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RIGIDITY OF CONNECTED LIMIT SETS OF CONFORMAL IFS

R. DANIEL MAULDIN, VOLKER MAYER, AND MARIUSZ URBANSKI

ABSTRACT. We consider infinite conformal iterated function systems in the phase space IR¢
with d > 3. Let J be the limit set of such a system. Under a mild technical assumption which
is always satisfied if the system is finite, we prove that either the Hausdorff dimension of J
exceeds 1 or else the closure of J is a proper compact segment of either a geometric circle or
a straight line.

1. Introduction and preliminaries

In this paper we explore the structure of limit sets J of infinite conformal iterated function
systems whose closure is a continuum (compact connected set). Under a natural easily verifi-
able technical condition (always satisfied if the system is finite), we demonstrate the following
dichotomy. Either the Hausdorff dimension of J exceeds 1 or else J is a proper compact
segment of either a geometric circle or a straight line if d > 3 or an analytic interval if d = 2
(comp. Theorem 1.3). From the viewpoint of conformal dynamics, this result can be thought
of as a far going generalization of results originated in [Su] and [Bo] which are formulated
in the plane case. The proofs contained there use the Riemann mapping theorem and can
be carried out only in the plane. The proof presented in our paper is different and holds in
any dimension. The reader is also encouraged to notice an analogy between our result and a
series of other papers (see for ex. ([Bo|, [FU], [MU2|, [Mal, [Pr], [Ru], [Su], [U1], [UV], [Z1],
[Z2]) which are aimed toward establishing a similar dichotomy. However, to our knowledge,
all these results as those in [Bo] and [Su] were formulated in the plane and used the Riemann
mapping theorem, except those in [MU2]. The current result is however much stronger than
that in [MU2] and in particular with our present approach the main result of [MU2] can be
strengthen as described at the end of this section. Another corollary of our result is the fol-
lowing: if a continuum C in IR? is the self-conformal set generated by finitely many conformal
mappings satisfying the open set condition, the Hausdorff 1-measure of C' is finite and one of
the mappings is a similarity, then the continuum is a line-segment. In particular, this holds
if all the maps are similarities, a result obtained early on by Mattila [Ma)].

To start the preliminaries, let I be a countable index set with at least two elements and
let S ={¢;: X — X :i € I} be a collection of injective contractions from X into X for
which there exists 0 < s < 1 such that p(¢;(x), ¢i(y)) < sp(z,y) for every i € I and for every
pair of points z,y € X. Thus, the system S is uniformly contractive. Any such collection
S of contractions is called an iterated function system. We are particularly interested in the
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properties of the limit set defined by such a system. We define this set as the image of the
coding space under a coding map as follows. Let I* = J,,~; I", the space of finite words, and
forr eI, n>1,let ¢, =d; 0, 0---0¢. . Let I® = {{r,}2°,} be the set of all infinite
sequences of elements of I. If 7 € I UI* and n > 1 does not exceed the length of 7, we
denote by 7|, the word 7175 ...7,. Since given 7 € I*° the diameters of the compact sets

¢-1,(X), n > 1, converge to zero and since they form a descending family, the set

Fi G-, (X)

is a singleton and therefore, denoting its only element by 7(7), we define the coding map
m I — X.

The main object in the theory of iterated function systems is the limit set defined as follows.

J=2(1%) = U ) érmlX)

T€l>® n=1

Observe that .J satisfies the natural invariance equality, J = U;c; ¢i(J). Notice that if I is
finite, then .J is compact and this property fails for infinite systems. Let S(co) be the set of
limit points of all sequences x; € ¢;(X), ¢ € I', where I' ranges over all infinite subsets of I.
In [MU1] the following has been proved

Proposition 1.1. If lim;c; diam(¢;(X)) = 0, then J = J U Uyer- ¢u(S(00)).

An iterated function system S is said to be conformal if X C IR? for some d > 1 and the
following conditions are satisfied.

(1a): Open Set Condition (OSC). ¢;(IntX) N ¢;(IntX) = O for every pair i,j € I, i # j.

(1b): There exists an open connected set V such that X C V C IR? such that all maps
¢i, i € I, extend to C' conformal diffeomorphisms of V into V. (Note that for d = 1
this just means that all the maps ¢;, i € I, are C'' monotone diffeomorphisms, for d = 2
the words conformal mean holomorphic or antiholomorphic, and for d > 3, the maps ¢;,
i € I are Mobius transformations. The proof of the last statement can be found in [BP]
and [Va] for example, where it is called Liouville’s theorem)

(1c): (Cone Condition) There exist a, ! > 0 such that for every z € 0X C IR? there exists
an open cone Con(z,u,a) C Int(X) with vertex z, the symmetry axis determined by
vector u € IR? of length [ and a central angle of Lebesgue measure . Here Con(z, u, o) =
{y:0< (y—m,u) <cosally— || <1}

(1d): (Bounded Distortion Property (BDP)). There exists K > 1 such that

|67(y)| < K|¢(2)]

for every 7 € I* and every pair of points z,y € V, where |¢/ (z)| means the norm of the
derivative.



RIGIDITY OF CONNECTED LIMIT SETS OF CONFORMAL IFS 3

Under these assumptions it was shown in [MU1] that the hypothesis of Proposition 1.1 holds
and we can change the order of the union and intersection operations to obtain:

J=7(I7) = OHU ¢r(X).

In fact throughout the whole paper we will need one additional condition which (comp.
[MU1]) can be considered as a strengthening of (BDP).

(1e): There are two constants L > 1 and a > 0 such that

18] = 16(2)]| < Lllgillly — =]
for every ¢ € I and every pair of points z,y € V.
We remark that in the case d > 3 the conditions (1d) and (1le) are always satisfied, the latter
with o = 1.
Let us first collect some geometric consequences of (BDP). We have for all words 7 € I*
and all convex subsets C' of V/

diam(6,(C)) < ||| diam(C) (1)

and
diam(¢,(V)) < D||¢. |, (1.2)
where the norm || -] is the supremum norm taken over V' and D > 1 is a universal constant.

Moreover,

diam(¢, (7)) = D[ |¢ | (1.3)

and
- (B(x,1)) D B(:(x), K | ]|r), (1.4)

for every x € X, every 0 < r < dist(X,0V), and every word 7 € I*.

Let us state now an important geometrical feature of conformal systems related to the bounded
distortion property. A detailed proof of this fact can be obtained by a slight improvement of
Lemma 6 in [MU2].

Lemma 1.2. For every 5 > 0 and every 0 < a < [ there exists n > 0 such that for every
v € X, every u € R® with ||ul| < n and every w € I*

b (Con(z,u, o)) C Con(g,(x), 2., (x)u, B).

Let us now recall from [MU1]| that a Borel probability measure m is said to be ¢-conformal
provided m(.J) =1 and for every Borel set A C X and every i € T

m(@:(A)) = | [ dm

and
m(¢i(X) N ¢;(X)) =0,
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for every pair i,j € I, i # j. It has been proved in [MU1] that if a t-conformal measure exists,
then ¢t = h, the Hausdorff dimension of the limit set Jg of S and this measure is unique. The
system S is called regular if a conformal measure exists. The main result of our paper is the
following.

Theorem 1.3. Ifd > 3, S = {¢;}icr is a conformal IFS, J is a continuum (compact con-
nected) and dimpy (S(o0)) < dimy(J), then either

(a): dimg(J) > 1 or

(b): J is a proper compact segment of either a geometric circle or a straight line.

In addition, if any one of the maps ¢; is a similarity mapping, then J is a line segment.

We note that the technical condition in Theorem 1.3 is necessary. Example 5.2 of [MUI]
shows that the dichotomy of Theorem 1.3 in general fails if dimy(S(c0)) > dimg(J). We
also mention that having the first part of this theorem proven, the “in addition” part follows
immediately from the proof of Lemma 2.5.

We would also like to remark that in the case d = 2, for every ¢ € I, ¢;; is a holomorphic
map bi-holomorphically conjugate with the linear map ¥ (2) = x;; + ¢'(x;;)(2 — x;;) on some
neighbourhood W of x;;. Proceeding then similarly as in the proof of Theorem 1.3 we could
demonstrate the same statement with the segment of the line or the circle replaced by an
analytic arc.

Since in the finite case the set S(oo) is empty, we get immediately from Theorem 1.3 the
following.

Corollary 1.4. Ifd > 3, S = {&;}icr is a finite conformal IFS and J is a continuum, then
either

(a): dimg(J) > 1 or

(b): J is a proper compact segment of either a geometric circle or a straight line.

In addition, if any one of the maps ¢; is a similarity mapping, then J is a line segment.

We note that with the methods of this paper one can strengthen the theorem placed on p.88
of [MU2] which concerns conformal repellers, by replacing the words “smooth Jordan curve”
by geometric circle if d > 3 and a real-analytic Jordan curve if d = 2.

2. Proof of Theorem 1.3

The proof of this theorem will consist of several steps. First of all we assume from now on
throughout the entire paper that the assumptions of Theorem 1.3 are satisfied and dimg (.J) =
1. Our goal is to show that then the item (b) is satisfied. Since dimy(S(o0)) < dimpg(J) =1
and .J is a continuum, using Proposition 1.1, we conclude that H'(.J) > 0. It therefore follows
from Theorem 4.16 in [MU1] that the system S is regular. Let m be the corresponding 1-
dimensional measure. By Lemma 4.2 in [MU1] and since dimg(S(00)) < dimg(J) = 1 the
1-dimensional Hausdorff measure #' on .J is absolutely continuous with respect to m and %
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is uniformly bounded away from infinity. So, J is a continuum whose H' measure is finite.
Therefore, the following fact follows from [EH] and [Wh].

Lemma 2.1. J is a locally arcwise connected continuum.
Given z € IR?, § € IPIRY, and v > 0, we put
Con(z,,~) = Con(z,n,v) U Con(z, —n,7),

where 1 € IR? is a representative of §# € IPIR?. We recall that a set Y has a tangent in the
direction # € IPIR? at a point x € Y if for every v > 0

. H'(Y N (B(x,r) \ Con(z,0,7))) .

Since we will consider only tangents of 1-sets (the set J above, this definition coincides with
the definition given on p. 31 of [Fa]). Following [MU2] we say that a set Y has a strong
tangent in the direction # € IPIR? at a point = provided for each 0 < 3 < 1 there is some
r > 0 such that Y N B(x,r) C Con(z, 0, 3). In [MU2] we have proved the following.

Theorem 2.2. If Y is locally arcwise connected at a point x and Y has a tangent 0 at x,
then Y has strong tangent 0 at x.

We call a point 7 € I* transitive if w(7) = I°°, where w(7) is the w-limit set of 7 under the
shift transformation o : I* — I*°. We denote the set of these points by I;° and put

Jt = ,/T([too)

We call the J; the set of transitive points of J and notice that for every 7 € I;°, the set
{m(o™7) :n > 0} is dense in J or (.J if this is the space under consideration).

Lemma 2.3. If J has a strong tangent at a point x = 7(7), 7 € I, then J has a strong
tangent at every point m(w(T)).

Proof. Suppose on the contrary that J does not have a strong tangent at some point
y € m(w(7)). Let § € IPIR? be the tangent direction of J at z and let {n;,}2°, be an increasing
sequence of positive integers such that limy_,., (0™ 7) = y. Passing to a subsequence, we
may assume that

!
bul,) (7)
klim —( |:’“), 0=
2| (da,) @)
for some & € IPIR?. Since J does not have a strong tangent at 7, there exists 0 < 3 < 1 such
that for every r» > 0

J0 B(y,r)\ Jn Con(y,§,B) # 0.
Then

JN B(w(o™7),r)\ JNCon(m(c™7),&, 3/2) £ 0 (2.1)



6 R. DANIEL MAULDIN, VOLKER MAYER, AND MARIUSZ URBANSKI
for all £ large enough where
~ (eah) @
[(0h,,) @)
But in view of Lemma 1.2 applied for gb;llnk we see that for all » > 0 small enough the following
holds.

6.

Gufa, (B(m(0™7),7) \ Con(m(7), &, B/2)) C

, ol (T@"T))
cB@wMMMNﬁ”(LW'<ﬂwwm&%>

w'"k

= B(a, g, 1) \ Conla, 0, 5/4)
Since in view of (2.1), JN ¢y, (B(ﬂ'((jn’“T), )\ Con(m (o™ ), &, 6/2)) # ), we conclude that
for every k large enough, J N (B(x, r||¢)fu‘nk ||) \ Con(z, 0, 5/4)) # (). Since limy,_, ||¢)L}‘nk|| =

0, this implies that 6 is not the strong density direction of J at x. This contradiction finishes
the proof. m

Corollary 2.4. The continuum J has a strong tangent at every point.

Proof. Since H'(J) < oo, in view of Corollary 3.15 from [Fa], J has a tangent at H'-a.e.
point in J, and therefore at a set of points of positive m measure. Since m(J;) = 1, there
thus exists at least one transitive point x in J having a tangent of .J. By Theorem 2.2 and
Lemma 2.1, .J has a strong tangent at x, and it then follows from Lemma 2.3 that .J has a
strong tangent at every point. The proof is complete. B

Now, the following lemma finishes the proof.

Lemma 2.5. Suppose that ¢ : IR? — R4, d > 3, is a conformal diffeomorphism that has
an attracting fized point a (¢p(a) = a, |¢'(a)| < 1). Suppose that a compact connected set M
has a strong tangent at a, that (M) C M and that lim,_, ¢"(x) = a for all x € M. Then
M is a segment of a ¢-invariant line or circle. If ¢ is affine (p(00) = 00), then the former
possibility holds.

Proof. Since a is an attracting fixed point of ¢, there exists a radius » > 0 so small that
ot (Rd \ B(a, T)) c R\ B(a,r), where B is the Alexandrov compactification of JR? done by
adding the point at infinity. Since R’ \ B(a,r) is a topological closed ball, in view of Brouwer

fixed point theorem there exists a fixed point b of ¢~! in & \ B(a,r). Hence b is also a fixed
point of ¢ and b # a. Then the map

Y =1ip10¢0iy,

(ip, equals identity if b = 00) fixes oo which means that this map is affine, and w = iy, (a)
is an attracting fixed point of ¢. In addition (M) C M, where M = i, (M), w € M,
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and M has a strong tangent at w. Let [ be the line through w determined by the strongly
tangent direction of M at w. Since 9)(w) = w, since 1(l) is a straight line through w and
since (M) C M, we conclude that (I) = . Suppose now that M is not contained in I.
Consider « € M \ I. Then for every n >0

Y™ (@) € p(M)\ () C M\

and since the map v is conformal and affine

2™ () —w, 1) = Z(P" (& = w),¥"(1)) = L(z — w, ).

Since limy,_,00 ¥0"(2) = w, we therefore conclude that [ is not a strongly tangent line of M at
w. This contradiction shows that M C [. Since in addition M is a continuum, it is a segment
of [. We are done. B

And indeed to conclude the proof of Theorem 1.3 it suffices to pick an arbitrary index i € T
(affine if exists) and to put ¢ = ¢;, M = J and a = x;, the only attracting fixed point of ¢;
belonging to J.
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