7 a; and by < b}
e have
H = (I° x I?) ~ UK v Iy
Since

K., = [ x I?) % I°] nn [I? % {(* ~ W) x I"}},

it follows that K, is a projective subset of I % I®. Similarly, it follows that all the
sets K;; and Jj; are projective sets of bounded class and therefore H is a projective
stbset of I7 x 17,

Let C be the subset of I x J? x E” x E to which {x, 0, 7, €) belongs, if, and only
if, (1) o is an enumeration of A(x), (2) T is an enumeration of B(e) = A{e) n E.
{Here an enumeration is not necessarily a one-to-one listing.)

Let ¢ be the projection of C 0 (Ix HxI onto its first and last eoordinates,
Thus, ¢ = I x Eand (x, €) € $,1f, and only if, A(x} is isomorphic to B{e). Therefore,
¢ is the graph of a one-to-one map of I onto E. Tt will now be shown that C is pro-
jective and so that is projective.

Let M = {{x, 0):Vn, s, < x}. Wehave M = (I x 1) — vk, where

K, = {(x, 0): 3, & *}-

Y
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But, clearly the sets X, are all projective sets of bounded class; M is a pro jective set,
Tetl = {(x, ¢): [(y < x) — Insuch that 5, = yI}

+ Then

L=({xI)-0
where 0 = {{x, 0) : Iy with {y < x) with Vn, s, 5 y}.
Now, Q0 is the pro j'ection of J, where
J o= {{x 0, (< x)and Vn, lg" 5 y)

and J = J; n J,, where
Jy = {0 y)y < xh
and
Jy = {(X, g, J") VR, 8, }'}

Clearly, J, is projective and J, is a Gpset,
Thus,

MnLe=T ={{x0d:Vns < xand [(y < xj ~ 3n with g, = yl}
is %projective subset of I x I,

Let
T, = {(z, €) : ¢ € E and © is an enumeration of B{e)}.

It can be shown that T, is & projective subset of E x E®, in the same manner that T}
was shown 1o be a projective subset of I x I®. Since E x E® is a projective subset of
I % I°[1, p. 454], it foliows that T, is a projective set.

Thus, C = T} % T, is a projective setl.
In order to show that there are 2%° projective sets no two of which are Borel
isomorphie, the following three Iemmas are developed. !
Loviia 2. Suppose A is an analytic subset of I 3, Let
U {(x, )|z (x,p2) e A] = 1}
Then U is a CPCA subset of 17,

Proof. Let g, h, and k be Borel maps of I into I' such that the map p{f} = (g0,
B, k(£)), Vi e I, takes I onto A.

Note (x,3¥)el*> — U, if, and only if, (x,y) is not in the 12-projection of 4 or
3, n) e I? such that x = g{&) = g(3, ¥ = A(Q) = h(y), and k(&) # k().

Tet O, = [I* — (& DI x I, whete (g, B) (1) = {(g(), h()) 1 tel}; Q) s a
coanalytic subset of J% Let O, = {(v, . &m:x = g(&) = g(y) and y = i({) =
I{n)}; O Is an analytio subsel of I*. Let @y = {(x, 3, & m 1 k(E) # k(n}; Qs ds o
Borel subset of I*. Tt follows that U = I* — TT;,(0; v (Q; n Q3)).

LimMma 3. There is a projective subset R of I x I? such that, (1} each I-section
of R is the graph of a 1-1 projeciive function defined on an uncountable sef, end (2) the
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graph of every 1-1 Borel function defined on an meowrmble Borel subset of I is a -
section of R.

Proof. Let U be an analytic subset of I x I* such that every Borel subset of
I*is a l-section of U,

Let K, = {(xp, yo) : the line x = xq, y = yo cuts U in exactly one point}. Let
K, = {{xg,2o): the line X = Xg, # = z, cuis U in e,\actly one point}. K, and K,
are CPCA subsets of I?, by Lemma 2.

Let G = {x,: the line x = x, cuts X, in uncountably many points}. Sierpitski
hag shown that G is a projective set {3, p. 63}

LetR = U n (K; x D) n (G x 1% n My, 3 (2 x I). Theset R has the required
properiies,

From here on for each ¢ € I, ¢, denotes the map whose graphis R v {{t} x I%).

Recall that if & is a family of subsets of I and R is a relation (subset) of & x I,
then R is said to be projective provided there is a map i of I onto 47 such that

B o=t xgs )t (0 X1, o ) € K}
is projective [2, p. 137}

LeMua 4. For each i € I and each subset X of Iwith | X| = ¥, let
P, 6 = I — [ U .00 u X].
{z<)

The propositional functiony &€ F(X, t}is projective.

Proof. Let be a map from I onto the space of all countable subsets of I such that
= {(t, x}: x e y(£)} Is a projective subset of I x I. In order to show that the pro-
positional fanction y € F(X, 1) is projective, it will be shown that the set

H = {(a,t.3): y € F{p(a) 1)}

is projective, MNote

(@ 1,y) #H < 3[@ <) A yedld@)] vy ¢ila) /

Q, ={(at,z¥y) 1y E¥@} = My, 2, 4)(«{ % (I* — ) % I)-

0, isa projective subset of I*. Let @, = {{a, t,z, ) : {z =< 1}}; Q, Is a projective subset
of I*, Let Q3 = {(cz, 7,9y e (@)} Let

= [I x Mg, 3)(R)} ' Mr(z,z)(a,tt)(l X x 1),
where R is the set constructed in Lemma 3. Then Q5 = M, 2)(1 % TT125(K)).
Thus,

Let

P e H o= 11424 (QL N QN Qﬁ))

and therefore H is projective.

THEOREM 2. There are 2%° projective subsets of rhe wnit interval no two of which are
Borel isomorphic.

Proof. There is a unique function f from I into I such that

Sy = p{FLA(A®) 11}
forevery t el {2, p. 1371
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Let x, = £(z), where {f}uco, 18 the given projective well-ordering of the unit
o ol

Interval,

If e, 1, el and £ < 1y, then xp = ft) e fLA(L)). Thus, x; ¢ F(f(.xi(zl)), f;.)
which means x, # x, = f (). So, f is one-to-one and [P = 2%, where P = f(I).
Also, il 1, < 15, then ¢, (xy) € U= ¢:(f (A(tz))) and therefore x; # ¢, (3x4).

Set ¢, = ¢y, Torn < @y It has been shown that x, # ¢,{x), f f < eandy < ¢
and Xy 7 X, iy <o .

Finally, the set P is projeciive since the propositional function y e F(X, 1) 1s
projective [Z, p. 1371

It follows from Theorem 1 that there is a family & of 2% disjoint projective sets
each of cardinality 2%° which fills up P.

Now, suppose & and Y are sets in & and X is Borel isomorphic to Y. Let f be
a Borel isomorphism of X onto Y as defined in the introduction. According 1o a
theorem of Kuratowski’s there are Borel sefs Z, and Z, and a Borel isomerplism
gofZ,ontoZ, suchthatZ, @ X, Z, 2 Y and g|lX = f[i, p. 436]. There are ordinals
y, & with p, £ < @, such that ¢, = g and ¢, = g™~

The remainder of the argument follows exactly one given by Kuratowskl
{1, p. 426):

Let o be an ordinal, & < o such that x, = f(z,) e X. There is an ordinal » such
that ¢.(x,} = x, = f(z,). Therefore, 7, < ¢,. Siace x,& ¥, and x, ¢y, #, # 1,

So, 1, < t, and x, = ¢,(x,). Therefore, £, < #,, But, this implies that Y is
countable. This contradiction proves the thecrem.
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