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Abstract

Let m € N. Let 6 be a continuous increasing function defined on R*,
for which #(0) = 0 and #(¢)/t™ is a decreasing function of ¢. Let || - ||
be a norm on R™, and let p, H? = Hg, Pl = Pg denote the corre-
sponding metric, and Hausdorff and packing measures, respectively.
We characterize those functions 6 such that the corresponding Haus-
dorff or packing measure scales with exponent a by showing it must
be of the form 6(t) = t“L(t), where L is slowly varying. We also show
that for continuous increasing functions # and 1 defined on RT, for
which 6(0) = n(0) = 0, H? = P7 is either trivially true or false: we
show that if H? = P7, then H? = P" = ¢- X for a constant ¢, where X
is the Lebesgue measure on R™.

For some time now, Hausdorff measures of the form #’ where the gauge
function # has the form 6(t) = ¢t*L(t) with L slowly varying have occurred
with a growing frequency in stochastic processes and dynamics. One main
reason for the appearance of such measures is that these measures obey a
scaling law: H?(cA) = c*H?(A) is satisfied for every ¢ > 0 and A C R*. Usu-
ally the function L has the form of some combination of iterated logarithms
raised to some power, e.g., the result of Taylor and Wendel [12] that the zero
sets in Brownian bridge has positive finite measure with respect to the Haus-
dorff measure determined by 0(t) = t'/?(log(log(1/t))'/? or, more generally,
the exact Hausdorff dimension of random fractals given in [2]. Packing mea-
sures P with 6 of the same form have been making their appearance, e.g.
[4], [11],[7]. Packing measures were introduced by Sullivan[10], Tricot[14] and
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Taylor and Tricot[13]. Sullivan showed that in the study of geometric limit
sets sometimes it is the Hausdorff measure which is important and sometimes
the packing measure, a theme which continues to appear in dynamics, e.g.
[7]. Although the importance of packing measure has been becoming more
and more apparent, they remain somewhat more difficult to deal with. The
central issue revolves around the two stage definition of a packing measure.
Let A C R and § > 0. We say that {(z;,r;)}, is a d-packing of A if x; € A,
§>2r;>0and r,+7r; <d(z;,z;) fori, j=1,...,n,i# j. Then the closed
balls B(z;,r;) are disjoint. We first define the prepacking measures P and
PY by

P!(A) = sup { ZH(?ri) :{(x;,r;) i, is a d-packing of A}
i=1
and
PY(A) = lim PY(A).

So far this definition bears some similarity to the definition of Hausdorff
measure. However, we are measuring the maximality of a packing, not the
efficiency of a covering. Also, since P? is not countably subadditive one needs
a standard modification to get an outer measure out of it. Thus, we define
the packing #-measure for A C X by

Pl(A) = inf{iP(’(Ai) CAC OA,}

It is this second step which makes packing measure more problematic to deal
with (This complexity is made explicit in [6]. It is an important fact that
these packing measures obey the same scaling law. One major purpose of
this paper is to show that under mild restictions the converse holds.

R.D. Mauldin and S.C. Williams investigated in [8] those Hausdorff mea-
sures H’, which obey a scaling law: they proved that for every continuous
increasing concave function 6 and for every 0 < o <1,

HO(cA) = *HO (A)
is satisfied for every ¢ > 0 and A C R, if and only if

6 (ct)
50 0(t)
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holds for every ¢ > 0. In other words, for these functions # the generalized
Hausdorff measure H? scales as the Hausdorff measure % does if and only
if 0(t) = t*L(t), where L is a slowly varying function in the sense of Kara-
mata [15] (that is, L(cx)/L(x) — 1 for every ¢ > 0). They asked whether
one can characterise the higher dimensional functions such that the corre-
sponding Hausdorff measure scales. We prove a general theorem which as a
corollary characterizes these functions not only with respect to the scaling
of the Hausdorff measure but also with respect to the scaling of the packing
measures. (For further properties of packing measures see in [5] and [1]).

It was also asked in [8] whether the packing measure P*, or more gener-
ally, P? in R™ can be a Hausdorff measure. H. Haase proved that P* # H?,
provided that there is a number v such that if dimpy (E) < v, then H’(E) = 0,
and if dimy (E) > v, then HY(E) = oo (see in [3]). In [9], X. Saint Ray-
mond and C. Tricot proved that for any 0 < s < m and A C R™ with
0 < P*(A) < oo, P*(A) = H*(A) is satisfied if and only if s is an integer,
and P*-a.e. point of A can be covered with countable many Lipschitz images
of R°. In [6] P. Mattila and R.D. Mauldin proved an analogous result for
doubling gauge functions: if a function 6 satisfies the doubling condition,
that is, #(2r) < ¢ 6(r) for a constant ¢, and P?(A) < oo for a set A C R™,
then H%(A) = P?(A) holds if and only if

lim HY(AN B(z,7))

_ 0_
lim 62 =1 for P’-a.e. xe€ A

In this paper we will first give a general answer to the question by proving
that for continuous increasing functions # and 7 defined on R*, for which
0(0) = n(0) = 0, H? = P" is either trivially true or false: we show that if
H? = P, then H’ = P" = ¢ - \ for a constant ¢, where )\ is the Lebesgue
measure on R™. We will then expand on the techniques of proof of this
first result to characterize the Hausdorff and packing measures which obey a
scaling law.

NoTATIONS. First we introduce some notations. We fix a metric ¢ in-
duced by a norm, and when we take a diameter or the distance of two points
with respect to this metric or take the Hausdorff or packing measure ’Hg, Pg,
there will be no subscript. Otherwise, we will always indicate if a norm
different from o is being used.

We choose a base uq, us, . .., u, of R in the following way. Let u; be a
unit vector (according to our metric p), whose Euclidean length is maximal.
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Then we choose a vector us orthogonal to u;, whose length is 1 and whose
Euclidean length is maximal among all unit vectors orthogonal to wu;. If for
some m’ < m the vectors wuy, us, ..., uy—1 have been defined, then let wu,,
be a unit vector orthogonal to wy,us, ..., uy_; whose Euclidean length is
maximal among all such vectors.

If the edges of a brick have directions uq, us, ..., u,,, then we say that
this brick is in standard position. A brick C'is called a regular brick of size
s, if C'is in standard position, and the distance between its opposite faces is
s. Observe that for general metric p this does not imply that the edges of C'
have length s. A brick D in standard position whose edges are of length s
we call a cube of size s.

It is immediate to check that every convex set of diameter d can be
covered by a regular brick of size d. It is also easy to see that the distance
of any two vertices of a cube of size d is at least d. Indeed, let ; and x5 be
two distinct vertices and let j be the first coordinate which differs. Then x;
and x belong to an affine subspace orthogonal to wy,us,...,u;1, and the
Euclidean distance of x; and x5 is at least the Euclidean length of the edge of
the cube parallel to u;. But this edge is one of the longest vectors (according
to the Euclidean metric) whose length is d according to o, thus o(z,y) > d.

A set of diameter s whose volume is maximal among all such sets we call
a weak ball, and ball means the usual ball in the metric space (R™, p).

We will prove the following theorem:

Theorem 1 Let o be a metric induced by a norm on R™. Let 0 and n be
arbitrary continuous increasing functions defined on R, for which 6(0) =
n(0) = 0. Let H’ and P" denote the corresponding Hausdorff and packing
measure on (R™, o), respectively. Then either

HY =P = e,

where ¢ > 0 and X is the Lebesgue measure on R™, or there exists a set
A CR™, for which
HY(A) # P(A).

ProOOF. It is immediate to see that if limsup, ,,7(t)/t < oo, then
P1(Q) < oo for every cube @ of R™, thus P" is a o-finite measure on R™.
But P7 is translation invariant, thus we have P7 = ¢\ for a constant ¢. Hence



we can assume that limsup,_,,7(t)/t = co. We construct a set A for which
H’(A) =0 and P"(A) = oo.
For every n € N we define a set of pairwise disjoint regular bricks

C" = {011,021, ey Cknl}

of size e, for an e, > 0 and k,, € N. First we choose m; = 1 and choose
C' = {Cy,} arbitrarily. If for an n € N the bricks of C" have been defined,
then we choose r,;1 > 0 and ¢, 1 € N such that r, 14,11 < e, and n(r,41) -
e > 2" We put k,yy = kpf, and let e,y < 7,41 be so small that
O(weni1) - kny1 < 1/2™, where w denotes the diameter of the regular brick of
size 1.

Now we choose a regular subbrick of size r,,11¢,,1 inside each brick of C",
and consider its £, regular subbricks of size r,;;. Let C"*! be the set of
the k.0, = ky41 middle bricks, whose midpoints are the same and whose
size 1S €,11.

We put

0o kn
A= UG
n=1i=1
Then C" is a we,-covering of A, and (we,,) - k, < 1/2"7! for every n > 1,
thus H’(A) = 0. We prove that P7(A) = co.

Let p be the 'natural’ measure defined on A, that is, let 1 be the unique
probability measure for which p(C;,) = 1/k, for every i,n. If K C A is
compact and p(K) > 0, then PJ(K) = oo. Indeed, K intersects at least
p(K)-ky 11 of the k, 1 bricks of C**! we can choose 1/2™ - y(K)-k, ., of them
whose distance is at least r,, 1. This gives a packing of K by 1/2™ - (K)-kyq
balls of diameter ry, 1. From n(rn11) - kny1 > n(rpga) - 47 > 2™ — 00 we
obtain PJ(K) = oo for every compact subset K C A with p(K) > 0, and
then P(A) = oo follows. m

Let us turn now to a study of the scaling properties of Hausdorff and
packing measures in higher dimensions. We generalise the result in 1 di-
mension, as well. We assume € is a continuous increasing function defined
on R*, for which #(0) = 0. Let || - || be a norm on R™. As before, let p,
H = ’Hg, Pl = Pg denote the corresponding metric, and Hausdorff and
packing measures, respectively. For the next theorem we also assume that
O(t)/t™ is a decreasing function of ¢ (this is obviously satisfied for any contin-
uous increasing concave function # and m = 1). We will prove the following
theorem:



Theorem 2 For every function f: RY — RT, the following are equivalent:

(i)
HO(cA) < f(c)-H(A) VYe>0,ACR™;

(ii)
Pl(cA) < f(c) - PY(A) Ve>0,ACR™

(iii)

_ 6 (ct)
lim su
o 0(t)

Analogously, for every function g : RT — RT, the following are equivalent:

(iv)

< fle) Ve>0.

HO(cA) > g(c) - H'(A) Ve>0,ACR™;

(v)
PO(cA) > g(c) - PP(A) Ve>0,ACR™;
(vi)

.. B(et)
hrglonf 0 > g(c)

Ve > 0.

Before giving the proof of Theorem 2, let us note the following corollary.

Theorem 3 Let m be a positive integer. Let 6 be a continuous increasing
function defined on R", for which (0) = 0 and such that 6(t) /t™ is a decreas-
ing function of t. Let H? and P’ denote the corresponding Hausdorff and
packing measure on R™, respectively. The following statements are equiva-
lent:
(i)
H(cA) = c* - H(A) VYe>0,ACR™

(ii)
PP(cA) =c* - PY(A) Ve>0,ACR™;

(iii)
lim blct)

ey =c* Ve>0.




Again, we recall that (iii) means 6 is of the form 0(¢) = t*L(t), where L
is slowly varying. These are precisely the types of gauge functions which are
so common in dynamics and stochastic processes.

Remark 4 [t immmediately follows that if ’Hg or ’Pg scales with respect to
the metric induced by some norm then it scales with respect to any metric
induced by a norm.

Now we turn to the proof of Theorem 2.

PROOF of (iii) — (i) and (vi) — (v). If

_ 0(ct)
lim su
o 0(t)

< f(o),
then for € small enough and ¢ < € we have

O(ct) < (fle) + M(e)) - (1),

where M(e) — 0 ase — 0. If G is an £/c-cover of A, then ¢- G is an ¢ cover
of cA, and

D O(c-diamG) < (f(c) + M(e)) - Y _ 0(diam G).
Geg Geg
Therefore,
Hlje(cA) < (f(e) + M(e)) - HI(A),
and thus, letting ¢ decrease to 0, H%(cA) < f(c) - H(A).
Analogously, for every e/c-packing G of A, ¢-G is an € packing of cA, and
assuming (vi) we have

ZGC diam G) > (g(c ZG (diam G).
Geg Geg

Hence,

Plje(cA) = (g(c) = M(e)) - PL(A)

for every A C R™, and thus P§(cA) > g(c) - PY(A). From this inequality for
the packing pre-measure, we obtain (v) for the #-packing measure. =

~



It is also clear that for every function f and g satisfying

f(x)g(1/x) =1, (1)
assumptions (i) and (iv) are equivalent. Indeed, (i) is equivalent to
1
(o)
and by replacing A by (1/¢) - A and ¢ by (1/c¢) we obtain (iv). Similarly,
(ii) is equivalent to (v) and (iii) is equivalent to (vi) for every f and g for
which (1) is satisfied. Since for every f there exists a (unique) function g

such that (1) holds, and similarly, for every function ¢ there exists an f with
this property, it is enough to prove that (iv) implies (vi) and (ii) implies (iii).

HO(A) > H’(cA) Ve>0,ACR™,

PROOF of (iv) — (vi). Fix ¢ > 0. First we choose a sequence z; > z >
-+ — 0, for which
. O(czn) .. . O(ct)
A G~ minf gy 2)

It is enough to prove that there is a set K, probability measure p, positive
and finite number M, and for every ¢ > 0 there exists an e-covering G, of K,
such that

pK) =

(a)

(b) f(diam A) > M - u(A) VA CR™;
)
)

(c
(d) diam B € {#z,22...} VB €g..

> peg. O(diam B) — M as ¢ — 0;

Indeed, by (b) we have H/(A) > M - u(A) for every A C R™, thus
HP(K) > M. On the other hand, (c) implies H(K) < M, thus HY(K) = M.
Then, applying (iv) we have

g(c)- M = g(c) - H'(K) < H'(cK),
and since ¢ - G. is a ce-covering of c¢K, by (c)

> f(c - diam B > -diam B
g(c) < lim inf =B (- diamB) _ = lim inf peg. #¢ o )-
e—0 M > peg, 0(diam B)




Applying (d) and (2) we obtain

g(c) < lirtri ionf 99((05))

and (vi) is proved.

CoONSTRUCTION of K, u, M and G..
For every n € N we will choose a finite set

Cn — {Oln7 02717 IO CMnn}

of pairwise disjoint regular bricks of size x,, € {21, 22, . . . }, such that UC"*! C
UC™; moreover, there will be M, /M, bricks C;, 1 inside each brick Cj,.
We will also have Cj, 1 C Bj, C Cjy, where By, is a weak ball inside Cj;, of
diameter x,. Additionally, we will choose z,, M, and M such that z, — 0
and M, - 0(x,) — M. The 2! s will be a subsequence of the z/s.

Let p be the (unique) probability measure on R™ for which

and put
oo M, oo My
<~ AU

Then (a) is trivially satisfied. For every ¢, if n is large enough then B" =
{Bt,,B5,,..., B} ,} is an e-cover of K, so we can choose G. = B" and then
> peg. O(diam B) = M, - 0(x,) — M, that is, (c) holds. It is also immediate
to see that (d) is satisfied. Therefore, it is enough to prove that C" can be
chosen such that (b) holds.

We know that 6(t)/t™ increases as t — 0. We can assume that
6(t)/t™ — oo,

otherwise we have
. 0O(ct) -
im =",
t—0 H(t)

so (iii) and thus also (i) is satisfied for f(c) = ¢™. Applying (i) and (iv)

™ > g(c)
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follows, which proves (vi).

We fix a sequence g; > g > --- > 0, for which > ° 0, < 1/2. Let
x1 = 21, My = 1 and choose C* = {C},} arbitrarily with z; the size of C};.
We will define z,, and C™ by induction. We will require

Mn+1 * g(xn-i-l)
M, - 6(z,)

1— 20, < <1- g, (3)

Then M, -0(xz,) (n=1,2...)is a decreasing sequence, and

n—1

M, - 0(x,) > My -0(xy) - [](1 = 201) > My - 0(ay) - [J(1 = 200).

i=1 i=1
Therefore, there exists a 0 < M < oo for which M, - 0(x,) — M.

By assumption (3) we will also obtain

M = lim M,0(x,) < (1 — 0,)M,0(x,) (4)

n—o0

for every n > 1. The only thing we need to check is that =, and C" can be
chosen such that (b) and (3) are satisfied.

We assume that x,, and C™ have been defined, and we define x,,; and
construct C"'. We will use the constant
~ Vol(B¥)
7= Nol(C)

where C'is a regular brick of R* and B* is a weak ball inside the brick whose
diameter is the size of C. Then B* contains approximately v/N™ bricks of
the regular partition of N X N x --- x N = N™ small bricks on C. More
precisely: for every £ > 0 there exists an N(¢), such that if N > N(¢) then
B* contains at least (1 —¢)yN™ bricks and B* intersects at most (1+4¢)yN™
bricks. Moreover, every convex set in C' of the same diameter as B* will
intersect at most (1 + &)yN™ bricks.

We know that if z,,,1 is small enough then 6(z,,)/6(z,+1) is large enough.
First we choose an &,, small enough (we will specify it later). Then we choose
an r,;; = z; so small, that there exists an integer N = N,, > N(g,) for
which

0(zn)

Q(xn+1)'

1- ggn)e?ifi)n

4
<fYNm< (l_ggn)
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If £,, is small enough then

1—2p, 5) 4 I —on
<l—=-p0,<1—=-p,< ,
1—¢, 3Q 3Q 14+¢,
that is,
0(2ni1) 0(zni1)

1—20, < (1—g,)yN™- < (1+4ep)yN™+ ———

0(xn)
We put an N x N x --- x N grid onto each of the bricks Cj,, choose those
small regular bricks determined by the grid which are inside Bj,. Let C"*!
be the set of the smaller middle regular bricks with the same midpoints as
the chosen bricks and of size z,,1. For this system (3) is satisfied, we will
need to verify (b) only.

We can assume that

T
Tpy1 < Ep - ﬁ (5)
Indeed,
9(:Un+1) 4
N" . ——— < 1——p, <1,
i 0(zy) 3¢
thus
N VT
0(xy)/xy T
That is,
1 O(xn)/zl \1/m Tn
Tppr < (= S
A< )N
and
0(xn)/
0(xnr1) /274

is small enough if z,,,, is small enough.

Let A be an arbitrary subset of R™, we verify (b) for this set A. We can
assume that A is convex and A meets K in at least two points. Let n = ng
be the first index for which A intersects only one of the bricks of C" but at
least 2 of the bricks of C"*!. If diam A > z,,, then 6(diam A) > 6(z,), and
by (4) we have 0(x,) > M/M, = Mu(C;,). Since A intersects at most one
of the bricks Cj,, and supp u C Ui‘iﬁ Cin, it is clear that (b) holds. So we can
assume that diam A < x,,.

11



We put .
diam A =r - N

where N = N,,. Then 0 < r < N. We will use the notation k = [r] + 2,
where [r] denotes the integer part of . Let Cj, be the only brick of C™ which
intersects A. We extend the N x N x --- x N grid from C}, into the whole
space, and choose a k X k x --- x k piece which covers A.

Now we fix a number &} small enough (we will specify it later). If £ >
N(ek), then A intersects at most (1 + £5)yk™ bricks of the grid. We also

know that B;, contains at least (1 — &, )y/N™ bricks, thus in this case

(1 +eq)vk™

A) < ——— . u(Byy).
Since 0(t)/t™ decreases,
Ty r’™
] —0(—=) > — .
f(diam A) = 6( N ) > N 0(xn),

and by (4) we have

g(l'n) R 1 —on
Hence
(1+ek)vk™ N™ :
. < = TEJTR ) <
M - u(A) < =) N (1—o0,) o f(diam A) <
< (1 =p,) - (—=) - A).
==z (1—on) (k — 2) 0(diam A)

If ¥ is small enough then k& > N(e}) is large enough, thus if we choose both
en and g} small enough then M - p(A) < O(diam A) is satisfied.

Now we consider the case 3 < k < N(e). Since A intersects at most k™
bricks, we have
k™ k™ 0(x,,
o " 1W(Bin) < — ( )
(1 - 5n)7N (1 - 571)7]\[ M

n(A) <

We know that 6(t)/t™ — oo as t — 0, thus for every constant C' there exists
an «ap, such that for a < ay = ap(C) we have

O(ax,) > Ca™ - 0(x,).

12



Hence if L1 N
T — o
— < N/ C
NSNS NE SO

then k f(diam A) N
m iam m
M - u(A) < . . <
mid) < (1 —e,)yN™ C rmo
1 1 E\m
<—— - — . (——) -fO(diamA) <
T (l—egy)y C (k—2) (diam 4) <
1 3"
<—— — .f(diam A).
S0 © (diam A)
First we choose C' so large that
3m
— <1
~C

is satisfied. Then (b) follows for every k > 3.
Finally, for £ = 2 we have

Since A intersects at least 2 bricks of C"*!,

Tn . Tn
r- N diam A > N — Tpat,

thus by (5) we have r > 1 — ¢,,. Hence,

1 1 2 \m :
. < .. . <
M - u(A) < i=:), C (1 — Sn) f(diam A) <
< LA L -f(diam A) < f(diam A),

- fyC (1 _ gn)m-i—l

if £, is small enough. =
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PROOF of and (ii) — (iii). As before, we can assume that
0(t)/t™ — oc.

Fix ¢ > 0. We choose a sequence v; > vy > - -+ — 0 for which

. B(cv,) 6(ct)
I G0y ISP (6)

Let w be the diameter of the unit cube, that is, the diameter (according to
o) of the cube D whose edges have direction uy, ug, .. ., u,;, and (according to
0) length 1. We fix a number ¢y so small that §(2wgy) < 1/2™. It is enough
to prove that there is a compact set L C R”™ and a probability measure v,
such that

(e) v(L) =1;

(f) 6(diam B) < v(B) for every ball B = B(z,r) for which x € L and
r < wqo;

and for every £,0 > 0 and for every subset A C L, there exists an e-packing
F = .7:;,‘5 of A for which

(8) Ve O(dinm B) > v(4) — 5
(h) diam B € {vj,v,...} VB € F.
Indeed, from (g) it follows that PfJ(A) > v(A) for every A C L, thus
PI(A) > PY(A) > v(A) YACL.

On the other hand, by (f) we have PJ(A) < v(A) for every compact set A,
thus for every compact set A C L

v(A) = P"(4) = P5(4)

is satisfied. Hence, we can see by regularity that v is the restriction of the
packing measure to L. It also follows that

. . o o /]
E],-(]iril[] Z 6(diam B) = v(A) = P’(A)
BeFZ;

14



whenever A C L is compact.
By (ii) we have

and L is compact, thus

P(cL) =inf{> P{(cL;): L C | JLi,L; C L, L; is compact}.

But
L)< EZ PY(L;) sl(lsglo E f(diam B),

BeFli

and c - ff,g is a ce-packing of cL;, thus

0 N> T T
Py (cL;) > a%r—I)lO X:L (c - diam B).
BeFl:
Therefore,
> ZBG}.Li f(c - diam B)
f(e) > inf lim
00 > ZBEle f(diam B)

Applying (h) and (6) we obtain (iii).

CONSTRUCTION of L and v.

For every n € N we will construct a finite set D" = {Dy,,, Doy, ..., Dn,n}
of pairwise disjoint cubes for which UD"*! ¢ UD". For every 1 < i < N,
the cube D;, will contain 2™k cubes of D"*! for an even integer k;, > w
(and of course we will have N, = 2™ 3"~ k™). We will also define positive
numbers iy, P, - - - PN, n, for which

Nnp,
i=1
Moreover, for every fixed ¢, n and k = k;j,, if D; i1, Disnt1, ...y Digny1 are

those cubes of D"*! which belong to D;,, then
k
= Zpijn+1-
j=1

15



Then there exist a (unique) probability measure v, for which v(D;,) = pin,
and for this v and L = (22, UM, Dy, assumption (e) is satisfied. We note
that v is a “redistribution of mass” measure; however, unlike p it is a not uni-
form redistribution. For an arbitrary sequence € = (ey, €3, ...,6,) € {0,1}™,

we put
L = {(21,%2,---,%m) * zi = € (mod 2)},

where 21, 29, ..., 2, are coordinates according to uy, us, . .., Uy,. Also, define

k:

|B(0,k) N (ZZ%™ if k <w
|Z™ N[0, k/w]™| if £ > w

and
g — min, [(B(0,k) N (ZZ™)\ Z¢| ifk <w
T  min [(Zm N[0, k/w™)\ZE| itk > w,
where B(0, k) denotes the closed ball around the origin of R™ of radius .
Then ¢y = 1,dy = 0, dy > 1 for k > 1, and |B(0, k)NZ=°| > ¢4 for every k. It
is also easy to see that ¢ /(k+1)" — 1/w™ and dy,/(k+1)™ — (1—-1/2™)/w™
as k — oo. Thus we can choose a constant o (which depends only on p),
such that
Ck—i-O"de(k—Fl)m (7)

for every k£ > 1.

We choose N; = 1, and choose a cube Dy of size ¢ arbitrarily. Assume
that a cube D = D;, and the number p = p;, have been defined. Let s = s;,
be the size of D;,.

We will choose k& = k;,, positive numbers ¢ = ¢;,, r = r;,, and put
t =ty = Tin — (W + 1)gy, satisfying:

(A) 2rk < s;
B) g <wg<t<r<1/2m
(C) 2t € {'UI,UQ,...}.

Then we choose a subcube D' = D! C D of size 2rk, and consider its
(2k) x (2k) x - - - X (2k) subcubes of size 7. We denote the small middle cubes

16



of these of size ¢ by E(i1,i9,...,0m) (1 < i1,09,..., 0, < 2k). First, let us
give a recipe for the redistribution of mass to the next level. We define

T =T" = {(i1,i2, .- yim) €EZ™: 1 <iy,ig, ... 0m < 2k}

and _
1-2 — I;n — Il ﬂ (QZ)m,

then we define
Em = {E(iy,ig, ... im) : (i1,02, .., im) € Ty \ Tp},

gén = {E(ilai% .. 7Zm) : (i17i2’ t ’Zm) < I2}

Now we put
p

ampm 4 g . (2mfm — fm)’
for p = p;, and k = k;,,, and define

i )_ A lf(ll,ZQ,,Zm)EIQ,
A+ o)X i (i, i, i) € Ty \ To.

T(il,ig, ce

It is easy to check that
ST iz i) = p.
(ilvi%---;im)ezl

Hence we can choose
Mp,

D= JEruer)
i=1
and p;n1 = (i1, 92, ..., 0y) for the cubes Dj, 11 = E(iy, 12, ...,%y). That is,

Pjn+1 = )‘m if Djn+1 € g;n and Pjn+1 = (]. + O'))\m if Djn+1 € g{n
We need to show that for suitable parameters ki, ¢in, 7in (f), (g) and (h)
are satisfied.

First we fix a sequence 7y > 175 > -+ — 0. We will choose k = k;,,
q = Qin, and r = r;, such that

(D) (1 =mn)A <0(2t) <O2r + 2wq) < X

(E) t < minj Qin—1 < minj tjnfl;
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(F) 0(2ws) < p/2™.

(Observe that s;, = gjn—1 for Dy, C Djp_1).

Let A be an arbitrary subset of L, and let £, be positive numbers. First
we show that there exists an F satisfying (g) and (h). We choose ny so large
that 1/2"~! < ¢ and (1 — n,,)v(A) > v(A) — 6. We define A™ by induction
for every n > ng. Let

A" ={Djny41: ANDjuo41 #0,Djpyt1 € Eim for some 7,1 < i < Ny}

If A" ! has been defined for an n > ng, then let

n—1
A" ={Djni1 : (A\ | UAMND; i1 # 0, Djoin € E for some i,1 < i < N, }.

k=ng

Now, for every n > ny and for every D;,1 € A" we choose a point z,4; €
ANDjpi1, and let

F = {B(l’jn+1,tm) . Djn+1 € An, Djn+1 € g;n, 1 S 1 S Nn,n Z Tlo}.

By definition, centers of all the balls of F belong to A. It is also clear from
(B) that the balls have diameter at most 1/2"0~! < . Assumption (h) follows
from (C).

The diameter of D, being wg;y, it follows from (B) that B = B(z;n1, tin)
covers the whole cube Dj,;;. On the other hand, the minimal distance of
the midpoints of the cubes of & U £ is ry,, thus the minimal distance of
these cubes is at least r;, —wqi, = tin + ¢in > tin. Therefore this B is disjoint
from all the cubes in £" U £ but D;,.1. From (E) it is also immediate to
see that D, is the only cube of D™ which intersects B = B(Zjnt1,tin)-

Thus v(B) = v(Djn+1) = Ain, and then by (D) we have

g(dlam B) > (1 - nn))‘m > (1 - nno)l/(B)'

Moreover, the minimal distance between the elements of £ is at least
27 — Wiy > 2ty from this and from (E) we can see that the balls of F are
pairwise disjoint.

Hence F is an e-packing of A, for which

S 6(diam B) > 37 (1= ) (B) = (1 13w (UF)

BeF BeF
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We also know that

UF D G UA",
n=no
thus . .
A\UFc () A\uarc ) [Juer
n=no n=ng =1
But

in miy.m m p(l + U) (2mkm _ km)
V(Ugl ) = (1 +U)>‘in(2 k™ —k ) = omm 4 . (ka'm — km) -

1+0)2"—1—0
(14+0)2m—0o

= v(Dip) -

)

thus

no+k—1 Ny, . (1+O’)2m—1—0' .
v( m UUS{”)SI/(UD”O)-( 0to"—o )" =0 ask— .

n=ng =1

Therefore
> 0(diam B) > (1 — 1, )v(A) > v(A4) -,
BeF

and (g) is proved.

To check that (f) holds, let B = B(xg,79) be a ball for which xzy € L
and ro < wqg. Let n + 1 be the first index for which B intersects at least
2 of the cubes of D"*!. Since xy € L, we can choose indexes i,j for which
29 € Dy, and xy € Dj,y1. The distance between the cubes of D™ inside
D;y, is greater than t, thus o > t. We put £ = [rq/(r+wq)], where [ -] denotes
the integer part. If £ = 0 then ry < r 4+ wq, thus by (D)

f(diam B) < 0(2r + 2wq) < \.

On the other hand, by (B) diam D;, 1 = wg <t < 1y, thus B covers Dj
and
V(B) = UDjui1) 2 \

So if £ = 0 then (f) is satisfied.
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If £ > 1 then O(diam B) = 0(2ry) < 0((2r+2wq)(¢+1)), and since 6(t)/t™
is monotone decreasing we have

0(diam B) < 0((2r +2wq) (¢ + 1)) < (€ + 1)"0(2r + 2wgq) < (L4 1)™A.
So it is enough to prove that
v(B) > (L+1)™A. (8)

Let the midpoint of D;,41 be P = (p1,p2,...,Pm). The midpoints of
the cubes of D"*! inside D;, form a regular lattice with distance r, and the
diameter of the cubes is wq. Since 1o > {(r + wq) > ¢r + wq, B covers all
the cubes of D" whose midpoint is inside the closed ball B* = B(P, (r). It
is easy to see that there exists an € € {—1,+1}"™ for which all the points of

K ={(p1 +ei1r,p2 + €007, . .., D + €minr) © 1 <'dy,in, ..., 0y < k}

are midpoints of cubes of D"*! inside D,,. Thus, for ¢ < kw, the ball B*
contains at least ¢, midpoints, and at least dy of them belong to cubes in £i".
Therefore, in this case

V(B) > ¢)A + 0 - dp),

thus by (7)
v(B) > ((+ 1))\,

and (8) is proved.

If ¢/ > kw then B* covers the whole set K. Since k is even K contains
the midpoint of (k/2)™ elements of £ and k™ — (k/2)™ elements of £i";
therefore the measure of the union of the cubes with midpoint in K is p/2™.
So v(B) > p/2™, thus for ry < ws, (f) follows from (F). Finally, if ry > ws
then B covers the whole cube D;,, thus v(B) = p. In this case n > 2, we can
choose an index A for which D;, C Dj,_;. Since B intersects only one of
the cubes of D" and for every cube of D" we can find an other one for which
the distance of the midpoints is r, it is clear that ro < 74,1 + wW@hn_1, thus
applying (D) we have

f(diam B) < M\yp_1-

Then (f) follows from
V(B) =D Z )\hnfl-

So it is enough to prove that ¢y, 7, and k;, can be chosen such that (A)-(F)
is satisfied for every i, n.
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DEFINITION of ¢;,, 7, and k;,.

We know that (F) is satisfied for s;; = ¢ (recall that p;; = 1). For n > 2
we have s;;, = ¢jn—1 and either p;, = A\jn—1 or pip = (1 + 0)\j 1, thus it is
enough to have

(F*) 6(2wq) < A/2™

for every i,n, ¢ = ¢;, and A = \;,,. Assume that ¢;,/, i,y and k;, have been
defined for every n’ < n and every 4, and we define ¢;,, r;, and k;,,. We put

e =2 -min(1/2", ming;,_1);
j

c=p/2™ + (2™ —1)).

Then we choose a number 2t < ¢ from the set {vy, vo, ...} so small, for which
there exists an even integer £ > w such that

(1- ’7")9(2t) <K< San

and (2¢)"™/0(2t) < s™/c. Then we have
) (2tk)™ < (2t)™ o < ¢ s [c=s™
) < 1/2m

b

(A7)

(B’)

(C") 2t € {vy,v9,...};
(D) (1 —ma)e/k™ < 0(2t) < ¢/k™ and ¢/k™ =
(E?) t < min; gjp—1.

Now we can choose r and ¢ such that ¢ = r — (w+1)g, and ¢ is so small that
(A”) 2tk 4 2(w + 1)gk < s;

(B”) wq <t

(D”) 6(2t + dwq + 2q) < \;

and (F*) hold. Then (A)-(F) is satisfied, and Theorem 2 is proved. m
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Remark 5 Remark 4 has a surprising corollary. First of all notice that if
o and ¢ are two different metrics on R™ induced by norms on R™, then for
any gauge function 6, ’Hz and ’HZ, are equivalent measures (in the sense that
there exists a constant L such that L_I’Hg < ’Hz, < L’Hg). In particular, if
’Hg satisfies the assumption (i) of Theorem 3, that is,

(i) Ho(cA) =c*-HI(A) Ve>0,ACR™,
then
(i) AL>1 L 'e* HY(A) <HY(cA) < Le™-HY(A) Ve>0,ACR™

From Theorem 2 we know that (i’) is equivalent to

(117’) AL > 1 L 'e™ < liminf, g % < lim sup,_, 99(5)) < Le* Ve >0,

whenever O(t)/t™ is a decreasing function of t. On the other hand, if 0(t)/t™
is decreasing then (i) is equivalent to

(ii) im0 5 = ¢ Ve >0,

that is, we can choose L =1 in (iii’). Then (i’) is also satisfied for L = 1.
So (i) is equivalent to

(i”7) H%(cA) = c* - H’ (A) Ve>0,ACR™.
0 0

However, (iii’) does not imply (iii) (and thus (i’) does not imply (i”))
for general gauge functions @ for which 6(t)/t™ is decreasing. Indeed, for
example for m =2, « =1 and 6(¢t) =t - 6(t),

é(t) — 3nt t E [3TL2+17 ?,n%], n E N
13" te [z, 520, nEN

one can check that 6 is a well-defined monotone increasing function of ¢,
0(t) — 0 as t — 0, and 6(t)/t? is decreasing. But

6 (ct) 0(ct)
=Cc: — ,
0(t) a(t)
where 6 is a bounded function for which
inf lim inf 9~(Ct) = 2/3 and sup lim sup 9~(Ct) =3/2,
>0 t=0  f(¢) e>0 =0 ()
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that is, 6(¢) satisfies (iii’) for L = 3/2 and does not satisfy (iii).

But if ’Hg satisfies the scaling property for at least one metric ¢ induced by
the norm on R™, then it satisfies the scaling property for all such metrics, as-
suming that (t)/¢t™ is decreasing. We do not know whether this assumption
is necessarily.

Problem 6 Let m be a positive integer. Let 6 be a continuous increasing
function defined on Rt. We conjecture that if the Hausdorff measure H’
satisfies

’HZ(CA) =c" -’HZ(A) Ve>0,ACR"

with respect to some metric o induced by a norm on R™, then the Hausdorff
measure satisfies this scaling property with respect to all such metrics. We
make the same conjecture with respect to the corresponding packing measure.
It also may be true that if the Hausdorff measure satisfies this scaling law,
then 6(t) = t*L(t), where L is slowly varying.
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