SURVEY OF THE STEINHAUS TILING PROBLEM

STEVE JACKSON AND R. DANIEL MAULDIN

ABSTRACT. We survey some results and problems arising from a classic prob-
lem of Steinhaus: Is there a subset S of R? such that each isometric copy of
7.2 (the lattice points in the plane) meets S in exactly one point.

1. INTRODUCTION

We survey in this paper some of the known results, methods, and open questions
concerning Steinhaus sets. Although this is primarily a survey article, we include a
few new results such as the existence of Steinhaus sets for certain other rectangular
lattices, theorem 2.11. The notion of a Steinhaus set can be introduced at various
levels of generality. Steinhaus asked in the late fifties if there could be a set S < R?
such that S meets every isometric copy of the integer lattice Z x Z in exactly one
point. We are asking this question in the context of ZFC, that is, assuming choice,
but the question remains interesting in the context of ZF as well. The question can
be immediately extended to higher dimensions and other lattices as well. Thus, if
L € R™ is a lattice and n > m, we can ask if there is a set S € R"™ which meets
every m(L) is exactly one point, where 7: R®* — R” is an isometry (and we view
R™ < R” in the usual way). This will be the context for most of the discussion
of this paper, and we will in fact generally have m = n. In this case, we refer
to such a set S, if it exists, as a Steinhaus set for the lattice L. Let us comment
that Steinhaus’ question concerns the existence of a “simultaneous tiling” of the
plane. A set E tiles the plane means the translates of E by the lattice points in
Z? partitions the plane. So, S is a Steinhaus set means that each rotated copy of
S tiles RZ.

We can generalize the basic notions considerably. Given (X, A, f), where X is
a set, A € P(X) is a family of subsets of X, and f: A — CARD is a function
assigning a cardinality to each A € A, we may ask if there is a S € X such that
|SnA|l= f(A) for all Ae A. If X is an uncountable Polish space, we may further
ask if S could be Borel, have the Baire property, be measurable with respect to
some Borel measure on X, etc. At this level of generality, several questions and
results not normally thought of in connection with the Steinhaus problem can be
viewed as instances. For example, the theorem of Mazurkiewicz that there is a
set in the plane meeting every line in exactly two points is such an instance. We
note that it is still open if such a set can be Borel; see [25] for this and related
questions. Likewise, the Sierpinski type results on partitions of points and lines
in R™ of [6], [7] can be viewed as instances. We can also use this formulation to
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suggest restrictions on the problem. For example, we might take X = R? and
A € L(Z x Z), where L(A) denotes the collection of isometric copies 7(A4) of A.
A could be {n(Z x Z): m € G} where G is a subgroup of the isometry group, or
perhaps all translations of Lq,..., Lg, where each L; is a rotation of Z x Z. This
last possibility, it was observed by Kechris, has a connection with the theory of
countable Borel equivalence relations. Many other generalizations are also possible.
We note, though, that to be non-trivial, the question requires some sort of geometric
condition on the collection A. For example if A is the collection of all A € X of
size k, where k > 2 is a cardinal, then trivially there does not exist a corresponding
Steinhaus set. It is precisely this interaction between the geometry of X (e.g., R™)
and set theory which we believe makes the problems interesting.

Aside from a few excursions and minor variations, we shall in this paper stay
mainly with the “traditional” formulation of the Steinhaus problem where X = R",
A is the collection of all isometric copies of a lattice L € R™, and f is the constant 1
function. In fact, we will spend a good deal of time on the case originally proposed
by Steinhaus, that is, X = R?> and A = L(Z x Z) is the collection of all isometric
copies of Z x 7. Here we have been able to show the existence of a Steinhaus set:

Theorem 1.1. There is a set S € R? such that |S n L| = 1 for any isometric copy
LCR of ZxZ.

The arguments here already show interesting and surprising connections between
the set theory of the continuum and the geometry of R?. Let us first discuss some
of the history of results leading to theorem 1.1 and mention some of the many open
problems remaining. We will discuss some of these problems in more detail later.

As we mentioned above, Steinhaus first raised the question of the existence of
such a set in the late 50’s. He also asked if there was any set A € R? at all
such that a corresponding Steinhaus set exists for the isometric copies of A (in our
terminology, X = R?, A = £(A)). The trivial cases when |A| = 1 or A = R? are
dismissed. Shortly after this question was raised, Sierpinski [15] and independently
later Erdés [5] showed that there was a set A for which a Steinhaus set exists.
Komjath [14] showed that a Steinhaus set S € R? exists when A = Z (again, we
view Z € R € R? so L£L(A) makes sense). Komjdth also showed that a Steinhaus
set exists when A = @ x @Q. These results certainly pointed in the direction of
theorem 1.1, but problems remained (there are still some interesting combinatorial
questions related to these “obstructions” which we mention later). The full proof
of theorem 1.1 can be found in [9] and [10]. The proof in [9] is shorter but proves
only what is necessary to get theorem 1.1. In [10] a more detailed analysis is given
which proves some more general results which give a better understanding of the
problem. We will not give the detailed proofs here, but present special cases of the
arguments which illustrate the main ideas.

It is currently unknown whether there is a Steinhaus set S in R" for n > 3 (for
the standard lattice L = Z™). One can also consider lower dimensional lattices, that
is, A = L(Z™) for m < n in our notation. Even for R? it is not obvious that either
of the questions for L = Z3 and L = Z?2 implies the other, and both are open. If we
consider lattices L other than the standard ones, much remains open, even in RZ.
Of course, if a lattice L’ differs from L by a uniform scaling, then a Steinhaus set
for L can be scaled to get one for L. We show in theorem 2.11 that Steinhaus sets
exist for certain other rectangular lattices in R?, but for other lattices the problem
remains open.
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For a different family of questions, one can consider possible regularity properties
of Steinhaus sets (we say “possible” since one can obtain results before the existence
of the Steinhaus set is settled). For example, can Steinhaus sets S € R" (for
various lattices) have the Baire property or be Lebesgue measurable? Can they
be Borel? Several people have investigated these questions over the years. It is
relatively straightforward (by a category argument, for example) to see a Steinhaus
set cannot be open or closed. More recently, the authors have shown it cannot have
the Baire property (we give a proof in §3; in essence it is following an argument of

Croft).

Theorem 1.2. Let L € R™ be a lattice. Then there does mot exists a Steinhaus
set S € R™ for L having the Baire property. In particular, there does not exists a
Borel measurable Steinhaus set for L.

This result shows that the axiom of choice is necessary for the construction of
a Steinhaus set even for the standard lattice in two dimensions. The situation for
Lebesgue measurability is currently much less clear. Croft [2] and, independently
J. Beck [1] showed that there is no bounded measurable Steinhaus set in the plane,
and Koulountzakis obtained some further refinements [12]. For n > 3, Kolountzakis
and Wolff [13] showed that there is no measurable Steinhaus set in R™ for the lattice
Z"™. Mauldin and Yingst have formulated an extension of some of these results to
show that for an interesting array of lattices in R* there cannot be a measurable
Steinhaus set. These results are discussed in §4. It is still open, however, if there
can be a measurable Steinhaus set in the plane.

One can ask about other properties than descriptive complexity or regularity.
For example, can there be a bounded Steinhaus set? This is unknown even for
the standard lattice. We can consider topological properties of the set. Ciucu
[18] showed that a Steinhaus set in R™ cannot contain an interior point. Must a
Steinahus set be totally disconnected? This seems plausible, but it is unknown.
Recently, however, Srivastava and Thangadurai [27] have noted that a Steinhaus
set in the plane cannot be connected.

In the last section of this paper we collect together the problems which we pose
in this article. We want to mention that we are not focusing here on the deeper
analytic aspects these lattice tiling problems. Kolountzakis has discussed a number
of these in his 1997 article [22] and in his 2001 lectures [23].

2. EXISTENCE OF STEINHAUS SETS IN THE PLANE

We discuss now the proof of the existence of a Steinhaus set in R?, for the
standard lattice Z x Z. Although we do not give a complete proof here, we will
consider some special cases of the key lemmas which suffice to illustrate the main
ideas. In particular, we wish to highlight the interplay of methods from number
theory, geometry, set theory, and mechanics which come into play. We let £ = £(Z2)
denote the collection of all L € R? which are isometric to Z2.

To get started, it is helpful to reformulate the problem a bit. By a lattice distance
we mean a real number of the form \/n? + m?, where m, n are non-negative integers,
not both 0. Let p denote the Euclidean metric in the plane. A moment’s thought
shows a Steinhaus set can be equivalently described as a set S < R? such that

(1) Sn L # ¢ for any isometric copy L of Z x 7Z.
(2) Vaz,y € S [p(x,y) is not a lattice distance].
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This suggests the following definition.

Definition 2.1. A partial Steinhaus set (in the plane) is a set S € R? satisfying
(2) above.

In our proof of theorem 1.1 we will actually show the following stronger result.

Theorem 2.2. There is a set S € R? satisfying:
(1) Sn L # & for any isometric copy L of 7 x Z.
(2) Yz £y e S [p*(z,y) ¢ Z].

When the problem is reformulated this way, it now makes sense to ask if there
are partial Steinhaus sets meeting all the lattices in smaller subcollections of £. For
example, consider £; € £ defined to be the set of all translations Z2 + (z,y) of the
standard lattice. Note that the original formulation of the problem is trivial when
restricted to the lattices £¢, namely, [0,1) x [0, 1) meets every L € L; in exactly one
point. However, the question of whether there is a partial Steinhaus set meeting
all the lattices in £; is still non-trivial. In fact, considering this restricted version
of the problem motivates our approach.

We restrict even further. Let £, € L£; denote the lattices which are rational
translations of Z2, that is, of the form Z2 + (r,s) where r,s € Q. We then ask if
there is a partial Steinhaus set S  @* which meets all of the lattice in £,. We can
rephrase this question as follows. Do there exists functions k,l: Q? — Z such that
{(r + k(z,y),s +l(z,y): r,s € Q} forms a partial Steinhaus set? This is a purely
number-theoretic question, though an interesting one. The fact that this can be
done is an important lemma which we refer to as “lemma A.”

Lemma 2.3 (Lemma A). There are functions k,l: Q° — Z such that {(r +
k(z,y),s +1(z,y): r,s € Q} forms a partial Steinhaus set.

We note that lemma A as stated is equivalent to the seemingly stronger version
that requires p?(z,y) ¢ Z whenever z,y are distinct points in {(r + k(z,y),s +
[(xz,y): r,s € Q}. This is because of the fact from elementary number theory that
an integer is the sum of two squares of rationals if and only if it is the sum of two
squares of integers.

2.1. Number Theory. To investigate lemma A, it seems appropriate to restrict
even further. Fix an integer d > 1. Let

iJ .
Rd={<a,a> ZOSZ,] <d}
be the rational points in the unit square which can be written with denominator d.
We have the following approximation to lemma A.

Lemma 2.4. Let d > 1 be an integer. Then there are functions k,l: Ry — 7 such
that

(#)g : {(r + k(z,y),s + (z,y): (r,s) € Rq} forms a partial Steinhaus set.

Of course, lemma 2.4 is not sufficient to prove lemma A, as we must also guaran-
tee that we may extend the functions k,[ satisfying ()4 to functions &', 1’ satisfying
(#)g if d|d’. In [10] we actually show that the following general extension property
is true.
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Lemma 2.5. Let d|d’ and assume k,l: Ry — 7 satisfy («)q. Then the k,l functions
may be extended to functions k', I': Ry — 7 satisfying (#)q

Although lemma 2.5 is of some independent interest, it is significantly stronger
than what is required for the proof of theorem 1.1. In [9] a simpler proof, suggested
by one of the referees, of lemma 2.4 is given which also suffices to get lemma A,
though it does not seem to give lemma 2.5. We will use these ideas in §2.4. We
will not prove lemma 2.5 here in full generality. We will analyze the general case
in this section, but then specialize to the case of d a prime power in §2.2. This will
illustrate the main points, but it avoids some technical complications.

We first note that primes p = 3 mod 4, or p = 2 are “trivial” with respect to
the proof of Lemma A. To see this, suppose z1, zo € Q® and p*(21,22) € Z. Let
21— 22 = (3, —), with the fractions written in lowest terms. We must have d = e
as otherwise multiplying through by the square of the least common multiple m
of d and e would give i ( )2+ ( )2 = am? for some a € Z. Then some prime
power would divide two of the three terms of this equation but not the other, a
contradiction. We thus have i + j2 = ad? where (i,d) = (j,d) = 1. If d were
divisible by a prime p = 3 mod 4, then we would have i2 + j2 = 0 mod p where
1,7 #0 mod p. This would give —1 being a square root mod p, which it is not as
p =3 mod 4. Easily we cannot have 2 dividing d either. Thus, d must be divisible
by only “non-trivial” primes, those congruent to 1 mod 4. This says that if d' = pd
where p is a trivial prime, and we have k, [ function defined on R, satisfying (*)q,
then we may extend them to k', I’ satisfying ()4 simply by copying the k, l
functions over to each coset of Gy = {(4,2) + Z% in G¢ = {(&,4) +Z*}. In
particular, if d contains only trivial primes, then the k, [ functions may be defined
arbitrarily on R4 and satisfy (#)g. We may assume henceforth that d is divisible
by only non-trivial primes.

Let (%, oy, (’5 ,2) be distinct points in Rq. Let k1,11, ks, l> be integers, and let
z1 = ( + k0 +l1), 2o = (% —I—ka,% +l2). The statement that p?(z1,29) € Z
written out is:

(1) (iy —i2)* + (1 — 72)? +2d[(i1 —i2) (k1 — k2) + (j1 — 72)(l1 — 12)] € d°Z.

Let p® be the exact power of the (non-trivial) prime p dividing d. If we assume that
p?(z1,29) € Z, then we have (i; —i2)? + (j1 —j2)> =0 mod p®. Let (i; —iz) = p°u,
(j1—7J2) = pfv, where (u,p) = (v,p) = 1. Assume for the moment that min{e, f} <
a. From equation (1) it follows readily that e = f and u? + v? = 0 mod p® °.
Recall that for primes p =1 mod 4, there are for each a exactly two square roots
of =1 mod p?, which we call Apa, pps (of course, prpa = —Ape mod p®). Also, for
b < a, )\, modp’ = Apr- Thus, v = Ajeu mod p®~¢. Multiplying by p® gives
(j1 — j2) = Ap. (i1 —i2) mod p* (renaming the roots perhaps). If min{e, f} > a,
then this equation also holds trivially.

Since this is true for each prime power p® dividing d, it follows that for p?(z1,22) €
Z we must have j; — j» = A(i1 —i2) mod d, where )\2 = —1 mod d (we call such a
A ad-root). Let 7 =j; —Ai; mod d = j, — iz mod d. Let my, mo be the integers
such that

j1=j+>\i1—dTH1

(2)

Jo2 =7+ Xig — dmy
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Substituting into equation (1) and then dividing through by 2d (recall (2,d) = 1;
we write 3 for the multiplicitive inverse of 2 mod d) we have

w1\ 1+ o
(3) (21—22) 5 d +(21—12)[(k1—k2)+)\(l1—l2—m1 +m2)] =0 modd
Suppose d = p{' ...pp*. Write i; — iy = o pZ’“u where (d,u) = 1. Dividing
through by i; — 72 this equation is equivalent to

(4)

I\ 1N (a1—b1)...11(ax—by)
(i1—i2) B d +(k1—k2)+A(li—l2)—A(mi—m2) =0 mod p7®* 71/ ek =0

where n(z) = z if z > 0 and 0 otherwise. That is,

(1 1+ X
(kl +)\l1)+21 <§> ( d >—)\m1 =

1 1 2
(ko + Al2) + 2 <§> ( —;A ) — Ams  mod p"(@r=bu)-mler=by)

(5)

Note that if we had chosen A to be a square root of —1 mod d2, then this would
simplify to

(6) ki 4+ My — Amy = ky + My — Amy  mod p7(@1—b)-nlax—be)
This suggests the following definition.

Definition 2.6. Let d > 1 and d = p{' ---p;* be its prime decomposition. We
say a permutation m = (7(0),...,7(d — 1)) of the set (0,1,...,d — 1) is a d-good
permutation if whenever 0 < iq,i5 < d are distinct and ¢; — iy = pgl .. .p?{‘v where
(v,d) =1, then 7(i1) # n(iz) mod p?(arbl) . -pz(a’rb’“).

To be precise, given the k, [ functions on Ry, if we define for each 0 < 7 < d and

each square root A of —1 mod d the function

M) 72i) = (k+ M) — A + % <1 ZA ) (i) mod d,

then we have shown that if all of the 7rJ3‘ are d-good permutations, then the k, [
functions satisfy (x)g.

The permutations 71']3‘ must also satisfy a consistency condition. Suppose A1, A2
are two square roots of —1 mod d, and A\; = Ay mod p®, where p® is one of the
prime powers of d. Say Ay = A\ +ep®. Let 0 < 71,72 < d, and 0 < i < d be such
that (A —A2) = —(j1 —J2) mod d. If we let 0 < j1,j2 < d and my, my be defined
by

J1=7+ At —mid
J2 = J2 + Aot — mad,
then j; = j2, which we now denote by j. Thus,
jl —52 = —Z'(Al — A2) + d(m1 — m2) = iepa + d(m1 — m2).

Let k, | be the values associated to the point (é, %) From the definition of the 7TJ3‘
we have:
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[iley

1/1 2
k-l—)\llzﬂ';‘ll(i)—l-)\lml—E( ti)\)z mod p*

1/1+ M
k+A2lz7r;;(i)+A2m2——< +>\2)i mod p®

2 d
1/1+X A =7
ijf‘zz(i)—l-)\lml—i( —tl l)i— 1(J1d 1) mod p*

upon substituting the above values. Note that p® divides j; —7j2, so the last equation
makes sense. Thus, we have:

M) (i) = M = F2)

7 mod p°.

Thus, if the k, | functions on Ry satisfy (#)4, the 7rJ3‘ satisfy the following goodness
and consistency conditions:

(d-goodness) For each 0 < j < d, and each d-root A, 7rj3‘ is a d-good permutation.

(d-consistency) Suppose 0 < ji1,J» < d and A\;, Ay are both d-roots. Suppose p°
is one of the prime factors p*,...,p% and A\; = A2 mod p*. Then

(8) w2 (0) w2 () =~ M) g e

for any 0 < ¢ < d such that
(9) ’L()\l — )\2) = _(jl —jQ) mod d

(in equation 8, A could be either A; or As; recall p® must divide (7; — 72))

Conversely, if for each 0 < j < d and d-root A a d-good permutation 71']3‘ is given
and if these permutations together satisfy the d-consistency condition, then we may
define k, I functions on R4 which satisfy (#)4. Namely, for each prime power p®
of d, let A be a d-root with A = A,a. Given ¢, 7, let Let 0 < 7 < d, m be such
that j+ Ai —dm = j. We then use equation (7) to define k + A\pal mod p®, where
k, l are the to be determined values of the functions at the point (g, f—l) The d-
consistency condition shows that this does not depend on the choice of A. Similarly
we determine the value of k + ppel mod p® for the other p® root. This gives a
non-singular 2 x 2 system mod p® which we can then solve for &, [.

We summarize our analysis in the following theorem.

Theorem 2.7. Let d > 1. If k, | functions are defined on Ry and satisfy (*)q,
and if for each 0 < j < d and d-root A we define 7rj3‘ by equation (7), then the

7rJ3‘ satisfy the d-goodness and d-consistency conditions. Conversely, if the 7rJ3‘ are
given satisfying the d-goodness and d-consistency conditions, then we may define k,

I functions via equation (7) which then satisfy (#)q.
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2.2. A Special Case. We use the analysis of the previous section to prove lemma 2.5
in the case where d and d’ are prime powers. The reader can consult [10] for the
general case. Thus, we prove in this section the following special case of lemma 2.5.

Lemma 2.8. Let d = p®, d' = p®*', and assume k, | functions are given on Ry
which satisfy (#)q. Then we may extend these functions to functions k', I on Ry
satisfying (*)ar.

The simplification that arises in this case is that the d’ consistency condition
is now trivial. Let A\, u be the two d’-roots (i.e., A2 = u?> = —1 mod d’), which
we may also regard as d-roots. The given k, [ functions which satisfy (#)4 give by

theorem 2.7 for each 0 < j < p® good permutations 72 7r;f. We may in fact use

J
equation (7) to define for each 0 < 7 < p®, and hence 0 < pj < p®™!, and each
0 <i < p?, and hence 0 < pi < p®*!, the values w;‘j(pi), ngj(pi). Specifically,
1 /14N
A .
(10) w5 (pi) = (k + Al) — Am + 3 ( 7

) (pi) mod d',

where k, [ are the values associated to the point (4, %) = (g—f, Z—f), and pj = pj +
A(pi) — md', which is equivalent to j = 7+ Ai — md. The 71';)‘]~ and 75 are partially
d'-good, that is, they satisfy the d’ goodness condition on their domains, the set of
0 < < p®*! which are divisible by p. In view of theorem 2.7, to prove lemma, 2.8
it suffices to prove the following lemma.

Lemma 2.9. Let © be defined on the 0 < i < p®t' which are divisible by p,
and assume that 7 is partially p®*T'-good. Then we may extend ™ to a p*+'-good
permutation.

Proof. For 0 < i < p®*!, write i = pi’ + u where 0 < u < p. Define 7(i) =
7(pi’) + p®u. It is easy to check that this defines a p®*!-good permutation. a

It is perhaps worth considering a numerical example. Consider the case d = 5.
We take A\ = 3 and g = 2. Since any permutation of {0,...,p — 1} is a p-good
permutation, we may take the 2, 7' to be arbitrary permutations. For example,
we choose them both to be the identity permutation. Carrying out the algorithm
results in the following values for the k, ! functions (we write k(i,j) for the value
of the k function at the point (£,1)).

55
k(0,0) =0, 1(0,0)=0, k(0,1)=0, (0,1)=0
k(0,2) =0, 1(0,2)=0, k(0,3)=0, 1(0,3)=0
k(0,4) =0, 1(0,4)=0, k(1,0)=4, I(1,0)=3
E(1,1) =4, 1(1,1)=3, k(1,2)=3, I(1,2)=0
k(1,3) =4, 1(1,3)=2, k(1,4) =4, l(1,4)=2
k(2,0) =2, 1(2,0)=3, k(2,1)=3, 1(2,1)=0
k(2,2) =3, 1(2,2)=0, k(2,3)=3, 1(2,3)=0
k(2,4) =2, 1(2,4)=2, k(3,0)=2, [(3,0)=3
k(3,1)=1, 1(3,1)=0, k(3,2)=1, 1(3,2)=0
k(3,3) =1, 1(3,3)=0, k(3,4) =2, [(3,4) =2
k(4,0) =0, 1(4,0)=3, k(4,1)=0, [(4,1)=3
k(4,2) =1, 1(4,2)=0, k(4,3)=0, [(4,3)=2
k(4,4) =0, 1(4,4)=2
Let d’ = p? = 25, and we extend these k, | functions from Rs to Rys. First we

extend the p roots A\ = 3, u = 2 to p® roots X' = 18, p/ = 7. Using equation (7)
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(and our new roots for the X in that equation), the existing k, ! functions on Rj
define for each 0 < j < 25 which is divisible by 5 partial 25-good permutations 71']3",
7r;fl (they are defined on the i < 25 which are divisible by 5). For example, the

original identity permutation 7} = (0,1,2,3,4) lifts to 72" = (0,6,17,18,14). Our
extension algorithm extends this to the following 25-good permutation:

7r§" = (0,5,10,15,20,6,11,16,21,1,17,22,2,7,12,18,23,3,8,13,14,19,24,4,9).
For j not divisible by 5, we are free to choose any 25-good permutation for the 71']3",
7r;fl. We take the following:
(0,5,10,15,20,1,6,11,16,21,2,7,12,17,22,3,8,13,18,23,4,9, 14,19, 24).

Equation (7) then gives for each 0 < 4,5 < 25 a 2 x 2 system mod 25 which we
solve for the corresponding values of the k, [ functions. For example, for i = 5 we
get the following values for (k(7,7): 0 < j < 25) and {I(4,5): 0 < j < 25) (where
k(i, j) denotes the value of the k function at the point (5%, 2]—5))

(4,19,19,19,19,4,19,19,19,19,3,3,3,3,3,4, 19, 19,19, 19, 4, 19, 19, 19, 19, )

(3,13,13,13,13,3,13,13,13,13,0,0,0,0,0,2, 12,12, 12,12,2,12,12,12,12)

2.3. A Finite Obstruction. We can use the analysis of §2.1 to show that “finite
obstructions” to the Steinhaus problem exist. By this we mean a finite set F' < R?
which is a partial Steinhaus set, but which cannot be enlarged to a Steinhaus set.
In fact, we can get F' to consist of points with rational coordinates none of which
lies on the integer lattice, but for which every point on the integer lattice is at a
lattice distance from one of the points of F'.

Take two non-trivial primes, say p = 5 and ¢ = 13. Let d = pg = 65. Let X be
a d root, say A = 8. We construct a partial 65-good permutation which cannot be
extended to a 65-good permutation. For 1 <i < 13 let 7(5¢) =i. For 1 <i < 5, let
7m(13i) = 15 +i. Define also w(1) = 0. Clearly 7 satisfies the goodness condition on
its domain. However, 7 cannot be extended to a 65-good permutation as the first
clauses in the definition of 7 would force 7(0) = 0 mod 13 and 7(0) = 0 mod 5,
hence 7(0) = 0, which violates (1) = 0. Using this partial 7 and equation (7) we
determine k + Al for 17 points in Rgs of the form (g, 2-2246%) for § ¢ dom(r).
We arbitrarily assign [ = 0 for these points, and thereby determine the k values for
these points. This results in the following partial Steinhaus set;:

404 8 67 3 471 11 134 6
(1_3)ﬁ) (ﬁ)ﬁ) (ﬁ:ﬁ) (1_37ﬁ)
642 1 201 9 709 4 268 12
(1_3)ﬁ) (F:ﬁ) (F:ﬁ) (1_37ﬁ)
76 T 439 2 843 10 506 5
(F)ﬁ) (F:ﬁ) (F:ﬁ) (F:ﬁ)
CDINC NE SO )
(2081 8\

65 7 65

By construction, there are no k, I values which can be assigned to the the point
(0,0) so that the resulting extension of 7 is still good. Thus, this partial Steinhaus
set cannot be extended to a partial Steinhaus set which meets the integer lattice
(that is, every point of Z x Z has a squared integer distance from one of these
17 points, which by a fact mentioned earlier implies that the distance is a lattice
distance).
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On the other hand, it is not difficult to see that for any prime power d = p",
any partial d-good permutation may be extended to a d-good permutation. For
suppose i ¢ dom(w). By cyclically shifting we may assume ¢ = 0. The values
m(p" i), 1 <i < p, (where defined) omit at least one value mod p, say a,. If we
consider the p values mod p? which are congruent to a, mod p, then at least one
of them, say a,2, is not taken on as a value w(p"~%i), 1 < i < p?, as otherwise
these p values occur as m(p"~2i) where p i, and hence for some 1 <i # j < p? we
have i = j mod p and 7(p"~2i) = n(p"~2j) mod p. This contradicts the partial
goodness of m. Continuing, we define a value ap» such that if we set 7(0) = apn,
then this extension still satisfies goodness.

It follows that if k, I functions are defined on a subset A € Ry (for d = p™) and
satisfy (x)q4 for points in A, then we may extend these functions to all of Ry satisfying
(#)4. This is because the consistency condition for prime powers is trivial and we
checked above that we may extend partial d permutations and satisfy goodness.
The procedure for constructing a Steinhaus set sketched in the next section (and
given in detail in [10]) may then be applied starting from these k, [ functions on Rj.
In fact, if d is divisible by only one prime power p® for which p = 1 mod 4, then
this extension result is still valid, as we may apply the argument to each coset of
Ry in Ry (viewed as Abelian subgroups of Q/Z x Q/Z) separately. Summarizing,
we have the following, where Q; denotes the rationals that can be written with
denominator d.

Theorem 2.10. Let d > 1 be an integer divisible by at most one prime p such that
p =1 mod 4. Then any partial Steinhaus set S € Qg x Qg can be extended to a
Steinhaus set.

In particular, d = 65 is the smallest integer such that a finite obstruction can be
found in Qg x Qq.

2.4. Another Approach. One of the referees of [10] suggested another approach
to the proof of lemma 2.3 which has some advantages (though it does not seem
to yield lemma 2.5). In particular, it avoids the need to solve a 2 x 2 system and
thereby the consistency conditions. Suppose for example that d = p is prime. The

a(1,)) + M

idea is to write each point in Ry as a linear combination of the form - m

mod Z x Z, where 0 < a,b < p. We assume that ), p satisfy A2 = u> = =1 mod p?

(which eliminates the term containing % in equation (7)). For z of this form
(that is, z = % + @) we can take k = 0, [ = a + b. To see this works, note
that if z; = %*M@ and z, = %Jr@ and 50 21 — 25 = @Jr%

with —p < u,v < p, then for p?(z1,22) € Z we must have u = 0 or v = 0 (since for
a point (%, %) to have the square of its a norm an integer, we must have b = \a or
b= pa mod p). If say v = 0 (hence u # 0) and if we let 21 = z1 + (k(z1),1(z1))

2 2
and likewise for z», then p2(z1,29) = (%) + (%‘ + u) = % mod Z which is

not an integer.

The proof for the general case of lemma 2.3 using this approach is given in [9].
Here we use this method to answer a question posed in [10]: does there exist a
Steinhaus set for the 2 x 1 lattice (that is, the lattice with basis vectors (2,0),
(0,1))? We show more generally the following.
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Theorem 2.11. Let r, s = 1 be integers with r, s divisible only by trivial primes
(i.e., p=2 or p=3 mod 4). Then there is a Steinhaus set for the r x s lattice.

Actually the construction we outline in the next section works for these lattices
as well as the standard lattice, provided we can establish the analog of lemma 2.3.
Thus, we sketch here the proof of the following lemma. Let R™® denote the points
with rational coordinates in the r x s rectangle. By an r, s lattice distance we mean
a real of the form ~/a2r? + b%s2 where a,b € Z.

Lemma 2.12. Let r, s be as in theorem 2.11. Then there are k, | functions
k,l: R™® — Z such that if x1 # x3 € R™® and z; = x1 + (k(x1),1(z1)) and likewise
for xa, then p(z1,22) is not an r,s lattice distance.

Proof. We sketch the proof for the reader familiar with the corresponding argu-
ment for the standard lattice in [9]; we will concentrate on the differences. Since
everything is invariant under a uniform scaling, we may assume that (r,s) = 1. We
assume that r > s, and hence r > 1 (if r = s = 1, the argument of [9] applies,
which is a slight simplification of the following argument). For d > 1 an integer,
write R/)® for the points of the form (4, 2) where 0 <i <rd and 0 < j < sd.
Lemma 2.13. There are functions f,g: R]"® — Z such f(a,b) =0 mod r, g(a,b) =
0 mod s for any (a,b) € RY'®, and for any distinct points x1, x> in R]® if 21 =
x1 + (f(z1),9(x1)), 22 = 22 + (f(22),9(x2)), then p(z1,22) is not an r,s lattice
distance. In fact, if c, d are integers divisible by rs, then ||(z1 — z2) + (¢, d)|| is not
an r, s lattice distance.

Proof. Recall we are assuming r > s. First assume s > 3. Let v be such that
72 + 1 is a non-square mod r (starting from a square, keep adding 1 until the first
non-square is found), and 4°> + 1 a non-square mod s. Let f(a,b) = 0 mod r,
and f(a,b) = —a + éb mod s. Let g(a,b) = 0 mod s and g(a,b) = —b + va
mod 7. Let z1 = (a1,b1), v2 = (a2,b2), and 21, 22 be as in the lemma. Then
p2(21,29) = (a1 —az)?(1 +~2) mod r. If a; # as, then this is a non-square mod
r. This suffices since the square of a lattice distance is of the form e?r? + f2s2 and
hence is a square mod r. If a; = as, then by # bs. Also, p?(21,22) = (b; —bs)?(1+62)
mod s, and so is a non-square mod s, which suffices. Clearly if rs divides ¢ and d,
then ||(z1 — 22) + (¢, d)||*> = ||21 — 22]|*> mod rs and the last statement follows. If
s =1 and r > 3, this argument also applies since in this case we must have a; # a»
(in this case we can take f =0 and choose g as above).

If s =2 (sor > 3), we let § be such that §° + 1 is a non-square mod 4 (e.g.,
0 =1) and take f =0 mod r, f = —a+Jdb mod 4, g=—b+~ya mod r,and g=0
mod 4. Since the square of a lattice distance is a square mod 4, this suffices. The
last statement again easily follows.

Finally, if s = 1 and » = 2 we let 42 4+ 1 be a non-square mod 4 and take f = 0
and g = —a + b mod 4. O

Following [9], let Py < P> < ... enumerate all of the prime powers, say P; = p;’,
in such a way that if P;|P; then ¢ < j. Let I denote the trivial primes and J the
non-trivial primes. Fix two sequences of integers A;, B; for i € J satisfying:

(1) (Aupt) =1 and lf] < ’L., ] € J, and (P],Pl) =1 then P]|AZ
(2) ’I"S|AZ, Bz
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For each i fix integers \;, p; with A\? = p? mod P?. Also, name the roots so that
if P]|Pl then >\t = >\j mod Pj.

Let d,, be the least common multiple of Py, ..., P,. At stage n we define the k,
| functions at all points (x,y) € Ry” — R;” . Consider such an (z,y). An easy
argument shows that we may write (z,y) uniquely in the form

a; b; ai(l,/\i) —l—bi(l,,ui)
W wn=-@n+ (5] IR mod (5)
iel ieJ

where 0 < a;,b; < p; are integers, and 0 < a < r, 0 < b < s. Also, at least one
of a,, b, is non-zero. Let D,, be the least common multiple of the P;, i < n, for
which p; is a non-trivial prime.

Let f,g: R — 7Z be as in lemma 2.13.

We define the k, [ values for the point given by the right-hand side of equa-
tion (11) (which is equivalent to (z,y) mod (r,s)) by

(k,1) = (f(a,b),g (0, (a; +b:)B
i<n
ieJ
This completes the definition of the k, [ functions. To see this works, consider
two points (z,y) € Ry® — Ry® and (2/,y') € R}’ — R}® . We may assume

1 dm—1
n = m. We may assume (x,y) and (z',y’) are written as in the right-hand side of
equation (11). Say the coefficients for (z,y) are a, b, a;, b; and for (¢, y’), o/, V', af, V.

We may extend the sum for (z’,y’) by adding zeros so that the last term for both
sums involves P,,. Subtracting we get

(z—2',y—y) = (a—a',b-D") +Z< d ’) ZA +Ul(1 B od (r,s)
i<n i<n l
iel ieJ
where —p; < uj,v; <pi. Let z = (z+k(z,y),y +1(z,y)) and 2" = (' +k(2',y),y' +
I(z',y")) be the translated points. We must show that p(z,2’) is not an r, s lattice
distance. We may assume that for all i € I, u; = v; = 0 as otherwise p*(z,2') ¢ Z
regardless of the k, [ values. Let (@,b) = (a,b) + (f(a,b),g(a,b)) and (@’,b') =
(a/,b) + (f(a’,), g(a’, ")) Thus,

- ui(1, Ag) + v;(1

(12) z-2'=(a—-a,b-b)+ ) A i1, Ag) + il i) (0, (ui +v;)B

: P;

t<n i<n

i€J i€J

First assume that (a,b) # (a’,¥'). Let (wy,ws) = (@ —a’,b—b'). Thus, w? + w3

is either a non-square mod r or a non-square mod s (if r or s equals 2, then a
non-square mod 4). The sum of the remaining terms in equation (12) is of the form
(5> Di) where rs divides e and f. It follows that (w; + 55-)* 4+ (w2 + Di)2 is
either a non-integer or else a non-square mod r or a non-square mod s. (if it is an
integer, then it is congruent mod rs to w? +w3). In either case, ||z — 2’|| is not an
r, s lattice distance.
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Assume next that (a,b) = (a’,b’). Thus,

z]-A z]- i
(13) z—z'—ZAu );U i) OZul—i-v,
=n ¢ =sn
= =

We claim in this case that ||z — 2’||? is not an integer, which suffices. Actually, the
argument is now identical to that given in [9]. For the sake of completeness we give
a sketch.

For some i € J we have that u; # 0 or v; # 0. If we write 2 — 2" = (§, d,) where
(d,e) = (d', f) = 1, then we have p*(z,2') ¢ Z unless d = d’ and f = Ae mod d
for some d root A. Note in this case that d is the least common multiple of the P;
for i € J such that at least one of u;, v; is non-zero, but no higher power of p; has
this property. We may assume that A> = —1 mod d?>. Thus, A? = —1 mod P?
for all of the P; occuring in the sum of equation (13) (where at least one of the wu;,
v; is non-zero). By renaming if necessary we may assume A = \; mod P?. From
5 — ¢ eZand A =) mod P?, we get from equation (13) that all of the v; are
0. So,

z—z—ZA OZuB

i<n i<n
e e

Let ip < n be least such that u;, # 0. If we replace each \; by A + (A; — A), recall
A= )\; mod Pf, and use the definitions of A;, B; we have that z — 2’ can be written

as
A
z2—2 = (2 de + Biyui, +X>
where (e,d) = 1 and P;, divides d and X. Recall P;, { B;,. Since d?|(1 + A\?) it
follows easily that p?(z,2’) is not an integer.

2.5. The Construction. We discuss now the construction of the Steinhaus set.
We do not give the complete details (which can be found in [10]), but try to motivate
the main ideas. We will use of course the number theoretic lemma A but the need
for a geometric lemma, which we call lemma B, also arises.

Throughout, by a lattice L we mean an isometric copy of the standard lattice
Z x 7., although the reader can check that all our arguments here remain valid for
isometric copies of a fixed rectangular r x s lattice, where r and s are rational. By
a rational translation of L we mean a lattice of the form L,y = L + ai + b where
a,b € Q and @, ¥ are the basis vectors of L. In other words, we are referring to a
translation which is rational with respect to the coordinate system of L. Similarly,
by a rational rotation we mean a transformation which in the coordinate system of
L is given by a rational rotation matrix.

Definition 2.14. We define L ~ L' if L’ can be obtained from L by successive
rational translations and rotations.

It is easy to check this is an equivalence relation and L ~ L’ iff all the points of
L’ are rational in the coordinate system of L. Also, if two distinct points of L’ are
rational with respect to L, then L ~ L’.

Lemma A says that given any L we may get a partial Steinhaus set which meets
all of the rational translations of L. The next lemma says that such a partial
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Steinhaus set automatically meets all lattices L’ ~ L. The proof, which is not
difficult, is given in [10].

Lemma 2.15. Suppose S is a partial Steinhaus set, L is a lattice, and SN L, s # &
for all r,s € Q. Then for any L' ~ L, Sn L' # .

We remark that lemma 2.15 is not true for arbitrary fields. For example, using
the method of lemma A we can construct a partial Steinhaus set which meets all
translations of Z x Z by elements of Q(+/2) x Q(+/2), but which misses a lattice
obtained from Z x Z by a rotation over this field.

In view of this, a natural attempt to build a Steinhaus set would be to enumerate
the equivalence classes {L,}a<2+ of lattices, and then successively build partial
Steinhaus sets Sy € S; € --- € S, € such that at step a, So N L # & for all
L e L,. At limit stages we would take unions and there would be no problem.
Suppose that S, is defined, and we attempt to extend to Soy1. Let L € Ly41.
Although S, is a partial Steinhaus set by assumption, it may be that every point
on L lies at a lattice distance from some point of S,, in which case the extension
is impossible. This presents our second “obstruction” which we overcome with the
“hull” method. To investigate this, suppose 21 € L, ¢; € Sy, and p*(ci,21) € Z.
Let us assume that ¢; does not have rational coordinates with respect to L (we
comment on the general case below). The following lemma is easily verified.

Lemma 2.16. Let L be a lattice and suppose z does not have rational coordinates
with respect to L. Then there is a line | = [(z, L) such that if w € L and p*(z,w) €
Q, thenw e l.

Thus, the point ¢; can only rule out a line I; = I(c1, L) of points on L. Choose
2o € L — ;. Suppose there is a cy € S, with p?(c2,22) € Z. Suppose again that
¢y does not have rational coordinates with respect to L. Let lo = I(c2, L), and
let 23 € L — (I; U l2). Finally, suppose there is a c3 € S, with p?(c3,23) € Z.
Let r1 = p(c1,21) and likewise for 7o, r3. Let Cy be the circle with center ¢; and
radius r1, and likewise for Cs, C3. So the three circles are definable from the points
c1,c2,c3 of S,. Clearly the congruence class of the triangle Az2223 is definable.
We would like to assert that for any triangle T' there are only finitely many z;, 22,
z3 with Azy12z023 = T with 2z, € C4,...,23 € (5. If so, then the z; will be definable
from the ¢;. This would then be a contradiction if we assume the S, are sufficiently
closed and L is not definable from the points of S,. (note that at most one point of
L can lie in S, as L is definable from any two of its points). There is, however, an
obvious exception to the above assertion. Namely, the case where r; = r, = r3 and
Az12923 = Acicaes. This exceptional case does not arise in the argument though,
as in this case we would have p(c1,ca) = p(z1, 22) is a lattice distance, contradicting
S, being a partial Steinhaus set. The following geometric lemma says that this is
the only exceptional case to our assertion.

Lemma 2.17 (Lemma B). Let ¢, c2, c3 be three distinct points in the plane,
r1,72,73 > 0, and C1,Cy,Cs the corresponding circles. Let T be a triangle. Then
there are only finitely many (21, 22, 23) such that z; € C; and Nz12023 = T except
in the exceptional case described above.

Granting this lemma, we now briefly outline the actual construction (the details
may be found in [9] or [10]). To simplify matters we assume CH (in the general case
we use an iteration of the hull method). Let My € M; € M, € be an increasing,
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continuous sequence of hulls, that is, substructures of some large V,, which are
sufficiently closed. We construct the partial Steinhaus sets S, so that S, meets
all lattices in M,. Limit stages again are trivial. For o < w; a successor, let L,
enumerate the equivalence classes in M, — M, _1, and let L,, be a representative for
L. To keep the construction going, we need to assume also the following inductive
hypothesis:

(x): for any 8 < « and any z,y € S, if p*(z,y) € Q, then for some lattice
L € Mg we have that x, y are both rational with respect to L.

We then diagonalize the construction of the &, [ functions of lemma A for all of
the L,, that is, at each step we extend the k, [ functions from the rational points of
some L,, with denominators d,, to those of denominator d,,+1 (where d;|d2|ds ...,
and every integer divides some d,;). Lemma B gives us finitely many lines that
we must avoid at each step. From (x) we have there is at most one point in S,_1
which has rational coordinates with respect to L,. If this point exists, we make
sure that in defining the k, [ functions for L, that this point is thrown in at the
first step of the Lemma A construction for L,. There is enough freedom in the
lemma A construction (from the A; and B;) so that we can meet these demands at
each step. This completes the outline of the proof, granting lemma B.

2.6. Geometry. We finish our overview of the construction with some comments
on the geometry, that is, on lemma B. This lemma is really a result in the branch of
engineering mathematics known as the theory of mechanical linkages. A (planar)
mechanical linkage can be thought of as a collection of rigid rods which are joined
by hinges which allow rotation. Lemma B corresponds to the classical case of a
four-bar linkage (sometimes described in the literature as a three bar linkage). In
the terminology of lemma B, let C; = C(c1,71), and Cy = C(c2,72) be circles
with ¢; # ¢3 and ri,75 > 0. Consider the mechanism consisting of four bars
linked to from a quadrilateral with one side (which we view as immovable) of
length p(c1,c2), two adjacent sides of lengths 1 and 72, and the remaining side of
length p(z1,22). This is our four-bar linkage. Consider a rigid triangle congruent
to Az12z923 attached to the linkage so that the z1zo edges are identified. As the
linkage moves, the point z3 traces out a path in the plane. This is referred to as a
coupler curve for the linkage.

Thus, lemma B is the statement that the coupler curve of a four-bar linkage
has, except in the exceptional case noted, only a finite intersection with any circle
(equivalently, does not have a circular component).

Mechanical linkages, and in particular the four-bar linkage, have been studied
extensively and there is a considerable literature on the subject (c.f. [11]). It appears
to us that lemma B was implicitly known before, but we were unable to find a
rigorous explicit statement of it. However in [8] the authors use algebraic geometry
to analyze the four-bar linkage and obtain results which imply lemma B (private
communication). This is explained in more detail in [10]. Finally, the current
authors give two elementary proofs of lemma B in [10]. g

3. STEINHAUS SETS FOR Z2, THE BAIRE PROPERTY AND MEASURABILITY

In this section, we will prove the following theorem.
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Theorem 3.1. Suppose S is a Steinhaus set for Z>. Then S does not have the
Baire property. In particular, no Steinhaus set can be a Borel set or an analytic or
coanalytic set.

The argument we present for this is a category version of an argument given by
Croft in [2] to show that no Steinhaus set in R? could be an essentially bounded
measurable set.

The proof is based on the fact that the gaps in the lattice distances converge to
0. For the sake of completeness we indicate an elementary argument for this fact.
Let n be a positive integer and consider the lattice distances g(n,7) = ||(n,?)|| =
Vn? +i42, for 0,< i < [2n+1] = b,. So, g(n,0) = n,g(n,b,) = n+ 1 and
g(n,i+1) —g(n,i) < 2bgn+1. Thus, for n large the gaps between these distances
is small which certainly means the gaps between consecutive lattice distances must
converge to 0.

From this point on let d; = 1,d> = /2, d3 = 2, ... enumerate the lattice distances
in increasing order.

Our first observation is that S must be essentially bounded in the sense of cate-

gory.

Lemma 3.2. Suppose S has the Baire property. Then there is some R > 0 such
that {x € S : ||z|| = R} is meager.

Proof. Since R* = | J,.,2(S + z), S cannot be meager. So, there is a ball such that
the part of S in the ball is comeager in the ball. Since a translate of a Steinhaus
set is a Steinhaus set, we may assume that S is comeager in B(0,¢). Note that if
||z|| = dn, then S n B(x,¢€) is meager, since otherwise by translating this ball to
the by —z we would find two points u and v of S such that v = u + z, contradicting
the fact that no two points of S are at a lattice distance apart. From this we see
that the part of S in the annulus A(d,, — €,d,, + €) is meager. If n is sufficiently
large any two consecutive annuli overlap and the lemma follows. a

Let G be the largest open set in which S is comeager. The set G is bounded and
let N = G\G. Then N is a bounded closed nowhere dense set and N # . The set
N is the category essential boundary of S. It consists of all points x such neither
S nor the complement of S is meager in any neighborhood of z.

Lemma 3.3. There is some isometric copy of Z> which meets N in ezactly one
point.

Proof. By way of contradiction, let us suppose that every lattice I(Z2), where I is
an isometry of R? either misses IV entirely or else contains at least two points of
N. Let wg € N and let Ly = Z% + wq. For each 8, there must be a point w # wq
which is in Typ(Lo), where Ty is the rotation or angle 8 about wy. Let F,, = {#: Jw €
N nTy(Lo) and ||w—wpl|| = dy,}. Since the sets F,, are closed there is some ng such
that F),, contains a closed arc Cj on the unit circle. Let uy,...,u; be the points of
Lg at distance d,, from wy and let H; = {6 € Cp : Ty(u;) € N}. One of the sets H;
contains a subarc of Cy. Therefore, there is a closed arc I'y = [ag — €9, ap + €o] such
that every point of the form wy = wo + dp, e isin N for all # € Ty. Now let us
repeat the argument just given starting with a point wg. For d a lattice distance,
Let Hg,p, be the set of 8y € I'y such that there is an arc C; with length > % such
that wo + dp,e'® + de® € N for all § € C;. By the Baire category theorem, there
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are two arcs 7o and v, and a lattice distance d,, such that v < I'g and for every
B ey and ¢ € y1, wy,¢ = wo + dnoew +dy, e e N.

Now, consider the map h on vy x v, defined by h(f, ¢) = wg 4. At most points
the derivative of h is nonsingular and therefore the image of h, which is a subset of
N, contains a nonempty open set. This contradiction establishes the lemma. a

Proof of Theorem. Let us suppose that a Steinhaus set S has the Baire property.
By the preceding lemmas we can suppose that the one and only point of N n Z?2 is
the origin and the the part of S at distance greater than D is meager.

Consider a point (u,v) € Z? with (u,v) # (0,0). Either (u,v) € G or (u,v) €
R®\G. If (u,v) were in G, then there would be some 0 < § such that S is comeager
in B((u,v),0). But since S is not meager in B((0,0),d) there would be two points
of S at distance ||(u,v)|| apart. Therefore, there is some 0 < € such that if p € Z?2
and 0 < ||p|| < D, then the part of S in B(p,€) is meager. So in fact this is true
for all 0 # p € Z2. Translate each of these balls to be centered at the origin. Since
the translated parts of S are meager, there is some point z with ||z|| < € such that
r¢ Sandforalpe Z2, z+p¢ S. Thus, (Z?2 + ) n S = . This contradiction
completes the proof of the theorem. O

The arguments we have just given are modifications of ones given by Croft [2].
Croft proved the measure theoretic versions of the lemmas used in this section and
proved the following theorem which was also proved independently by Beck [1].

Theorem 3.4. Let S be a Steinhaus set for Z?. Then S cannot be Lebesgue
measurable and essentially bounded, i.e., there exists some R > 0 such that A\({z €

S: |jz| > R}) = 0.

Beck’s proof of this theorem has an entirely different viewpoint. Beck uses a
Fourier transform approach. Kolountzakis in [21] and Kolountzakis and Wolff in
[13] have much more detailed results about possible measurable Steinhaus sets for
Z?2. Their approach is also via the Fourier transform. Kolountzakis proved the
following theorem.

Theorem 3.5. Suppose S is a measurable Steinhaus set for Z?. Then fs |z|dz =
o for all a > 10/3. In particular, S cannot be essentially bounded.

Kolountzakis and Wolff have made a connection to the famous circle problem.
Theorem 3.6. Assume a bound of the form

n(r) = mr? + O(r),
where n(r) = card(Z* n B(0,r)). Then

J |z|“dx = oo,
5
foralla > B/(1 - p5).

At present the best result concerning £ is that of Huxley [19] who showed that
B > 46/73 may be used in estimating n(r). Thus, if S is a measurable Steinhaus
set, then [ |z|*dz = oo, for all a > 46/27. We will discuss some more aspects of
the Fourier transform approach in the next section.

The following basic problem remains open.
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Problem. Can there be a Lebesgue measurable Steinhaus set for Z2?

We remark that although it remains open whether a Steinhaus set for Z2 must be
non-measurable, we can show the existence of non-measurable Steinhaus sets. We
give a sketch for the reader familiar with the construction. It is enough to produce a
Steinhaus set S such that the difference set S — .S does not contain a neighborhood
of the origin, and for this it suffices to arrange that p*(z,y) ¢ {5=:n > 1} for
all z,y € S. From (x) of the construction of §2.5 we have that if z,y € S and
P(z,y) = 2%, then z and y are both rational with respect to some lattice L
considered at some step 8 of the construction. In the diagonalization of lemma A
to the countably many lattices Li, Lo, ... considered at stage [, we can easily
arrange that as we extend the partial k, | functions on some L,, (say from those
points with denominator d, to d,;+1) we have that no two of the corresponding
translated points =, y have p?(z,y) < 1. This suffices. In fact, we produce a
Steinhaus set S such that if z,y € S and p? € Q, then p(x,y) > 1.

Finally, we want to mention a result of M. Ciucu about Steinhaus sets of Z?2 [18].

Theorem 3.7. If S is a Steinhaus set for Z2, then S has empty interior.

Ciucu’s approach is geometric. By following his proof one can obtain another
proof of the fact that no Steinhaus set can have the Baire property.

4. HIGHER DIMENSIONAL LATTICES

In this section, we consider lattices L in R?, for d > 2. This means there is some
invertible linear transformation A € GL(d,R) such that L = AZ? Sometimes we
denote L by L4. We say S is a Steinhaus set for the lattice L provided |SnT(L)| =
1, for all isometries T' of R?. Thus, S is a Steinhaus set for the lattice L provided
S nT(L) # & for all isometries T' of R? and no two distinct points of S have the
same distance as the distance between two points of L.

The basic unsolved problem is the following:

EXISTENCE PROBLEM. Fix d > 3 and a lattice L in R%. Is there a
Steinhaus set, for L?

Let us note that the arguments given in the preceding section actually can be
carried out for any lattice in R?, d > 1. We only need to know that if L is a lattice
in R? then the gaps in the lattice distances converge to 0. An argument similar to
the one we indicated for Z2 can be carried out for any planar lattice and since a
lattice in R?, d > 2 contains a planar lattice, this is true for any lattice. So, we
have the following theorem.

Theorem 4.1. Let L be a lattice in R?, for d > 2. There is no Steinhaus set for
the lattice L which has the Baire property. In particular, no Steinhaus set for a
lattice in R?, d > 1 can be a Borel set.

Although the existence problem remains completely open for all lattices in R?,
d > 2, the question of whether there is a measurable Steinhaus set has been solved
in the negative for some lattices in R? with d > 2. The method is based on the
use of Fourier transforms. This approach was started by Beck [1]. Kolountzakis
extended and simplfied this approach [20]. It was deeply studied by Kolountzakis
and Wolff [13]. They proved the following theorem.

Theorem 4.2. There is no Lebesque measurable Steinhaus set for the lattices Z%
ford > 2.
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We will sketch the Fourier transform technique used for proving theorem 4.2 and
a slight generalization which yields some other lattices for which we know there is
no measurable Steinhaus set. Since we will discussing measurable sets, it makes
sense to talk about “almost sure” Steinhaus sets, a notion introduced in [13].

Definition 4.3. A set S is said to have the almost sure Steinhaus property on the
lattice L 4 provided that under almost every rotation 7', and almost every point x,

(TS + z) n (AZ)| = 1.

Observe that this property may be described as follows:

(14) Z 17s(zr —n) =1, ae zeR? ae. rotation T.
neAzZ?

We can directly compute, u(S), the Lebesgue measure of such a set S. In par-
ticular, if a measurable set S has this property for almost all z for just some
fixed isometry 7', then we may integrate both sides over the fundamental domain
D = A([0,1)) to obtain:

|detA| = j ldz = j Z 1rs(x —n)de = Z j 1rs(x —n)dz
(15) D D peazd neAzdvD

Ly ()i = j Lys(@)dz = p(T(S)) = u(S).

neAzd Jn+D Rd

So, if S is an almost sure measurable Steinhaus set for the lattice AZY, then the
Lebesgue measure of S is |detA|. More importantly, there is a characterization of
almost sure measurable Steinhaus sets by applying basic Fourier transform methods;
see Chapter VII of [26].

To explain this, let L* = A=TZ9 be the dual lattice to L.

From elementary harmonic analysis, we have that the following lemma.

Lemma 4.4. Let f be an L' function. Then
(16) Z fle=XN)=C, aex
ANEL 4

if and only if its Fourier transform satisfies:

N

(17) FOO) =0, VA:\eL%\{0}.

Moreover, if (16) holds, then by integrating both sides of (16) over D, the fun-
damental domain or parallelepiped spanned by the columns of A, we find that

C = [ f(x)du/|det(4)]

Proof. Again, let D = A([0,1)?). Consider
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f(a:)e*%i(z'y)da:

~h»

—~

<

N’
Il

J fl@)e > eV dg =
Rd

AeAZd J)\+D

—~~
[—
oo

~

Il

Z j f()\+v)e_2“i(>‘+”)'ydv
D

AeAZzd

Y |det(A)| j FO\ + Au)e 2mHOA+AVY) gy,
AeAZd [0,1)4

Denote the columns of 4 by a; and the columns of A=7 as af. Considery € L*\0.
Then y = A Tc = ciaf + ... + cqal, for some ¢ = (c1,...,¢,) € Z% ¢ # 0. For
u e [0,1)%, we have Au = uja; + ... + ugaq. Now, substituting into (18), and using
Ay €, we get:

Fly) = | det(A)] J Y f+ Au)e? T dy,
[0.1)¢ xeazd

The function g(u) = Y\ 4za f(A + Au) is in L1([0,1)?) and is periodic: g(u +
z) = g(u) for all u € R%, 2z € Z% Thus, f(y) = |det(A)|§g(AT¢), where §(z) =
f[o,l)d g(u)e 7" du.

Now, all the Fourier coefficients other than the constant term of a periodic
function are 0 if and only if the function is constant a. e. on the unit cube. The
proof of the equivalence is complete.

Note that integrating both sides of (16) over D gives C = % O

Thus, we can characterize an almost Steinhaus set S for a lattice L in terms of
the properties of its Foruier transform.

Corollary 4.5. A measurable set S has the almost sure Steinhaus property for
the lattice L if and only if the Lebesqgue measure of S, u(S) = |det(A)|, and the
Fourier transform 1g vanishes on all points x, such that |z| = || for some A € LY,
A#0.

We are now in a position to give sufficient conditions under which there is no
measurable set with the almost sure Steinhaus property for the lattice Lp. Let
us set some notation. Given a matrix M, let D(M) = {|M=z|?: x € Z%}, the set
of possible square distances between points of the lattice MZ% If A and B are
matrices such that D(A) € D(B), we say B norm dominates A, and write B > A
or A < B. If B > A and we have that det(A)/det(B) is irrational, we say B strongly
norm dominates A, and write B >; A. If B > A and we have det(A)/det(B) not an
integer, we say B weakly norm dominates A, and write B >,, A. Finally, if B > A
and det(A)/det(B) € Z, we say B trivially norm dominates A, and write B >; A.
With this terminology in place, we have the following theorem.

Theorem 4.6. Let B € GL(d,R) and suppose there exists a matriz A € GL(d,R),
where B~T >, A~T. Then there is no measurable set with the almost sure Stein-
haus property on the lattice Lp.

Proof. Suppose by way of contradiction, that there is a measurable set S with the
almost sure Steinhaus property on Lg. By corollary 4.5, [ 1s(z)dz = |det(B)| and

f; vanishes on all nonzero points with norm square in D(B~7T). So, 1g5 vanishes
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on all nonzero points with norm square in D(A~T). In particular, 15 vanishes on

1s(z)dz e et(A™T
Li\{0}. By lemma 4.4, '\ .\ f(z —A) = f|§e(t/i| = \geigljg‘l = \‘Ze:gB*T;; for

almost all . However, the left side must be an integer,whereas we have supposed
that the right side is not. O

As an immediate corollary let us prove the following theorem.
Theorem 4.7. There is no measurable Steinhaus set for the lattices Z% for d > 2.

Proof. Tt is perhaps easiest to see this when d = 4. Let B be the identity matrix
and let A= be

1 0 0 0
0 1 0O
0 010
0 0 0 2

We have D(A~T) € D(B), since every integer is the sum of 4 squares. Also,
Since det(A~T)/det(B~T) = /2, B-T >,, A=T. By theorem 4.6, there is not even
an almost sure measurable Steinhaus set for Z*. This method clearly works for
all Z¢ with d > 3. The case when d = 3 was dealt with by Kolountzakis and
Papadimitrakis [24]. They showed

1 V2

BT = 1 >w V11 =A"T
1 V6
So, there can be no measurable Steinhaus set for the lattice Z3. O

It is useful to note the Theorem leads to the following two part strategy: if we
can find a matrix C' such that C >; B and B >4 A, then C >, A and of course,
C >, A . In[16] it is shown that this strategy can be applied to a number of other
lattices. The method uses some special quadratic forms and the method of descent.
On the other hand, there seem to be some severe restrictions to this approach. For
example, Kolountzakis and Papadimitrakis [24] have shown that in case d = 2 and
with B being the identity matrix, there is no such A. So this strategy cannot be
applied in the plane. It seems likely that this method cannot be applied to any
planar lattice, but there is no proof of this to the authors’ knowledge.

In [16] some further limitations of this strategy are shown. It is shown that there
is a class of diagonal matrices B such that if A > B, then A >; B.

5. PROBLEMS

Here we gather some of the problems that remain unsolved.

1. Is there a Steinhaus set S for the lattice Z™ in R™ for n > 37 Is there a
Steinhaus set for the rectangular lattices in R?? More generally, for which lattices
Lin R™ n > 2, is there a Steinhaus set?

2. Can a Steinhaus set S for Z2 be Lebesgue measurable? Is there any lattice
with dimension greater than 1 with a Lebesgue measurable Steinhaus set?

3. Can a Steinhaus set for Z2 or, for that matter any lattice, be bounded? Must
it always be totally disconnected?

4. Ts there a measurable partial Steinhaus set meeting all translates of Z2? What
if we allow all translates in two different directions?
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