DETERMINISTIC AND RANDOM ASPECTS OF POROSITIES

EsA JARVENPAA!, MAARIT JARVENPAA?, AND R. DANIEL MAULDIN?

University of Jyviaskyld, Department of Mathematics and
Statistics, P.O. Box 35 (Mad), FIN-40351 Jyviskyld, Finland®!-2
University of North Texas, Department of Mathematics,
P.O. Box 311430, Denton, TX 76203-1430, USA3
email: esaj@maths.jyu.fi', amj@maths.jyu.fi2,
and mauldin@unt.edu?®

ABSTRACT. We study porosities of limit sets of finite conformal iterated function
systems and certain random fractals. We characterize systems with positive porosity
and prove that porosity is continuous within a special class of one dimensional sys-
tems. We also show that for certain typical random recursive constructions related to
fractal percolation both 0-porous and 1/2-porous points are dense, that is, porosity
obtains its minimum and maximum values in a dense set.

1. INTRODUCTION

Since the introduction of Hausdorff dimension at the beginning of the last cen-
tury the number of different kinds of dimensions used both in fractal theory and
applications has exploded. In addition to Hausdorff dimension, the most widely
used ones are perhaps packing and box-counting dimensions. Each of these dimen-
sions has its own basic properties and one can find examples of sets which can be
distinguished by a given dimension but not by any other one. On the other hand
there are sets which cannot be distinguished from each other by any dimension
although intuitively they may look quite different. As shown later, in some cases
porosity is a parameter that can be used to single out sets that are so alike that they
cannot be separated from dimensional point of view. Instead of measuring sizes of
sets as most concepts of dimensions do, porosity estimates the holes contained in a
given set (see Definition 2.3).

There are several variations of Definition 2.3 appearing in the literature. The
definition of porosity goes back at least to the 1920’s. In fact, in [De] Denjoy
introduced a quantity called index which is a slight modification of the concept we
are using — the only difference being the choice of an upper limit as a substitute for
the lower one we are considering in (2.6). Dolzenko [Do] brought into use the term
porosity in connection with these quantities. He proved that o-porous sets (that
is, countable unions of porous sets) with respect to upper porosity form a proper
subclass of first category sets with measure zero. Based on this result it seems
natural that upper porosity is used for describing properties of exceptional sets, for
example, for measuring sizes of sets where certain functions are nondifferentiable.
For more details of upper porosity see [Z]. On the other hand, lower porosity has
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been used as a tool to find upper bounds for dimensions. Mattila [M] and Salli [Sa]
proved that large lower porosity implies small dimension for sets and J.-P. Eckmann,
E. Jarvenpad, and M. Jarvenpdd [EJJ], [JJ1], and [JJ2] considered corresponding
questions for measures. For other results related to this theme, see [KR] and [V].
The purpose of this paper is to study porosities from both deterministic and
random viewpoints. We will give examples indicating that within a suitable class
of self-similar sets porosity can be used to distinguish different sets with same di-
mension from each other. On the other hand we will illustrate that for certain
random fractals porosity will not make a difference even between sets with different
dimension. We begin by considering attractors of finite conformal iterated function
systems in section 2. We will prove that local porosity is typically a constant on the
unique limit set with respect to the natural measure it carries. The finite conformal
iterated function systems having positive porosity are also characterized. Finally,
we indicate that porosity is continuous within a suitable class of one dimensional
systems and give examples illustrating relations between dimensions and porosi-
ties of attractors. In section 3 we study random fractal constructions related to
Mandelbrot percolation. We show that for typical random sets both 0-porous and
1/2-porous points are dense, that is, porosity obtains the minimum and maximum
values in a dense set. This means that typically all the random fractal sets we are
considering look the same as far as porosity is concerned. We also prove that with
respect to the natural measure typical random sets cannot be uniformly porous.

2. FINITE CONFORMAL ITERATED FUNCTION SYSTEMS

We begin this section by recalling the setting and some results in [MU] that we
will need later. Let I = {1,..., N} be a finite index set containing at least two
elements. For all integers n > 1 let I™ be the set of all n-term sequences of elements
of I, and let I°° be the corresponding set of infinite sequences. Set I* = U,>ol"
where I° = {0)}.

A finite iterated function system S = {¢; : X — X | i € I} is a collection
of injections from a compact metric space (X, p) into itself which are contractive
meaning that for all ¢ € I there is a constant 0 < s; < 1 such that

p(¢i(), ¢i(y)) < sip(z,y)

for all z,y € X. For 7 = (11,...,7,) € I", let

¢T:¢T1°"'O¢Tn-

Further, we denote by |7| the length of 7, that is, |[7| =n for 7 € [". If 7 € [*UI*
and 1 < k < |7|, we use the notation 7|, = (r1,...,7%) € I*. For 7 = (r,...,7) €
I'and 0 = (01,...,0%) €EI* let Tx0 = (11,...,7,00,...,0%) € [TE.

Let 7w : I*®* — X be the natural projection, that is,

(1) = () ¢, (X).

The limit set associated to the iterated function system S = {¢; : X — X | i € I}
is defined by

J=n(r*)= U ) 6.0

TEI>® n=1
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The set J is the unique non-empty compact set which is invariant under S, that is,

Definition 2.1. A finite iterated function system S = {¢; : X — X | i € I} is
conformal if it has the following three properties:

(1) The set X is a compact subset of the euclidean space R? such that Int(X) =
X. Here Int(X) is the closure of the interior of X.

(2) The open set condition. For all i € T we have ¢;(Int(X)) C Int(X) and
for j # i we have ¢;(Int(X)) N ¢;(Int(X)) = 0.

(3) There is an open connected set V. C R? containing X such that for every i €
I the map ¢; can be extended to conformal contractive C1+*-diffeomorphism
¢i -V — ¢;(V). (C*F* is the family of continuously differentiable functions
which have a-Hélder continuous derivatives.)

Remarks 2.2. 1) Since I is finite Definition 2.1 (3) implies the bounded dis-
tortion property: there exists a constant K > 1 such that for all 7 € I* and for
all z,y € W we have |¢!.(y)| < K|¢!.(z)| (see for example [MU, Remark 2.3]). Here
W is an open connected set such that X CW Cc W C V.

2) The invariance of domain [ES, Theorem 3.11 p. 303] implies that in Definition
2.1 (2) we have always ¢;(Int(X)) C Int(X).

3) As pointed out to us by P. Mattila the smoothness assumption in Definition 2.1
(8) is needed only in the case d = 1. In the plane a conformal map is always analytic
or anti-analytic and in higher dimensions the smoothness follows from Liouuville’s
theorem [Re, Theorem 5.10].

The bounded distortion property and conformality imply that there is R =
dist(X,0W) > 0 such that forall 7 € I*,; x € X,and 0 <r < R

B(¢-(x), %Ilfb'rll?‘) C ¢:(B(z,r)) C B(¢- (), |47 [Ir)- (2.1)

Here dist is the distance between two sets, 0 is the boundary of a set, B(x,r) is the
closed ball with centre at 2 and radius r, and ||¢.|| = sup,cw |¢)(2)].

Next we state some well-known results for finite conformal iterated function
systems. The initial ideas for using the thermodynamic formalism in this context
are due to Sinai [Si], Bowen [Bo], and Ruelle [Rul], [Ru2]. For early contributions to
this subject see [Be]. The viewpoint we are following here is somewhat different. Its
development, particularly within the context of infinite iterated function systems,
and all proofs of the following facts can be found in [MU, Lemma 3.6— Lemma 3.14].

Let s be the zero of the topological pressure function

. 1 /1t
P:te lim —log ;ﬂnml

and let m be the unique s-conformal measure on .J. The measure m has the following
scaling property: there is a constant C' > 1 such that

C'r¥ <m(B(zx,r)) < Cr® (2.2)
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for all z € J and for all 0 < r < 1 diam(X) where diam(X) is the diameter of X.
Further, there exists Jy with U ,0(¢;(X)) C Jo C J such that m(Jy) = 0 and for
every point « € J \ Jy there is a unique 7 € I with 7(7) = z. In particular, for all
x € J\ Jp there exists a unique i € {1,..., N} with « € ¢;(X). Define T : J — .J
for all x € J by

T(z) = ¢;,' (z)
where i, = min{l <i < N |z € ¢;(X)}. Let o : I — I*° be the left shift, that
is, 0(1); = Ti41. Then
woo(r)=Tomn(r)

for all 7 € I*® with n(r) € J\ Jo. It is well-known that there exists a unique
o-invariant ergodic probability measure p* on I° which is equivalent to u, where
mgp = m. (We denote the image of a measure p under the map = by mu.) Hence
the measure m* = mypu* is T-invariant ergodic probability measure on J. Further,
m™* is equivalent to m and there exists C' > 0 such that

c-' < Cilﬂm <C (2.3)

where dm*/dm is the Radon-Nikodym derivative of m* with respect to m.
Next we will give definitions of porosity and uniform porosity for sets in terms
of local porosities.

Definition 2.3. Let A C R, x € RY, and r > 0. Define
por(A, z,7) = sup{p > 0| there is z € R? such that B(z,pr) C B(z,r)\A}. (2.4)
For ¢ > 0 and R > 0, the set A is uniformly (q, R)-porous if
por(4,z,r) > q (2.5)

for all x € A and for oll 0 < r < R. We say that A is uniformly porous if it is
uniformly (q, R)-porous for some q¢ > 0 and R > 0. The porosity of A is defined by

por(4) = inf por(4, z)

where por(A, z) is the porosity of A at a point x € R? given by
por(4,z) = liminf por(A4, z,r). (2.6)
r—0
Remark 2.4. Using open balls U(z,pr) and U(xz,r) instead of closed ones in Defi-

nition 2.3 one can replace supremum with mazimum in (2.4). To see this, consider
z € R? and r > 0 with por(A,z,r) > 0 and define

g(z) =sup{p>0|U(z,pr) CU(z,r)\ A}.
Since the continuous function g equals zero in OB(z,r) it obtains its mazimum at
some point zg € U(z,r). Clearly U(zo,g(z0)r) CU(z,7)\ A, and so
pOI'(A, T, T) = g(ZO)
=max{p > 0| there is z € R? such that U(z,pr) C U(z,r) \ A}.

According to the following result porosity of any conformal iterated function
system is typically a constant.
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Proposition 2.5. If S = {¢; : X — X | i € I} is a finite conformal iterated
function system, then the function x — por(J,x) is a constant for m-almost all
€ J.

Proof. It suffices to show that
por(J,z) = por(T'(J), T (z)) (2.7)

for all z € J\ Jy. Using the fact that J is invariant under 7 this implies that the
function z + por(J,z) defined on J \ Jp is invariant under T, that is, por(J,z) =
por(J,T(z)) for all z € J\ Jo, and hence a constant for m-almost all x € J because
m* is ergodic, m* and m are equivalent, and m(Jy) = 0.

For (2.7), let x € J\ Jop and € > 0. Since T is a continuously differentiable
function on the open set UY | Int(¢;(X)) D J \ Jo we have for all sufficiently small
r > 0 and for all y € B(z,r) that |T'(z)| —e < |T'(y)| < |T'(x)| +&. Consider p >0
and z € R with B(z,pr) C B(z,r) \ J. Then by conformality and by the fact that
foralli=1,..., N the restriction of T to Int(X;) is an injection we get

B(T'(2), (IT"(x)| — e)pr) C T(B(z,pr))
C T(B(x,m) \T(J) C B(T(x), (IT"(x)| +&)r) \ T(J),

and so (2|
T'(z)| —¢
pOr(T(J), T(.’I}), (|T’(.’E)| + E)’I") Z m por(J, Z, ’I").
Letting » — 0 and finally ¢ — 0 gives por(T'(J),T(z)) > por(J,z). The opposite
inequality follows similarly. O

In the following proposition we give a sufficient condition for the limit set to be
uniformly porous. The condition involves only the first iterates of the seed set. The
same result has been proved earlier by Urbariski [U] using different methods. We
will give a shorter direct proof which gives an explicit lower bound for porosity.
Note that the definition of a set X being porous used by Urbanski is what we call
X being uniformly (¢, 1)-porous in this paper.

Theorem 2.6. If S = {¢; : X — X | i € I} is a finite conformal iterated function
system with Int(X) \ Ui\il #:i(X) # 0, then J is uniformly porous.

Proof. Let R be as in (2.1). Then there exist 0 < § < R/diam(X) and z¢ € X
such that B(zg,d diam(X)) C Int(X) and

N
B(wo,8 diam(X)) N | ] ¢i(X) = 0. (2.8)

Noting that there exists D such that for all z,y € X there is a curve C;, connecting
x to y with length(C,,) < D dist(z,y), we obtain

dist(¢r (z), ¢+ (y)) < [|¢/ (| length(Cay) < DI|¢ || dist(z, y) (2.9)

for all 7 € I* and z,y € X. (Note that X is not necessarily convex or connected,
but we did use the assumption that V is connected.)
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Let z € J and r > 0. Fix 7, € 7 1(z). Consider a positive integer n such that
Ddiam(X)|l¢! | || <r < Ddiam(X)[l¢/ | [ From (2.1) and (2.9) we obtain

B(¢r, |, (o), %||¢'Tm\n||5diam(X)) C ¢r,), (B(zo,d diam(X))) C ¢, |, (X)
C B(:U,Ddiam(X)Hqﬁ'Tm‘nH) C B(z,r).

By (2.8) the set ¢, |, (B(xo,d diam(X))) does not intersect .J, and so

or(J,z,r) > Mol S 8 [P
PO BT = DRYIg, 11 = DR it v

which implies the claim. O

Remark 2.7. Let S={¢; : X - X |i=1,...,N} be a finite conformal iterated
function system. Clearly the condition Int(X)\L,IiI\;1 ¢i(X) # 0 is necessary for J to
have positive porosity. Using Theorem 2.6 and [MU, Proposition 4.4 and Theorem
4.5] we have the following characterizations for positive uniform porosity:

J is uniformly porous < J has positive porosity

N
& Int(X)\ | ¢i(X) #0 & L) =0 & dimp(J) < d.

Here L% is the Lebesque measure on R? and dimy is the Hausdorff dimension.

For comparing porosities of conformal attractors to those of conformal measures
we need the following definition.

Definition 2.8. The porosity of a finite Borel measure v on R? at a point z € R?
is defined by

por(v,z) = Eh_r)r(l) lign_}(r)lf por(v,z,r,€)

where for all r,e >0
por(v,z,r,e) = sup{p > 0 |there is z € R such that B(z,pr) C B(z,r)
and v(B(z,pr)) <ev(B(z,r))}-
Remark 2.9. [t is not difficult to see that the scaling property (2.2) of the confor-
mal measure m implies that
por(J,x) = por(m,x) = por(m”, z) (2.10)

for all x € J. In fact, if there is © € J with por(J,z) < t < por(m,x), then by (2.2)
for all sufficiently small e,r > 0 there is z € R such that B(z,tr) C B(z,r) and
m(B(z,tr)) <em(B(z,r)) < Cer®. For ally € JNB(z,tr) let dist(y, 0(B(z,tr)) =
qyr. The inequality

Cgyr)® <m(B(y,qyr)) < m(B(z,tr)) < Cer®
gives g, < C*/%e'/* implying that

B(z, (t — C**c'/*)r) c B(z,r) \ J.
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This gives the contradiction por(J,z) > t. The second equality in (2.10) follows
from (2.3).

As the last result of this section we will prove that porosity is continuous on a
special class of conformal iterated function systems on the real line. After that we
will give some examples. We begin by defining a metric on the space of conformal
iterated function systems consisting of N maps. Let S = {¢; : [0,1] — [0,1] | i =
1,...,N} be a conformal iterated function system. For simplicity we assume that
¢i(z) > 0for alli = 1,...,N (and for all z € [0,1]). Assume that ¢;(0) = 0,
¢N(1) =1, and v = ¢z+1(0) - ¢z(1) >0for¢i =1,...,N — 1. Let H be the
maximum of the Holder constants of ¢}, that is, |¢}(z) — ¢}(y)| < H|z — y|* for all
i=1,...,N and for all z,y € [0,1]. Denote the space of these systems by K and
define a metric d on KV by

N N-1
d(s,5) = Zm3X|¢§(ﬂ?) —¢i@)| + Y by — Al + |H - H],
i=1 i=1

where S = {¢1,...,06n}, S = {¢~)1, .. .,QNSN}, and %; and H are the gap lengths and
Holder constant of S, respectively. Let J(S) be the limit set of the system S.

For all 1 < i < N —1 let g; be the open interval (¢;(1),¢;+1(0)). For all
(m,...,mp) € I*, the intervals ¢,, o---o ¢, (g;) are called gaps. (We use the
interpretation ¢,, o --- o ¢, (g9;) = g; for p = 0.) Note that g N J(S) = 0 and
gN J(S) # 0 for all gaps g by the assumptions ¢;(0) = 0 and ¢ (1) = 1.

Lemma 2.10. Let x € J(S). Assume that the continuous map r — por(J(S),z,r)
has a local minimum at the point ro. Then there is a gap G C B(x,r9) \ J(S) such
that length(g N B(z,r0)) < length(G) for all gaps g with g N B(xz,ro) # 0.

Proof. There are a gap G’ with G' N B(x,r¢) # 0 and §y > 0 such that for all gaps
g with g N B(z,r) # 0 and length(g N B(z,r0)) # length(G' N B(z,70)) we have
length(g N B(z,79)) < length(G' N B(x,rp)) — do. Let A = length(G' N B(x,rp)). If
there does not exist a gap G C B(x, o) with length(G) = X then for all 0 < § < dg

A—9

pOI'(J(S),.’E,’I"O —6) = m < %

= por(J(S),x,ro)

giving a contradiction since rg is a local minimum point of the porosity function
r — por(J(S),z,r). O

Theorem 2.11. The function S ~ por(J(S)) is continuous on K.

Proof. Let S € KV with gap lengths v; = length(g;), i = 1,..., N — 1, and Holder
constant H. Set Apax = max;{||#}||}, Amin = ming ;{¢}(z)}, and Ymin = min;{v;}.

Let € > 0 be sufficiently small. Let € J(S), 7 = (r1,72,...) € I* such that
w(t) =z, and r > 0. Set

_ length(¢n 0---0 ¢Tj ([0> 1]))
" length(¢r, 0 0 ¢r_,([0,1])

Note that Ar; < Apax. Fix a positive integer k with

k k—1
I <r<IIM (2.11)
Jj=1 J

—



8 Esa and Maarit Jarvenpidd, R. Daniel Mauldin

Let a € [Ar,, 1] be such that r = a Hf;ll Ar, .

Since por(J(S),z) = liminf,_,o por(J(S),z,r) we may assume that r is a local
minimum point of the map r — por(J(S),z,r) when determining the value of
por(J(S),z,r). Let G = ¢y, 0--- 0 Py, (g;) C B(z,r) \ J(S) be as in Lemma 2.10
and let M = max{m > 0| A™, > K 2ypin}. Let L > 0 be the positive integer

such that n; = 7; foralli = 1,..., L and 41 # Tp41. Since |¢’T|L(mg)| =Ar A
for some zo € [0, 1], the bounded distortion property implies that for all y € [0, 1]

1
E)\Tl A S, W S KA A (2.12)
By (2.12) the ball B(z,r) contains a gap of length at least % Ar, ... Az, Ymin giving

E)\Tl e A Ymin ST < Ay A

If L <k —1 this implies AXf' < Eymin < Af1=F. Hence L > k — 1 — M. Using
again the fact that B(z,r) contains a gap of length at least %An oo A7 Ymin and
assuming that P > L+ M + 1 we get by (2.12) and Lemma 2.10 the contradiction

1
length(G) < KXr, ... A, ALy, < oA Ary Y

Thus P < L + M. Let Q be the smallest integer such that A2, < e%. Then

max

diam(¢"7L—Q+l 0:-+0 ¢77P (gj) U ¢TL—Q+1 0-:-0 ¢Tk—1 ([Ov 1])) < 5%' (213)

Further, there exists a constant H; depending on H, a, Amax, Amin, and K such
that for all w = (wy,...,w,) € I* and for all y, z,w € [0, 1]

16 (1) = ¢ (2)] < Higly, oy (W)ly — 2] (2.14)

To see this, write

n—1
|¢L} (y) - ¢LJ(Z)| S Z ¢LJ1 (¢(W27---7wn)(Z))¢I(WQ7...,Wk)(¢(wk+17---7wn)(Z))(ﬁ’(wk+27...7wn)(y)
k=0
H|¢(wk+2,...,wn)(y) - ¢(wk+2,...,wn)(2)|a-

Since ¢},(a) < %qﬁi(h) for all a,b € [0,1] and k, 1, the existence of H; follows by

the bounded distortion property.

Let S € KN such that d(S,S) < e. Then |¢}(z) — ¢i(x)| < &, | — 7| < &, and
|H — H| < ¢ for all i and . Thus all the constants defined above can be chosen
such that they work for all S with d(S,S) < e. This will be used in the forth
inequality in (2.15). There is a natural bijection between J(S) and J(S) via the
coding space. For z € J(S) we denote the corresponding point in J(S) by Z. Let S\T].
be the quantities of S that correspond to Ar;. Define @ as the image of a under the

affine bijection between [A,,, 1] and [\, 1] that fixes 1. Setting 7 = @ H;;ll /N\Tj we

obtain a bijection between radii in J(S) and J(S). Let w € ¢y, _q,, 00 by, (g;)U
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Grp_gi1 © 7 © Or,_, ([0,1]) be the minimum point of ng’TlL_E. Then by (2.13) and
(2.14) there are constants Cy, Cs, and C3 independent of ¢ such that

vor(ir) = O QLD Jon, 0000y 0 Pa— 1) 4D
o a f[(),l] ¢f"‘k—1 (t) d['(t) afd”'L—QJrlo'"od)Tk—l (o,1]) ¢;‘L_Q (t) dﬁ(t)
< fd’nL7Q+1°"'°¢np (95) (¢;7|L—Q (w) + Hl(b,(m,---mL—Q)(w)S) d['(t)
B a'fd)"'L*Q+1o-"od)"'k—l([0’1]) ¢;|L_Q(w) dﬁ(t)
< length (¢, o,y © - ° dyp(g5)) 4 Che
alength((ﬁm,@“ 0---0 ¢Tk—1 ([07 1]))
length (¢ -0 By (7
< eng EQS”L,QJJ o O~¢TIP (gJ)) + C26“|10g6|
alength(d,,_,,, -+ o ¢, ,([0,1]))
O, (1) dL(t) .
< fg’ 7 + C3e%|loge| < por(J, &, 7) + C3e|loge|
a ! dc
a’f[O,l] ¢T‘k71(t) (t) (215)

where £ is the Lebesgue measure on R. Here in the third inequality we use the
Holder continuity of ¢ and the fact that for a constant C' independent of ¢ we have
g (t) — ¢, (t)] < Ce for all w € IT* and t € [0,1]. The factor |loge| is due to the
definition of (). Hence

por(J,z) < por(J, &) + C3e”| loge. (2.16)

Changing the role of J(S) and J(S) we get the opposite inequality. Since (2.16) is

valid for all z € J(S) and & € J(S) the claim follows. O

Remarks 2.12. 1) The above proof can be extended to the space U5 K™ equipped
with a metric defined in a way that all the systems which are close to a fixed system
have the same number of maps.

2) For similarities we can ease the assumptions ¢1(0) = 0 and ¢n(1) =1 since
they do not affect porosity (see Example 1 below).

We conclude this section by studying examples of self-similar iterated function
systems. First we give an example for which porosity depends only on the con-
traction ratio. The second example shows that this is not always the case. This
indicates that, unlike for Hausdorff dimension, there is no simple formula for poros-
ity of iterared function systems. The examples are given in the real line. Clearly
the same phenomenon happens also in higher dimensional cases.

Ezamples. 1) Let S(ai,a2) = {¢; : [0,1] = [0,1] | i = 1,2} where ¢1(z) = Az + a1
and ¢o(x) = Az+as for some 0 < A < 1/2and ay,as € [0,1] witha; +A <ax < 1-A.

Then
por(J(S)) = 21(1_7_2;) (2.17)

independently of the values of a;. It is not difficult to see that (2.17) gives the
right value for a; = 0 and as = 1 — A. The critical points are the inner endpoints of

intervals. The claim follows by noting that the affine bijection between J(S(0,1—X\))

and J(S(ai,a2)), v = “B=tx + {2, preserves porosity.
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2) Let S = {¢; : [0,1] — [0,1] | i = 1,2,3} where ¢;(x) = Az + a; such that
$1(0) =0, ¢3(1) = 1, and 0 < 71 = ¢2(0) — ¢1(1) < 72 = ¢3(0) — ¢2(1). Let
dy = dist(J(S),1/2) and dy = dist(J(S), A — A2 + (322 + v1 + Ay1)/2). Then

( Y2

for 22 <y
%—dﬁ-’vz %—dl R
-
e for Ay < < %721
32
2
por(J(S)) = ¢ 95 for 229 <1 < M,
342
SA2—dy
= for Xy <91 < 20—
71+%(3>\2+’Yl+>\71)—d2 7 M= Ty 1%
2
A2 for v1 < A29s.

\ >\2V2+%(3)\2+71+>\V1)*d2
3. UNIFORM POROSITY AND RANDOM RECURSIVE CONSTRUCTIONS

The results of this section centre around special random fractals in the real line.
The higher dimensional cases can be treated similarly. Our setup is as in [GMW]
and [MW].

Let I = {0,1}. We denote by Q the set of functions w : I* — {¢,n}. Each
w € Q can be thought of as a code that tells us which intervals we choose (c) and
which we neglect (n). More precisely, let w € Q. For all positive integers k we
divide the unit interval [0, 1] into 2* closed dyadic intervals of length 27%. For all
o € I* we use the notation J, for the closed dyadic subinterval of [0, 1] of length
27% containing those points whose base-2 expansion begins with o. If w(o) = n for
o € I*, then J,(w) =0, and if w(o) = ¢, then J,(w) = J,. In the case w(f)) = ¢ we

set Jp(w) = [0, 1]. Define
K,=() U Jow)
k=0 gcI®
Fix 0 < p < 1. We make the above construction random by demanding that if J,

is chosen then J,.o and J,. are chosen independently with probability p. Let P
be the natural probability measure on Q, that is, for all o € I* :

P{we|w@) =c}) =1,

Plw e |w(@x0)=cand w(o*1) =c} | {w € Q| w(o) =c}) = p?,
Plw e |w(@x0)=nandw(o*1)=n}|{weQ|w(o)=c}) =(1-p)?
PlweQ|w(ox0)=cand w(ocx1)=n} | {we Q| w(o)=c})=p(1l-p)
PlweQ|w(oxl)=cand w(oc*x0) =n}|{we Q|w(o) =c})=p(l—p)
PlweQ|w(ox0)=nandw(o*x1)=n}|{weQ|w(o)=n})=1

where the notation P(A | B) means the conditional probability of A given B.

It is a well-known result in the theory of branching processes that if the expec-
tation of the number of chosen intervals of length 1/2 is bigger than one then the
limit set K, is non-empty with positive probability (see [AN, Theorem 1, p.7]). In
our case this expectation equals 2p since both left and right intervals are chosen
independently with probability p. So

Q=PweQ|K, £0}) >0 if p>%.
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The value of @ is easy to calculate. In fact, if K, is non-empty, then either K, N
[0,1/2] # 0 or K, N[1/2,1] # §. Thus

Q =2pQ — p*Q*, (3.1)

that is, @ = 0 or Q@ = (2p — 1)/p®. Since Q > 0 for p > 1/2 the only possible
solution is (2p — 1)/p?. From now on we assume that 1/2 < p < 1. Note that for
p =1 we have K, = [0, 1] for P-almost all w € Q.

For 0 < ¢ < 1/2 define A, (t) = {z € K, | por(K,,z) =t}. Let B = {w € Q|
K, # (}. We use the notation D for the family of all closed dyadic subintervals
of the unit interval [0,1]. The proof given here for the following theorem works
for similar constructions in higher dimensions as indicated in Remarks 3.9.2, but
the notation gets more complicated and so we present the argument for the one-
dimensional case.

Theorem 3.1. For P-almost all w € B both A, (0) and A, (1/2) are dense in K,,.

Proof. Let D € D and let o € I'* be such that J, = D. We say that D is chosen by
w e Nif w(o) = c and D is neglected by w if w(o) = n.

We first prove that for P-almost all w € B the set A,,(1/2) is dense in K. Since
p < 1 we have P(Ep) =0 for all D € D where

Ep ={w e Q| D" is chosen by w for all dyadic intervals D' C D}.

Define

E = U Ep.

DeD

Then P(E) =0. Let w € B\ E. For any z € K, and r > 0 there is a dyadic interval
D C B(z,r) containing z and a dyadic interval D' C D which is not chosen by w.
Since K, is closed one of the endpoints of the connected component of [0,1] \ K.,
including D', say y, belongs to the set K, N B(z,r). Clearly por(K,,y) = 1/2
implying the first claim.

Now we show that for P-almost all w € B the set A,(0) is dense in K,. A
sequence T = (11, 7Ts,...) € I is said to carry a (k,w)-block if w(1) € K, and if
there exists a positive integer [ such that for all o € I* we have Jrjive N Ky # 0,
o _yerese N Ky # (), and o _gwre wreno) N Ko # 0 where 77 = 0if 7, = 1 and
7f =11if 7 = 0. The dyadic interval J.|, is the seed of the (k,w)-block and J-
is the root of it.

We begin by proving that for all positive integers k for P-almost all w € B there
exists 7 € I*® which carries a (k,w)-block. Setting for fixed k

li li—2

Q = P({w € Q| there exists 7 € I°® which carries a (k,w)-block})

we have
Q=2pQ —p*Q> + f(p,Q)

where the term f(p, Q) > 0 stems from the case that a (k,w)-block starts right from
the second level and there are no (k,w)-blocks starting from higher levels. More
precisely, f(p,@Q) is the P-measure of the functions w that satisfy the following
property: there is 7 € I* that carries a (k,w)-block having a dyadic interval of
length 1/4 as the seed, and there are no points 7/ € I® carrying (k,w)-blocks
having seeds with length shorter than 1/4. Since the parabola —p%z? + (2p — 1)z
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is positive for z € (0, (2p — 1)/p?), the only possible solutions for @ are 0 and
(2p — 1)/p? (recall that P(B) = (2p — 1)/p?). Clearly, the set of those functions w
for which there is 7 € I*° carrying a (k,w)-block that has a dyadic interval of length
1/4 as a seed has positive P-measure, and so the only solution for @ is (2p —1)/p?.

What we have proved is the following: for all positive integers k and for all dyadic
intervals D

P({w € Q |there is 7 € I*® with «(7) € D such that 7 carries a (k,w)-block
having the root in D} | {w € Q| K,ND #0}) = 1. (3.2)

Let
By = {w € B | there is 7 € I*® carrying a (1,w)-block}.

Then B; = UpepCP for
CP = {w € By | there is 7 € I*® carrying a (1,w)-block having the seed D},

and according to (3.2) we have P(B1) = P(B). For j = 2,3,... set B; = Upep B/,
where

BjD ={we C'jD_l | there is 7 € I*° carrying a (j, w)-block having the seed in D}
and

CP ={we By |foralll =1,...,k there is 7; € I*® carrying an (I,w)-block
having the seed S; with S; D ++- D Sg_1 D S = D}.

From (3.2) we get the equality P(B’) = P(C[,) giving in turn P(B;) = P(B)
since Bj_1 = UDGDCﬁl.

If w € Boo = N$2, By, then for all i there is 7; € I with n(r;) € K, such that for
all | = 1,...,4 the sequence 7; carries an (I,w)-block having the seed S; such that
S1 D -+ D 8. Since K, is closed 2o, = lim;_, oo 7(7;) € K. It is not difficult to
see that por(K,,Z«) = 0 (for details see Lemma 3.7). Note that P(By) = P(B).
Hence for any D € D for P-almost all w €  with K, N D # () there is y € K, N D
such that por(K,,y) = 0. This in turn implies the claim. O

In Section 2 we saw that porosity may vary for self-similar sets having same
dimension. Theorem 3.1 in turn indicates that almost surely the random fractal sets
we are considering look the same as far as porosity is concerned. It is well-known
that the dimension of a typical set depends on p [MW, Theorem 1.1]. Denoting by
v,, the natural measure carried by a typical set [MW, Theorem 3.1], it is natural to
ask what is the v,-measure of a typical set A, (t). In particular, one may ask what
is ess inf, por(K,,x) with respect to v,. To indicate the difficulties we make the
following conjecture.

Conjecture 3.2.

v, —ess inf por(K,,z) = 0.

We finish this section by taking a step into this direction by showing that K, is
not v,-uniformly porous.
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Definition 3.3. Let p be a finite Borel measure on RY. A set A C R? is p-
uniformly (q, R)-porous if (2.5) is true for u-almost all x € A and for all0 < r < R.
The set A is called p-uniformly porous if it is p-uniformly (q, R)-porous for some q
and R.

Proposition 3.4. For allqg>0 and R >0
P{w € Q| K, is non-empty and v,,-uniformly (g, R)-porous}) = 0.

As an immediate consequence we have:

Corollary 3.5.

P{w e Q| K, is non-empty and v, -uniformly porous}) = 0.

Remark 3.6. Using [MW, Theorem 3.4] it is easy to see that the support of v,
equals K,,. Thus Proposition 3.4 follows from Theorem 3.1 using the fact that the
closure of any uniformly (q, R)-porous set is uniformly (q, R)-porous. However, we
give an alternative proof which, although being longer, is much more informative
and gives some intuition what is going on.

For the proof of Proposition 3.4 we need the following lemmas.

Lemma 3.7. Let ¢ > 0 and R > 0. There are positive integers n = n(q) and
L = L(q, R) such that the following property holds for P-almost all w € B for which
K, is v,-uniformly (q, R)-porous: for alll > L and for all 7 € I with n(1) € K,
there exists a finite word o with |o| = n such that J;|, .., N K, = 0.

Proof. Let
A ={we B| K, is v,-uniformly (g, R)-porous}.

Let n and L be such that ¢ > 272 and R > 2~F7~1. Setting, for all dyadic
subintervals D of [0,1], Cp = {w € Q | K,ND # @} and Ap = {w € Cp |
v, (D) > 0}, [MW, Theorem 3.4] implies that P(Cp\ Ap) = 0. (Note that in [MW,
Theorem 3.4] it is assumed that the expectation of certain random variable needed
in the construction of v, is positive. In our case this expectation equals 1 [MW,
pp. 327-328]). Hence P(E) =0 for E = Up(Cp \ Ap). Consider w € A\ E. Let
I > L and 7 € I*® such that 7(7) € K. Assuming that J;|, ., N K, # 0 for all o
with |o| = n, we have v, (J;,, 0, N Ku) > 0 for o9 = (1,0,0,...,0) € I". Then for
a set of points x € J;|,, «», With positive v,-measure we have

—In—n
2 — 27n+1

— —In—
272 < por(Ky, 2,27 ) < Sy

which is a contradiction. O

For all positive integers k, let Dy, be the family of all closed dyadic subintervals
of the unit interval of length 27%. Let n be an integer and let D € Dj. The set
K, N D is n-notched if there is D' € Dy, with D' € D and K, N D' = {).

Lemma 3.8. Let n be a positive integer. There exists a real number v < 1 depend-
ing on p and n such that for all positive integers k and for all D € Dy,

P{we Q| K, N D is non-empty and n-notched}) = yP({w € Q| K, N D # 0}).
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Proof. Let k be a positive integer and D € Dy. Let o € I* such that J, = D. Set
Q = (2p—1)/p*> = P(B). We use for all positive integers i and j and for all D € D;
the notation D/} ; for the family of all D € D;,; with D C D. Setting

F={weQ| K,NnD is non-empty and n-notched},
we have

PH{weQ|K,ND#0})
=P(F)+P{we Q| K,ND #0and K,ND' # 0 for all D' € D}, })

= P(F) + P({w € Q| w(o) = c})Q*" Hin.

Since P({w € Q | K, N D # 0}) = QP({w € Q | w(o) = c}) the claim follows by
setting y=1- Q¥ ' [[L,p*. O

Proof of Proposition 3.4. Let
F ={w € Q| K, is non-empty and v,-uniformly (g, R)-porous}.
Let n and L be as in Lemma 3.7. Defining for all positive integers | > L

= ({wEQ|meD7é(Z)ifandonlyifDeA}r‘|

ACDin
A#0D

ﬂ {weQ|K,NDis n—notched}),
DeA

Lemma 3.7 implies that for all positive integers k
L+k
P(F) < P(( F).
=L
Hence, it suffices to prove that
L+k
P(( B) <+ P(B), (3.3)

=L

where v < 1 is as in Lemma 3.8. This implies the claim since v does not depend on
k. Using the fact that for every Dy1 € D(p4p—1)n,

{w € Q |K, N Dj_; is non-empty and n-notched}

= U {we Q| K,ND,N D #0if and only if Dy € A},
ACDRLL (34)
Ap#£0D



Deterministic and random aspects of porosities 15

we get

L+k

(m-x (I( £ [I-( %

AoCDrn, Do€Ao D DieAy Dy _
Cho0 ALCD( ), ARCD
A1760 Ak#m
Up,ea, P1#Do UDkEAk Dy#Dj—1

[ H P({w € Q| K, N Dy, is non-empty and n—notched})}

DyeAy
x[ I PUweQ|K,nE=0}))
E DALY \Ar
x [ 1 P({w e Q| KyN By :(z)})D
B 1 €Dy VA1
]x[ I1 P({w€Q|KwﬂE0:®})]. (3.5)
Eo€Drn\Ao

Note that by Lemma 3.8 and (3.4) we have

Z [ H P({w € Q| K, N Dy, is non-empty and n—notched})}
ALCDRSY Dreds

Ap#£0
UDkEAk Dy#Dy—1

<[ I PUweo|k.nE=0})])

Ey €DDk71 \Ak

(L+k)n
- 3 P[] P({we | K,n D #0})]
A CDRoY DueAs
Ap#0

x[ I PUweQ|K,nE=0}))

BLeDGAG), \ A
<y Y [ II PUwe K nDy#0})]
AkCD(DLk_;kl)n Di€Ar
AR#£D

x[ I1 P({w€Q|KwﬂEk:(Z)})D
EkG'D(,ikJ:kl)n\Ak
=vP{w € Q| K, N Dj_; is non-empty and n-notched})
where the number of elements in Ay, is denoted by |Ag|. Iterating this & times in
(3.5) implies (3.3). O

Remarks 3.9. 1) The inequality (2.2) is not valid for v,. So it is possible that
por(v,,z) > por(K,,z) for some x € K, which makes the evaluation of por(v,)
an interesting (open) problem.
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2) As mentioned at the beginning of this section the proofs go through for much
more general systems. One can divide a cube in R? into a finite number of subcubes
of different side lengths. Also each subcube can be chosen with different probability.
Of course, in this general setting for example the equation (3.1) is much more
complicated.

3) One natural question for further investigations is how generally the results of
this section are valid. For the denseness of 1/2-porous points one needs only that the
probability for choosing everything is zero. For proving the denseness of 0-porous
points at least some geometrical constrains must be implied.
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