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HOMEOMORPHISMS OF THE PLANE

BEVERLY L. BRECHNER AND R. DANIEL MAULDIN

This paper is concerned with homeomorphisms of Euclidean
spaces onto themselves, with bounded orbits. The following
results are obtained. (1) A homeomorphism of E2 onto itself
has both bounded orbits and an equicontinuous family of
iterates iff it is a conjugate of either a rotation or a reflec-
tion; (2) An example of Bing is modified to produce a fixed
point free, orientation preserving homeomorphism of Ez onto
itself, such that orbits of bounded sets are bounded; and (3)
There is no homeomorphism of E2 onto itself such that the
orbit of every point is dense.

!• Introduction* One motivation for this paper is the well-
known bounded orbit problem, "Does a homeomorphism T of E2

onto itself, with bounded orbits, necessarily have a fixed point?"
This is discussed in detail in § 2. In our investigations we were
led to a study of homeomorphisms which have bounded orbits and
an equicontinuous family of iterates, and we obtained a characteri-
zation of such homeomorphisms in Theorem 4. This theorem was
proved earlier by Kerekjartό [13], using different methods. Our
proof of this uses ε-sequential growths and is similar to the proof
of the main theorem of [8].

In § 4, we study homeomorphisms with dense orbits.

2* The bounded orbit problem* As far as we know, this
problem remains unsolved: Is there a homeomorphism T of the
plane onto itself such that the orbit of each point is bounded, and
which does not have a fixed point? The answer is "no" if T is
orientation-preserving, and this is proved in [1, Proposition 1.2].

We wish to make the following observations:
(1) It follows from the methods of this paper that if there is

a fixed point free homeomorphism T of the plane such that the
orbits of bounded sets are bounded, then there is a compact con-
tinuum M in E2, which does not separate the plane and which is
invariant under T.

(2) If the orbits of points under T are bounded and closed, then
T is periodic. This follows from [15].

(3) If T is orientation-reversing with bounded orbits, then T2

is orientation-preserving with bounded orbits and thus T2 has a
fixed point. However, this does not necessarily imply that T has a
fixed point. In [12], Johnson has given an example of a homeo-
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morphism T of E2 onto itself such that T is fixed point free, while
Tn has a fixed point for all n > 1.

(4) There are homeomorphisms of the plane such that the
orbits of points are bounded, but the orbits of bounded sets are
not necessarily bounded. We modify the example in § 6 of [14] to
show this.

Let B be the unit disk in E2, let D be a disk in S2 tangent to
the north pole, and let g\Ώ^»B be a homeomorphism such that
g~x(A) doesn't contain the north pole, where A = {(r, θ) \ θ = 0 and
0 ^ r <; 1}. Let /: B -» B be the homeomorphism defined by f(r, θ) =
(r, θ + 1 — r), where (r, 0) is in polar coordinates, and let φ: E2 —* S2

be the stereographic projection. Then h: S2 -» S2 defined by

-ιfg(x) , if xeD

, if xeS2- D

is a homeomorphism of S2 which keeps Bd D fixed. Now the interior
of A, A0, is an open arc in B and φ~1g~ι(A°) is bounded in E2, but
the orbit of this set under ψ~xhφ is unbounded in E2.

(5) The bounded orbit problem is a problem strictly for the
plane, since the example given by Bing on page 61 of [7] may be
modified to give a homeomorphism h of Ez onto itself such that
the orbits of bounded sets are bounded and yet h has no fixed
point. We explain this modification in the theorem below. At this
point, we wish to thank Howard Cook for pointing out to us that
Bing's example could be modified.

THEOREM 2.1. There exists a fixed point free, orientation
preserving homeomorphism h of Ez onto itself, such that the
orbits of bounded sets are bounded.

Proof. We first give a description of a subset of E3 which does
not have the fixed point property.

Let S be the surface consisting of the circle of radius 1 and
center (0, 0, 1) in Es, together with the surface given by the para-
metric equation:

1 + τ 2 1 + 2τ

for 0 ^ τ and θ in Eι. Notice that for each τ, τ ^ 0, the inter-
section of the surface with the plane z — τ/(l + τ) is a circle with
center (r/(l + τ) cos (π/2)τ9 τ/(l + τ) sin (τr/2)τ, r/(l + τ)) and radius
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1/(1 + 2r). This is homeomorphic to half of Bing's example given
on page 61 of [7]; that is, one cone with its narrow end spiraling
toward a limit circle, together with this limit circle. The set of
centers can be considered the "guiding spiral" of the example.

Consider the map h of S onto itself defined by: h(R(τ, θ)) =
Λ(9>(τ), θ + π/2) for 0 ^ τ, where φ(τ) = τ + τ/(l + τ) and such that
h is a rotation of 90° on the limit circle. We choose φ{τ) in this
manner to insure that h is continuous on the limit circle. It can
be seen that h has no fixed point and h is a homeomorphism of S
onto itself.

Now let M be the surface S, together with the unit disk in
the xy-plane and the bounded complementary domain of this surface.
We first describe a homeomorphism h of M into itself which is an
extension of h such that h does not have a fixed point. Fix τ ^ 0.
Let us define h on the disk at height τ/(l + τ) which is the inter-
section of M and the plane z = r/(l + r). The circle having para-
metric equation

=

goes onto the circle with center on the guiding spiral at height
τ'/(l + τ') where τ' = φ(τ) + (1 - α)/(l + r), and radius r = α/(l + 2r').
It is also rotation 90°. Thus the image of the disk D at height
r/(l 4- τ) is a twisted cone having as base the circle on S at height
φ(τ)/(l + φ{τ)) and vertex on the guiding spiral at height z = τ'/(l + r'),
where τ' = φ{τ) + 1/(1 + τ). It can be seen that ίί is a homeomorphism
of M into itself and h has no fixed points.

We next extend h to a homeomorphism h of E* onto itself such
that h has no fixed points and the orbits of bounded sets are
bounded under the action of h. We define h on the slab n ^ z <
n + 1, for all integers n, to be a copy of the action of h on 0 ^
z < 1. Thus it is sufficient to define h on 0 ^ £ < 1.

We describe fe as follows. If (x, y, z) is a point, #2 + y2 ^ 1,
and z = r/(l + τ), r ^ 0, then λ(α, y, z) = (~y, x, (<P(τ))/(l + φ(τ))).
To complete the description of h inside the cylinder x2 + y2 ^ 1 and
0 ^ » < 1, we first construct a twisted cone S', having base the
circle x2 + y2 = 1 and 3 = 1. This cone will twist down and have
the circle x2 + y2 = 1 and 2 = 0 as its limit. Thus it looks similar
to the twisted surface S already constructed, except that it is
inverted. S U S' is very much like the illustration on page 61 of
[7]. However, for the construction here, at level z, 0 < z < 1,
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instead of having two tangent circles, the circles shall not meet.
Further, neither of these circles touches the boundary of the cylinder
x2 + y2 = 1.

Now extend h to S' by letting h take the circle on S' at height
r/(l + τ) to the circle on S' at height (φ(τ))/(l + φ(τ)). Next extend
h to AT, the (solid) interior of S'f by pushing the interior of M' up,
taking horizontal disks to twisted cones above them, as before. A
portion of the interior of M' will move into the slab between z — 1
and z = 2; in fact onto the interior of the twisted cone which is the
image of the unit disk at height z = 1.

Now for each z = τ/(l + τ), we have defined h on two disjoint
disks at that height, both lying in the interior of the unit disk at
that height, as well as on the points on or outside the unit circle at
the height. It is readily seen that, for each z, h can be extended
to the remainder of the plane at height z9 in such a way that h is
a homeomorphism of Ez onto itself.

Clearly, h is fixed point free, and the orbits of bounded sets
are bounded.

3* The main theorem* For the remainder of this section we
assume that T is a homeomorphism of the plane E2 onto itself,
with an equicontinuous family {Tn}ζ=-^ of iterates, and such that
for some point xQ, 0(xQ) is bounded. We observe that the proofs of
Theorems 1 and 2 work for En as well as E2. We will use the
notation 0{H) to mean the orbit of the set H.

THEOREM 1. Orbits of bounded sets are bounded.

Proof. We first show that orbits of points are bounded. Let
B = {x I 0{x) is bounded}. It follows from pointwise equicontinuity
of the family {Tn} that B is both open and closed. Thus B = E2.

Now suppose K is bounded. We show that the orbit of the
closure of K is bounded.

It this isn't so, then there is a sequence {pj~=i from K con-
verging to a point p of K such that for each n, the orbit of pn is
not a subset of the ball of radius n and center the origin.

Let δ be a positive number such that for each n9 the image of
the ^-neighborhood of p under Tn has diameter less than 1.

Since the orbit of p is bounded, there is a positive integer k
such that O(p) S Sk. It follows that if pn is within 3 of p, then
O(pn) £ Sh+i This is a contradiction.

THEOREM 2. There exists a continuum K such that T{K) = K.
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Proof. For each n, let Fn = {p\ O(p) Q S%), where Sn is the
ball centered at the origin and of radius n. It follows from the
Baire category theorem that for some n, Fn contains an open set.
Let U = IntFn. Then UQ Sn and T(U) = U. Thus, since orbits
of bounded sets are bounded, K = O(Sn) is an invariant, compact
continuum.

THEOREM 3. Given an invariant continuum K, there exists a
disk D such that D^K and T(D) = D.

Proof. By Theorem 2, there exists an invariant continuum K.
We proceed as in the proof of Theorem 3.1 of [8]. Let ε > 0 and
let {εj be a decreasing sequence of positive numbers such that
Σεi < e. It follows from the equicontinuity of {Tn} and the com-
pactness of K, that 3 δ, > 0 3 if diam H < ^ and HΠK Φ 0 then
diam T*(H) < s, for all n. Let ^ : I7lfl, Uί>2, •••, UlfΛl be a finite
δr cover of K, and let A = U^ Γ ίUί^i Uhi). Then I?! is invariant
by definition, and bounded since it lies in an εrneighborhood of K.
It is easy to see that D1 is an εrgrowth of K.

Now jDi is an invariant continuum, so for ε2 there is d2 > 0 such
that diam Tn(δ2-set) < ε2. We choose a finite cover of D1 by open
sets of diam < δ2; ̂ 2 : J7lfl, U2)2, , Z72,,2._ Let A - \Jn T

n(\Jih U2ίi).
Then D2 is bounded and invariant, and D2 is an invariant continuum.

Continue the process inductively, and let E' = UΓ=i A Now
Ef is a locally connected continuum by Proposition 2.4 of [8], and
is invariant. Further, as in [8], Ef has no cut points.

Thus it follows from Theorem 9 of [16], that the boundary of
each of its complementary domains is a simple closed curve. Let
D be the disk which is the closure of the complement of the
unbounded component of C(ET). Then D is an invariant disk
containing K.

THEOREM 4. T is a conjugate of either a rotation or reflection.

Proof. We first show that E2 is the union of an increasing
sequence of disks {i?JΓ=i such that

(1) B1QB0

2QB2QB°3QB3G.--QBZQBnQ--- and (2) T(Bn) =
Bn for all n.

By Theorems 2 and 3, there exists an invariant disk Bx 9 T(B^ =
Bγ. Let C2 be the circle of radius n2 about the origin, where n2 ^
2, and such that C2 contains Bγ in its interior. By Theorem 1, C2

plus its interior has bounded orbit. By Theorem 3, there is a disk
B2 containing C2 such that T(B2) = B2.
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We continue inductively, requiring at the ith stage, that Ct be
a circle of radius nt about the origin, nt ^ i, and B^ be a subset
of the interior of Ct. Thus we have proved the claim of the first
paragraph.

From this point on, the proof is exactly as in [8], if one
replaces "almost periodic homeomorphism" by "homeomorphism with
a family of equicontinuous iterates".

4* Dense orbits* Besicovitch in [4] and [5] gave an example
of a homeomorphism of the plane such that the positive semi-orbit
of some point is dense in E2. It is known that there is no homeo-
morphism of E* such that the positive semiorbit of each point is
dense [11]. Here we give a short argument that there is no homeo-
morphism of the plane such that the orbit of every point is dense.
Certainly this fact is known but we have been unable to find it in
the literature. The question as to the existence of such a homeo-
morphism in E3 or S3 seems to be unanswered.

THEOREM 5. There is no homeomorphism of E2 such that the
orbit of each point is dense.

Proof. Let us assume that h is a homeomorphism of E2 such
that the orbit of each point is dense.

Then h2 is an orientation preserving homeomorphism of E2 and
h2 cannot have a fixed point.

Let D be a bounded disk in the plane such that h2(D) ΠD = 0 ,
but D Π h\D) Φ 0 . Let p be a point of the boundary of D such
that h2(p) is a boundary point of D and let 7 be an arc from p to
h2(p) such that Ύ - {pf h2(p)}czD. Then F =\Jϊss-coh

t%(Ύ) is a flow
line of h2 [1].

Since Df)h2(D) = 0 , hZn(D)f)D = 0 for all nonzero integers n.
This follows from Proposition 1.1 of [1]. Thus, F is nowhere dense.

Let N = F\Jh(F). Then N is a nowhere dense subset of the
plane and h(N) c N. Thus, the orbit of every point of N is
nowhere dense. This is a contradiction.
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