
Random Linear Cellular Automata�

Fractals associated with random multiplication of polynomials

R� Daniel Mauldin�

Department of Mathematics
University of North Texas

Denton� Texas �����	��
��� U�S�A��
�mauldin�unt�edu

G� Skordev
CeVis� Universit�at Bremen

Universit�atsallee ��
D	���
� Bremen Germany�
�skordev�cevis�uni	bremen�de

Abstract Random multiplication of a given set of s polynomials with coe�cients in a �nite
�eld following a random sequence generated by Bernoulli trial with s possible outcomes is a �time�
dependent� linear cellular automaton �LCA�� As in the case of LCA with states in a �nite �eld
we associate with this sequence a compact set � the rescaled evolution set� The law of the iterated
logarithm implies that this fractal set almost surely does not depend on the random sequence�
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� Introduction

It has been observed that the evolution patterns of seeds �initial con�gurations� with respect to
many cellular automata exhibit self�similarity properties	 
��	 
��� This phenomenon is especially
apparent for the evolution patterns of �nite seeds with respect to the additive �linear� cellular
automata with states in the residue classes of the integers� Moreover	 the self�reproducing property	
the main idea of the inventors of cellular automata	 J� v� Neuman and S� Ulam	 includes a kind of
self�similarity property	 
��

For the mathematical understanding of the problem of deciphering the self�similarity structure
of the pattern evolution �orbit� of a �nite seed with respect to linear cellular automata �LCA� with
states in the residue classes of the integers modulo a prime number �or a prime power�	 the idea
of rescaling proposed by S� Willson is important� In a series of papers	 S� Willson associated with
such an automata a compact set � the so called rescaled evolution set	 
��	 
��� This set is a fractal
and its self�similarity structure codes the self�similarity properties of the evolution patterns of the
LCA� The self�similarity structure of the evolution set of LCA was described as a special graph
directed construction �in the sense of Mauldin�Williams	 
���	 in 
�	 
�	 
�	 and 
���

The idea of a rescaled evolution set was used in 
�� for the description of the self�similarity
properties of some classical number sequences � Gaussian binomial coe�cients and Stirling numbers
of the �rst and second kind modulo a prime power� A generalization of the notion of a linear cellular
automaton necessary for this purpose	 is a periodic time dependent cellular automaton� Such a
cellular automaton is generated by a periodic multiplication of a �nite number of polynomials�

The purpose of this note is the randomization of the notion of a periodic time dependent
cellular automaton generated by s polynomials with coe�cients in a Galois �eld and its geometrical
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representation � the rescaled evolution set� For every point of the code or shift space on s symbols	
by appropriately rescaling its geometrical representation	 we obtain a sequence of compact sets�
One main question is the convergence of this sequence with respect to the Hausdor� distance� In
general this sequence of compact sets does not converge	 and even if it does converge	 then its limit
depends on the corresponding point of the shift space�

The main result �Theorem �� in Section � is that a natural rescaled evolution set exists for
almost all points of the code space �with respect to the Bernoulli measure generated by a given
probability vector�� Moreover	 this �expected� rescaled evolution set does not depend on the choice
of the point in the code space�

For the proof of this result we consider �rst in Sections �	 a deterministic situation which includes
the �expected � rescaled evolution set and some of its specializations �for one polynomial	 in Section
�	 and in Section �	 for several polynomials and a rational probability vector or parameters�� In
the last cases the rescaled evolution sets are a�nely equivalent with the rescaled evolution sets of
appropriate linear cellular automata� In Section �	 we use this to calculate the Hausdor� dimension
of the expected evolution set in some cases�

To make the notations more transparent we shall work with generating polynomials of the
corresponding LCA or time dependent LCA�

Acknowledgments The authors thank Heinz�Otto Peitgen for his interest	 discussions and
support	 Anna Rodenhausen and Fritz von Haeseler for discussions and remarks�

� Preliminaries and notations

Let IFq be the Galois �eld with q elements �q is a power of some prime number p� and let IFq
x
be the ring of all polynomials with coe�cients in IFq� The most important and useful property of
such polynomials r � IFq
x for this note is

�r�x��q � r�xq��

This was called the q�Fermat property in 
� since for q prime number it is equivalent with the
small Fermat theorem	 
��	 pp� ��	 ���

Let S � �sn�n� sn�x� �
P

� s��� n�x
� � IFq
x� For the de�nition of the rescaled evolution set of

the sequence S we need some notations� The set

X�S� � �fI��� n�js��� n� �� �g�

where I��� n� � 
�� � � �� 
n� n� � � IR�	 is called evolution set of the sequence S�
The set X�S� codes some basic information �zero or non�zero� about the coe�cients of the

polynomials sn � S	 arranged with respect to n �the �time���

Examples � �� Linear cellular automaton L�r� corresponding to a nonzero polynomial r � IFq
x�
The sequence of polynomials S�r� �� �rn�n�� is the orbit of the initial seed �con�guration�

� � �����n��ZZ with respect to L�r�� Then X�S� is a geometrical realization of this orbit in IR�	 
�	

�	 
�� This is the set we see on the computer screen visualizing the evolution of the initial seed �
under L�r�	 
��� Usually we shall use the notation X�r� instead of X�S��

�� Let r�� � � � � rs be nonzero polynomials with coe�cients in IFq and r � �r�� � � � � rs�� Let
��� � � � � �s be a positive real numbers and � � ���� � � � � �s�� The sequence of polynomials S�r� �� ��
�Rn�n��	 where

�



Rn �
sY

i��

r
�n�i�
i

is associated with the polynomials r�� � � � � rs and parameters ��� � � � � �s� Here and later on we denote
by 
a the integer part of the real number a�

We shall denote the evolution set of the sequence S�r� �� by X�r� ���
�� We shall consider also the sequence of polynomials S�r� ���� �� �Rn���n�� associated with

the polynomials

Rn�� �
sY

i��

r
�i�n�
i

and the point � � � � f�� � � � � sgIN	 where �i�n� � cardfk j ��k� � i� k � ng�
The sequence S�r� ���� for �xed � is generated by the multiplication of the polynomials

r�� � � � � rs according to the point �� Rn�� �
Qs

i�� r��i�� We shall denote the evolution set of this
sequence by X�r� �����

For m � IN� m � �	 the set

Xm�S� � X�S� � �IR� 
��m�

is compact and nonempty in case at least one of the polynomials sn of the sequence S is not zero�
Then it is a point in the space K�IR�� of all nonempty compact subsets of the plane IR�� In this
space we consider the Hausdor� metric �H 	 generated by the l��norm of IR�	 
��	 pp� ��������

It is de�ned as follows � for a given A � K�IR�� and a positive number 		 let

A� � fx j jjx 	 yjj� 
 	� for some point y � Ag�

where jjxjj� � maxfjx�j� jx�jg� x � �x�� x�� � IR��
Then the Hausdor� distance �H�A�B� between two sets A�B � K�IR�� is de�ned by

�H�A�B� � inff	jA � B�� B � A�g�

The metric space �K�IR��� �H� is complete	 moreover	 if K � K�IR�� the space �K�K�� �H � of all
nonempty compact subsets of K is compact	 
��	 pp� ���	 ����

The sets Xm�S� are compact but their union is unbounded in IR�� For this reason they are
rescaled by appropriate similitudes�

The increasing sequences a � �a�n��n��� b � �b�n��n�� � ININ such that

maxf
B�n�

a�n�
�
b�n�

a�n�
g � C

where dk � deg sk� B�n� � maxfdk j k � b�n� 	 �g and C is an appropriate constant are called
scaling sequences if the sequence of compact sets

�sa�n����Xb�n��S���n��

converges with respect to the Hausdor� metric �H �
Here sc � IR

� 	
 IR� is the similitude sc�x� y� � �cx� cy�� �x� y� � IR��
Observe that

�



sa�n����Xb�n��S�� � 
�� C� 
�� C�

The limit

lim
n��

sa�n����Xb�n��S��

is called rescaled evolution set of S �with respect to the scaling sequences a� b � ININ��

Examples � The sequences a � b � �qt�t�� are scaling sequences for the sequence X�r� for every
nonzero polynomial r with coe�cients in IFq	 
��� The rescaled evolution set corresponding to these
sequences is denoted by Aq�r�� In general this is a fractal set � for example for r�x� � ��x � IF�
x
the set A��r� is the Sierpinski triangle� For more examples see 
�	 
�	 
�	 
��

In this note we shall consider the scaling sequences a � �qt�t�� and b � �
aqt�t�� for a positive
number a� We shall call them standard scaling sequences� In the last section we consider also some
other scaling sequences�

� Existence of rescaled evolution set for several polynomials � gen�

eral case

Here we consider the nonzero polynomials r�� � � � � rs with coe�cients in the Galois �eld IFq and
positive real numbers �parameters� a� ��� � � � � �s� The evolution set of the sequence of polynomials
S�r� �� � �Rn�n��	 where

Rn�x� �
sY
�

�ri�x��
�n�i� �

X
�

R��� n�x�

is the set

X�r� �� �
�
fI��� n�jR��� n� �� �g�

where r � �r�� � � � � rs� and � � ���� � � � � �s��
The compact sets to be rescaled are

X�aqt��r� �� � X�r� ��
�

�IR� 
�� 
aqt��

The aim of this section is the following

Proposition � The sequence of compact sets

�sq�t�X�aqt��r� ���t�� ���

converges with respect to the Hausdor� metric �H �

Proof

The metric space �K�IR��� �H� is complete� Therefore the assertion is that the sequence ��� is a
Cauchy sequence with respect to the Hausdor� metric �H � It su�ces to prove that there exists a
constant C such that

�H�sq���X�aqt����r� ���� X�aqt ��r� ��� � C ���

�



for all t � IN�
The estimation ��� follows from the inclusions

sq���X�aqt����r� ��� � �X�aqt��r� ���C � ���

X�aqt��r� �� � �sq���X�aqt����r� ����C ���

for all t � IN	 where as de�ned earlier the subscript C indicates all points whose distance to the set
is less than C�

Proof of ���

Let

I�k� n� � X�aqt����r� ��� ���

i�e�	 the coe�cient R�k� n� of the polynomial Rn � the n�th element of the sequence S�r� �� � is not
zero and n 
 
aqt	��

We shall prove �rst that the polynomial

�Rn�x� �
sY
�

�ri�x��
��n
q
��i�q �

X
�

�R��� n�x� ���

is a factor of the polynomial Rn	 i� e�	

Rn � �Rn
�Rn ���

for some polynomial �Rn � IFq
x�
This follows from the inequalities

� � 
n�i	 


n

q
�iq � q�� � ��� i � �� � � � � s� ���

where � � maxf�iji � �� � � � � sg�
In fact	 let n � lq � j where l � IN and � � j � q 	 �� Then

lq�i 	 q � 


n

q
�iq � 
n�i 
 lq�i � q��

which implies ����
The inequality ��� and ��� imply also that

deg �Rn � Dq�� � ��� ���

where D �
Ps

� di and di � deg ri� i � �� � � � � s�
The coe�cient R�k� n� of the polynomial Rn is not zero� Then from ��� and ��� follows� there

exists k� � IN such that the k��th coe�cient �R�k�� n� of the polynomial �Rn satis�es

�R�k�� n� �� � ����

k 	Dq�� � �� � k� � k� ����

Consider the polynomial

�



R�n
q
��x� �

sY
�

�ri�x��
��n
q
��i� �

X
�

R��� 

n

q
�x��

This is the 
n
q
�th element of the sequence S�r� ���

From ��� follows

�Rn�x� � �R�n
q
��x��

q �
X
�

R��� 

n

q
�x�q� ����

Then ���� and ���� imply that

k� � k�q� ����

and

R�k�� 

n

q
� �� ��

which gives

I�k�� 

n

q
� � X�aqt��r� ��� ����

�here we used 
n
q
 � n

q

 aqt��

From ����	 ���� and ���� follows

sq���I�k� n�� � �I�k�� 

n

q
��C� � �X�aqt��r� ���C� � for C� � D�� � ���

and therefore

sq���X�aqt����r� ��� � �X�aqt��r� ���C� � ����

Proof of ���

Let

I�k� n� � X�aqt��r� ���

i�e�	 the coe�cient R�k� n� of the polynomial Rn � the n�th element of the sequence S�r� �� � is not
zero and n 
 
aqt�

Consider the polynomial

�Rn�x��
q �

sY
�

�ri�x��
�n�i�q �

X
�

R��� n�x�q� ����

�here we are using the q�Fermat property��

Case n � �
�
� �

The polynomial

Rn� �
sY
�

r
�n��i�
i

�



is a factor of the polynomial �Rn�
q for

n� � nq 	 

q

�
	 ��

where

� � minf�iji � �� � � � � sg� andn �
�

�
� ��

i�e�	

�Rn�
q � Rn�

�Rn� � ����

and �Rn� is a polynomial with coe�cients in IFq� Moreover	 Rn� is the n��th polynomial of the
sequence S�r� ���

In fact n� � � and


nq�i	��

q

�
 � ��	 � � 
n��i � q
n�i � 
nq�i� ����

since


n��i � n��i � nq�i 	 q
�i
�
� q�n�i 	 �� � q
n�i � 
nq�i�

and


n��i � n��i 	 � � nq�i 	 �i�

q

�
 � ��	 � � 
nq�i	��


q

�
 � ��	 ��

Moreover	

� � n	
n�
q
�

�

q
�

q

�
 � �� �

�

�
� �� ����

The coe�cient R�k� n� of the polynomial Rn is not zero	 then from ���� and ���� follows that
there exists k� � IN such that the k��th coe�cient R�k�� n�� of the polynomial Rn� is not zero and

kq 	 deg �Rn� � k� � kq� ����

Then ���� implies

deg �Rn� � Df��

q

�
 � �� � �g� ����

Therefore

I�k�� n�� � X�aqt����r� ��� ����

From ���� 	 ����	 ����	 and ���� follows

I�k� n� � �sq���I�k�� n����C� � �sq���X�aqt����r� ����C� ����

for n � �
�
� � and C� � maxf�

�
� �� D

q
f��
 q

�
 � �� � �g�

Case n 
 �
�
� �

�



The inclusion

I�k� n� � �sq���X�aqt����r� ����D�

�
� �
�
	��� ����

follows since

� � k �
sX
�

di
n�i �
sX
�

ndi
�i
�
�

D�

�
�
�

�
� ���

and

degRnq �
sX
�

di
nq�i � q
D�

�
�
�

�
� ���

and there exists l with � � l � qD

�
��
�
��� with I�l� nq� � X�aqt����r� ��� Then jk	

l
q
j � D


�
��
�
����

Combining ���� and ���� we obtain

X�aqt��r� �� � �sq���X�aqt����r� ����C� � ����

where C� � maxfC��
D

�
��
�
� ��g�

From ���� and ���� follows ��� with C � maxfC�� C�g�

�

We denote by Aq�r� �� a� the limit of the sequence ��� with respect to the Hausdor� metric �H �

Aq�r� �� a� � lim
t��

sq�t�X�aqt��r� ����

Remark � For s � �� � a � �� r � r� the set Aq�r� �� �� is the rescaled evolution set Aq�r�
associated with polynomial r �or with the linear cellular automaton generated by the polynomial
r�	 
��	 
�	 
��

For di�erent values of the parameter a the sets Aq�r� �� a� are di�erent and in some cases
nonhomeomorphic� For example let q � �� s � �� r�x� � r��x� � � � x � IF�
x� �� � �� The sets
A��r� �� �� and A��r� are not homeomorphic� The second set is the Sierpinski triangle and the �rst
is given by

A��r� �� �� � s��A��r�� � �
�� � � 
�� ��� ����

The sets A��r� �� �� and A��r� are not homeomorphic	 since the Sierpinski triangle has only �
points � ��� ��� ��� ��� ��� �� � with branching index � and from ���� follows that the set A��r� �� ��
has � points with branching index � � ��� ��� ��� ��� ��� ��� ��� �� and ��� ��	 
��	 pp� ��������

� Rescaled evolution set for several polynomials and rational pa�

rameters �i

Here we shall specialize the situation from the previous section� We consider the nonzero polyno�
mials r�� � � � � rs � IFq
x	 a positive real number a and positive rational numbers ��� � � � � �s� Assume
that �i �

ki
l
	 where l and ki� i � �� � � � � s are positive integers and a � l� By Fl � IR

� 	
 IR� we
denote the a�ne map de�ned with Fl�x� y� � �x� y

l
� for �x� y� � IR��

�



From Proposition � we know that the sequence �sq�t�Xlqt�r� ����t�� converges to the set
Aq�r� �� l� with respect to the Hausdor� metric �H � Here we shall describe this set� For this
description we shall use the representation of the rational numbers �i � ki

l
and shall write

Xlqt�r� �
k�
l
� � � � � ks

l
�� instead of Xlqt�r� ��� What we show is that the limit set associated with this

vector of polynomials and rational parameter values is the a�ne image of the limit set associated
with a single polynomial�

Proposition � The sequence of compact sets �sq�t�Xlqt�r� �
k�
l
� � � � � ks

l
����t�� converges to the set

F��l �Aq�r
k�
� � � � rkss ���

Proof

The assertion follows from the inequality

�H�Fl�Xlqt�r� �
k�
l
� � � � �

ks
l
����Xqt�r

k�
� � � � rkss � ��� � � ����

for all t � IN	 where � �
Ps

� diki and di � deg ri�
The inequality ���� follows from the following two inclusions

Fl�Xlqt�r� �
k�
l
� � � � �

ks
l
��� � �Xqt�r

k�
� � � � rkss � ��� ����

Xqt�r
k�
� � � � rkss � �� � �Fl�Xlqt�r� �

k�
l
� � � � �

ks
l
���� ����

Proof of ����

Let

I�a� n� � Xlqt�r� �
k�
l
� � � � �

ks
l
���

i�e�	 the coe�cient R�a� n� of the polynomial Rn � the n�th element of the sequence S�r� �k�
l
� � � � � ks

l
��

is not zero and n 
 lqt�
Let n � lm� j� � � j � l 	 ��m � IN and let jki � uil � vi� � � vi � l 	 �� ui � IN� i � �� � � � � s�

Then


n�i � 
n
ki
l
 � mki � ui� i � �� � � � � s

and

Rn �
sY
�

r
�n�i�
i � �rki� � � � rkss �mru�� � � � russ � ����

Therefore the polynomial Rml�x� � �r��x�
ki � � � rs�x�

ks�m �
P

�R���ml�x� is a factor of the
polynomial Rn� Since the coe�cient R�a� n� of the polynomial Rn is not zero	 then there is an
integer a� such that

R�a��ml� �� � ����

a	� � a	 deg ru�� � � � russ � a� � a� ����

�



Here Rml is the m�th polynomial of the sequence S�rk� � � � rks � ��
From ���� and ���� follow

I�a��m� � Xqt�r
ki
� � � � rkss � ��

Fl�I�a� n�� � �I�a��m���

The last two inclusions imply �����

Proof of ��	�

Assume that

I�c�m� � Xqt�r
k�
� � � � rkss � ���

i�e�	 the coe�cient R�c�ml� of the polynomial Rml � �rki� � � � rkss �m � the m�th element of the
sequence S�rk� � � � rks� �� is not zero and m 
 qt� This polynomial Rml is also the ml�th element of
the sequence S�r� �k�

l
� � � � � ks

l
��� Therefore

I�c� lm� � Xlqt�r� �
k�
l
� � � � �

ks
l
��

and

I�c�m� � �Fl�I�c� lm���� � �Xlqt�r� �
k�
l
� � � � �

ks
l
�����

which implies ���� since � � ��

�

Remark � The limit of the sequence �sq�t�Xlqt�r� �
k�
l
� � � � � ks

l
����n�� depends on the representation

of the rational numbers �i as fractions�

F��ul �Aq�r
k�u � � � rksu�� � lim

t��
sq�t�Xulqt�r� �

uk�
lu

� � � � �
uks
lu

��� foru � IN�

and these sets are in general di�erent�

� Rescaled evolution set for one polynomial

Here we shall consider another specialization of the situation considered in the Section �� s �
�� r � r�� a � �

�
and � a positive real number� Let F � IR� 	
 IR� be the a�ne map de�ned with

F �x� y� � �x� �y� for �x� y� � IR��
From Proposition � we know that the sequence �sq�t�X� q

t

�
�
�r� ����t�� converges to the set

Aq�r� ��
�
�
� with respect to the Hausdor� metric �H � Here we shall describe this set�

Proposition � The sequence of compact sets �sq�t�X� q
t

�
�
�r� ����t�� converges to the set

F���Aq�r��� i�e�� Aq�r� ��
�
�
� � F���Aq�r���

��



Proof

The assertion follows from the estimation

�H�F �X
� q
t

�
�
�r� ����Xqt�r�� � C�

where C � maxfd�� � ��� � � �g and d � deg r	 which is equivalent with the inclusions

F �X
� q
t

�
�
�r� ��� � �Xqt�r� ���C � ����

Xqt�r� �� � �F �X
� q
t

�
�
�r� ����C � ����

Proof of ����

Let

I�k� n� � X
� q
t

�
�
�r� ���

i�e�	 the coe�cient R�k� n� of the polynomial

�r�x���n�� �
X
�

R��� n�x�

is not zero� The polynomial r�n�� is the n�th element of the sequence S�r� ��� It is also 
n��th element
of the sequence S�r� ��� Therefore

I�k� 
n�� � Xqt�r� ���

It follows that

F �I�k� n�� � �I�k� 
n�����

The last inclusion implies �����

Proof of ����

Let

I�k� n� � Xqt�r��

i�e�	 the coe�cient r�k� n� of the polynomial

�r�x��n �
X
�

r��� n�x�

is not zero � rn is the n�th polynomial of the sequence S�r���
The polynomial r��

n
�
��� is a factor of the polynomial rn since

n	 � 	 � � 


n

�
� � n�

Since the coe�cient r�k� n� of the polynomial rn is not zero	 then there is a natural number k�
such that the coe�cient R�k�� 


n
�
� of the polynomial r��

n
�
��� satis�es

��



R�k�� 

n

�
� �� �� ����

k 	 d�� � �� � k� � k� ����

The polynomial r��
n
�
��� is the 
n

�
�th element of the sequence S�r� ��� Then from ���� follow

I�k�� 

n

�
� � X

� q
t

�
�
�r� ���

From ���� and the inequality

� � n	 


n

�
� � 
� � �

follows

I�k� n� � �F �I�k�� 

n

�
���C �

which implies �����

�

� Rescaled evolution set for a perturbation of the sequence S�r� ��

Here we shall consider some perturbations of the sequence of polynomials S�r� �� under which the
rescaled evolution set is stable� Let r�� � � � � rs be nonzero polynomials with coe�cients in IFq and
let a� �i� � � � � �s be positive real numbers� We consider also the functions h� gi � IN 	
 IN satisfying

� The function h is nondecreasing	

� limn��
h�n�
n

� �	

� jgi�n�	 
n�ij � h�n� for all n � N 	 where N is �xed natural number�

The function h is o�n� for n
 � and the functions gi are small �h�small� perturbation of the
functions �i � IN 	
 IN	 given by �i�n� � 
n�i	 for n � IN�

The condition that the function h is nondecreasing is not important but technically convenient�
We shall choose the natural number N so big that

h�n�

n
�

�

��� � ��
� and h�n� � �� forn � N� ����

where � � minf�iji � �� � � � � sg and � � maxf�iji � �� � � � � sg�
Consider the polynomials

Rn�g�x� �
sY
�

�ri�x��
gi�n� �

X
�

�R��� n�x�

and the sequence S�r�g� � �Rn�g�n��	 where r � �r�� � � � � rs� and g � �g�� � � � � gs�� The sequence
S�r�g� is a small perturbation of the sequence S�r� ���

The goal of this section is the following

��



Proposition �

lim
t��

sq�t�X�aqt��r�g�� � Aq�r� �� a��

i�e�� the rescaled evolution set of the sequence S�r�g� does not depend on the small perturbation g�

Proof

The assertion follows from the estimation

�H�X�aqt��r�g�� X�aqt ��r� ��� � Ch�
aqt��

for some constant C and for all su�ciently large t � IN	 since limt��
h��aqt��

qt
� ��

The last estimation is equivalent with the inclusions

X�aqt��r�g� � �X�aqt��r� ���Ch��aqt��� ����

X�aqt��r� �� � �X�aqt��r�g��Ch��aqt ��� ����

Proof of ����
 case n � N

Let N � n 
 
aqt�
De�ne

m � 
n	
h�n�

�
�

Then from ���� follows that m is a nonnegative integer� Moreover	

n	
h�n�

�
	 � � m � n	

h�n�

�
�

which implies

� � n	m �
�

�
h�
aqt�� ����

The polynomial Rm is a factor of the polynomial Rn�g	 since

n�i 	 h�n�
�

�
	� � 
m�i � gi�n� � n�i � h�n�� ����

Let

Rn�g � Rm
�Rm� ����

for some polynomial �Rm with coe�cients in IFq� From ���� follows

deg �Rm � D�
�

�
��� ��h�
aqt�� ����

Assume that

I�k� n� � X�aqt��r�g��

��



i� e�	 the coe�cient �R�k� n� of the polynomial Rn�g is not zero� Then ���� implies that there exists a
natural number k� such that the k��th coe�cient R�k�� n�of the polynomial Rm is not zero	 which
means that I�k��m� � X�aqt��r� ��� Moreover	 ���� implies

k 	D�
�

�
��� ��h�
aqt� � k� � k ����

Then from ���� and ���� follows

I�k� n� � �I�k��m��C�h��aqt��� ����

where C� � maxf�
�
�D�


�
��� ��g�

Proof of ����
 case n 
 N

Assume

I�k� n� � X�aqt��r�g�� and n 
 N�

then

� � k � DM� ����

where D �
Ps

� di� di � deg ri	 and M � maxfgi�n�jn 
 Ng�
Let I�l� n� � X�aqt��r� ��� Since the degree of the n�th element Rn of the sequence S�r� �� is

bounded from above by the number DN�	 then

� � l � DN�� ����

From ���� and ���� follows

I�k� n� � �I�l� n��C� � ����

where C� � DmaxfN��Mg	 since jk 	 lj � C��
From ���� and ���� follow ���� for C � maxfC�� C�g�

Proof of ��	�
 case n � �N

Let � � �N � n 
 
aqt�
De�ne

m � n	 

� � �

�
h�n��

From ���� follows that m � N �
Therefore

gi�n� � 
m�i � h�m� � n�i 	 h�n��� � �� � �i � n�i 	 � � 
n�i � n�i�

and

gi�m� � n�i 	 f�� � ��
�

�
� �gh�
aqt��

��



Then

� � 
n�i	 gi�m� � f�� � ��
�

�
� �gh�
aqt�� ����

Therefore the polynomial Rm�g � the m�th polynomial of the sequence S�r�g� � is a factor of the
polynomial Rn � the n�th polynomial of the sequence S�r� ���

Rn � Rm�g
 Rm� ����

and from ����

deg  Rm � Df�� � ��
�

�
� �gh�
aqt�� ����

Suppose I�k� n� � X�aqt��r� �� and �N � n � 
aqt� Then ���� imply that there exists a natural

number k� such that k� coe�cient �R�k��m� of the polynomial Rm�g is not zero and moreover	 from
���� follows

k 	 C�h�
aq
t� � k� � k�

for C� � Df�� � ��

�
� �g� From the last inequality and

� � n	m �
� � �

�
h�
aqt�

follows

I�k� n� � �I�k��m��C�h��aqt��� ����

where C� � maxfC��
�	

�
g�

Proof of ��	�
 case n 
 �N

Since
degRn 
 �ND��

and

degRn�g �M�D� whereM� � maxfgi�n�jn 
 �Ng�

then for I�k� n� � X�aqt��r� �� and I�l� n� � X�aqt��r�g� follows

I�l� n� � �I�k� n��C� � ����

where C� � DmaxfM�� �N�g�
Then ���� follows from ���� and ���� for C � maxfC�� C�g�
Therefore the proposition is proved for C � maxfC�� C�� C�� C�g�

�

��



� Random multiplication of polynomials � the main theorem

The goal of this section is the proof of the theorem�

Theorem � Let r � �r�� � � � � rs�� r�� � � � � rs � IFq
x �nonzero polynomials� and let a� � �

���� � � � � �s�� a � �� �i � �� i � �� � � � � s�
Ps

� �i � �� Then for almost all points � � � � f�� � � � � sgIN

with respect to the Bernoulli measure �� induced by the probability vector � follows�
a� The sequence of compact sets �sq�t�X�aqt��r� ������t�� converges with respect to the Hausdor�

metric and

Aq�r� �� a� � lim
t��

sq�t�X�aqt��r� ������

b� For s � �� r� � r� r� � �� �� � �� �� � �	 � the sequence of compact sets �sq�t�X� q
t

�
�
�r� ������t��

converges with respect to he Hausdor� metric and

Aq�r� � lim
t��

sq�t�X� q
t

�
�
�r� ������

c� For a rational probability vector � � �k�
l
� � � � � ks

l
�� l� k�� � � � � ks � IN the sequence of compact sets

�sq�t�X�aqt��r� �
k�
l
� � � � � ks

l
������t�� converges with respect to the Hausdor� metric and

Aq�r
k�
� � � � rkss � � lim

t��
sq�t�X�aqt��r� �

k�
l
� � � � �

ks
l
������

Proof

For � � ���n��n � �IN let

�i�n� � cardfk j ��n� � i� k � ng�

Here we shall consider the polynomials

Rn���x� �
sY
�

�ri�x��
�i�n� �

X
�

�s��� n�x�

and the sequence S�r��� � �Rn���n���
On the probability space ��� �� we consider the random variables Y j

n � � 	
 f�� �g	 de�ned
by

Y j
n ��� �

�
� ��n� � j
� otherwise�

The expected value of Y j
n with respect to the measure � is E�Y j

n � � �j and the variance var�Y j
n � �

�j��	 �j� � ��j � Then �Y j
n �n�� is i�i�d� sequence of random variables�

The law of iterated logarithm	 
��	 p� ��	 implies that for almost all points � � � with respect
to the Bernoulli measure �	

lim sup
n

Pn
k�� Y

j
k 	 n�jq

���jn log logn
� ��

Therefore for almost all � � � there exist a natural number N � N��� such that


n�j	 
�
p
��n log logn � �j�n� � 
n�j � 
�

p
��n log log n

��



for all n � N and � � maxf��j j j � �� � � � � sg� Here we used that �j�n� �
Pn

k�� Y
j
k ����

De�ne the functions gj�� � IN 	
 IN and h � IN 	
 IN with

gj���n� � �j�n�� j � �� � � � � n�

and

h�n� � 
�
p
��n log log n�

Then the functions h and gj��� j � �� � � � � s satisfy the conditions of the Proposition �� Therefore
for almost all � � � the sequence S�r��� is a small perturbation of the sequence S�r� �� and the
theorem follows from the Proposition ��

�

	 Hausdor
 dimension of rescaled evolution sets

The Hausdor� dimension of the rescaled evolution set Ap�r� � Ap�r� �� �� was calculated by S�
Willson in 
��	 using the Perron�Frobenius eigenvalue � of the transition matrix �associated to the
polynomial r�	 introduced by him� dimHAp�r� �

ln�
ln p � Later on F� v� Hassler at all�	 
� described

the rescaled evolution set Aq�r� using the attractor of a special graph directed construction � matrix
substitution system� The transition matrix of S� Willson coincides with the transition matrix of this
graph directed construction� Since the graph directed construction of v� Haeseler et all� satis�es the
open set condition	 then the formula of S� Willson follows from the formula of Mauldin�Williams	

��	 Theorem �	 for the Hausdor� dimension of the attractors of graph directed construction	 
���
In addition	 from Mauldin�Williams	 
��	 Theorem �	 follows that the Hausdor� measure in the
dimension is positive and �nite	 since the transition graph of the graph directed construction of
Haeseler et all� is strongly connected	 
�� About the Hausdor� dimension see 
��

The goal of this section is the following proposition

Proposition � Let r � �r�� � � � � rs�� r�� � � � � rs � IFq
x� �i� a � IR� a � �� �i � �� i � �� � � � � s� Then
a� The Hausdor� dimension of the rescaled evolution set Aq�r� �� a� does not depend on a� i�e��

dimHAq�r� �� a� � dimHAq�r� �� ���

b� For s � �� r� � r� �� � � follows

dimHAq�r� �� a� � dimHAq�r��

c� For �i � �k�
l
� � � � � ks

l
�� l� k�� � � � � ks � IN follows

dimHAq�r� �
k�
l
� � � � �

ks
l
�� a� � dimHAq�r

k�
� � � � rkss ��

d� For �i � �� i � �� � � � � s and
Ps

� �i � �� let � be the Bernoulli measure on the space � �

f�� � � � � sgIN� Then for almost all � � � with respect to the Bernoulli measure � follows

dimHAq�r� ���� a� � dimHAq�r� �� ���

��



Proof

a� Recall that

Aq�r� �� a� � lim
t��

sq�t�X�aqt��r� ����

Set � � 
 ln aln q  � �� Then for t big enough t� � t� � is a nonnegative integer and

qt	��� � aqt � qt	��

Therefore

X�qt������r� �� � X�aqt��r� �� � X�qt����r� ���

The last inclusions imply

sq����Aq�r� �� ��� � Aq�r� �� a� � sq�Aq�r� �� ����

The assertion follows	 since the a�ne maps do not change the Hausdor� dimension�
b� The assertion follows from the Proposition � and a��
c� The assertion follows from the Proposition � and a��
d� Follows from the Theorem � and a��

�

Remark � In general	 the set Aq�r� �� �� and its Hausdor� dimension depend on �	 e�g� in the
case � � �k�u

l
� � � � � kiu

l
�� u� l� k�� � � � � ks � IN the Hausdor� dimension of the set Aq�r� �

k�u
l
� � � � � ksu

l
��

depends in general on u�
The formula of S� Willson gives the dimension of the rescaled evolution set for � vector with

rational coordinates� For all other cases we do not have a formula for calculating it�

� Some remarks

�� The �eld of coe�cients

We considered polynomials with coe�cients in the Galois �eld IFq� All assertions proved in this
note hold in a more general situation � form�Fermat polynomials with coe�cients in a commutative
ring with ��

Let R be a �nite commutative ring with � and r a polynomial with coe�cients in R� We say
that the polynomial r has the m�Fermat property �or is an m�Fermat polynomial� if

r�x�m � r�xm�

for a given natural number m � ��

Examples � �� For R � IFq	 the Galois �eld with q � ps elements �where p is a prime number�	
every polynomial p�x� � IFq
x is a q�Fermat polynomial	 
��	 pp� ��	 ���

�� For R � ZZ�psZZ	 �p � prime number�	 the integers modulo ps� s � �	 every polynomial
p�x� � q�x�p

s��
� R
x is a p�Fermat polynomial	 
��	 
���

�� For more examples and comments see 
�	 Lemma �	 � 	 pp� ������

��



�� Scaling sequences

Here we shall consider the simplest case � the sequence of polynomials S�r� for r � IFq
x�
The set of scaling sequences for a given polynomial is quite big� for arbitrary sequences a �

�a�n��n�� and b � �b�n��n�� satisfying the conditions dn b�n�
a�n� � C	 where d � deg r and C is

an appropriate constant	 the sets sa�n����Xb�n��r�� are subset of 
�� C� 
�� C � 
�� C�� The space
�K�
�� C��� �H� is compact� Therefore there exist subsequences a� � �a�nk��k�� and b� � �b�nk��k��
such that the sequence �sa�nk�����Xb�nk��r���n�� converges	 i�e�	 the sequences a� and b� are scaling
sequences for X�S�r�� �or for the polynomial r�� In general these scaling sequences depend on
the polynomial r� We want to have scaling sequences independent on r� Such are the standard
sequences a � �qt�t�� and a � �
aqt�t�� for every positive real number a� For a � � these are
not only �universal� scaling sequences but the corresponding rescaled evolution set Aq�r� have a
self�similar structure generated by some special graf�directed system	 
�� Moreover	 the rescaled
evolution set Aq�r� �� a� is determined by

Aq�r� �� a� � Aq�r� � �IR� 
�� a�� for a 
 �

and

Aq�r� �� a� � sqt����Aq�r�� � �IR� 
�� a�� for qt� � a 
 qt�	��

We shall call Aq�r� the standard rescaled evolution set�
For some speci�c polynomials the self�similarity structure of the rescaled evolution set with

respect to some other scaling sequences is simpler in comparison with the self�similarity structure
of the standard rescaled evolution set� In 
� are given such examples� One of them is the following�
Let r�x� � � � x � x� � IF�
x� The sequences a � b � ��

n��
� �n�� are scaling sequences for the

polynomial r� Denote by B the rescaled evolution set with respect to these sequences�

B � lim
n��

s �

�n��
�X �n��

�

�r���

The set B is not a�nely equivalent with the standard rescaled evolution set A��s�� s � IF�
x � the
last set is the rescaled version of the geometrical representation �zero � non�zero� of the binomial
coe�cients modulo �	 
�� The sets B and A��r� are not homeomorphic and the self�similarity
structure of B is simpler�

Similar observations imply that the sequences a � b � �n�n�� are not scaling sequences for all
polynomials with coe�cients in IF�� Let r � � � x � IF�
x� The standard rescaling evolution set
A��r� of this polynomial is the Sierpinski triangle� Assume that the sequences a � b � �n�n�� are
scaling sequences for the polynomial r� Then

A��r� � lim
t��

s��t�X�t�r�� � lim
t��

s�	��t�X�	�t�r�� � s�� lim
t��

s��t�X�	�t�r��� � s��A��r� �� ����

i�e�	 the sets A��r� and A��r� �� �� are a�nely equivalent	 which is not possible since they are not
homeomorphic�

At the end we shall prove that the sequences a � b � ��n�n�� are not scaling sequences for the
polynomial r�x� � � � x � IF�
x�

The evolution set X�r� of this polynomial is the geometrical representation �zero � non�zero� of
the sequence of binomial coe�cients modulo � and its rescaled evolution set

��



A��r� � lim
n��

s��n�X�n�r��

is the Sierpinski triangle�
The number � � log �

log � is irrational and its simple continued fraction � � 
�� a�� a�� � � � is in�nite�
Let

pk
qk

� 
�� a�� � � � � ak� gcd�pk� qk� � �

be the k�th convergent of the continued fraction 
�� a�� a�� � � �	 
��	 Ch� X�
Then

j�qk 	 pkj �
�

qk
� for k � �� �� � � � �


��	 p� ���� The last inequality implies

j�	
�qk

�pk
j �

�

qk
� ����

�p
k

�q
k � � �

�

qk
� ����

for k � �� �� � � �� In 
� is proved

A��r� � lim
k��

s��qk �X�qk �r�� � lim
k��

s��pk �X�pk �r��� ����

Since lim qk � this assertion follows from the following inequalities

�H�s��qk �X�qk �r��� s��pk �X�pk �r��� �

�
�qk �H�X�qk �r��X�pk �r�� �

�
�qk �H�X�pk �r�� s�qk��pk �X�pk �r��� �

d
�qk j�

qk 	 �pk j� �
�qk j�	

�qk
�pk jdiamX�pk �r� � �� � �

qk
��d
qk
�

Assume that the sequence �s��n�X�n�r���n�� converges� Then from ���� follows that its limit is
the Sierpinski triangle A��r��

We know that the sequence �s��n�X�	�n�r���n�� converges and its limit is the set

A��r� �� �� � s��A��r�� � �
�� � � 
�� ���

The last set is not homeomorphic to the Sierpinski triangle�
From ���� follows

�H�X�	�qk �r�� �X�pk���r�� � �dj�qk 	 �pk j �
�d�pk	�

qk
�

Therefore	 the sequence �s��pk �X�	�qk �r���k�� converges and

lim
k��

s��pk �X�	�qk �r�� � lim
k��

s��pk �X�pk���r�� � s��A��r��

�since the sequence �s��pk���X�pk���r���k�� is a subsequence of �s��n�X�n�r���n��

��



From ���� and ���� follows

�H�s��qk �X�	�qk �r��� s��pk �X�	�qk �r��� �
�
�qk �H�X�	�qk �r�� s�qk��pk �X�	�qk �r��� �

�
�qk j�	

�qk
�pk jdiamX�pk �r� �

�d
qk
�

therefore

A��r� �� �� � lim
k��

s��qk �X�	�qk �r�� � lim
k��

s��pk �X�pk���r�� � s��A��r���

i�e�	 the sets A��r� �� �� and A��r� are a�nely equivalent	 which is impossible since they are not
homeomorphic�

With similar arguments it follows that the sequences a � b � �mn�n���m � � are not scaling
sequences for the polynomial r�x� � ��x � IF�
x in the case the natural number m is not a power
of �� This is a geometrical counterpart of the result of Allouche et all	 
�	 that the sequence of
binomial coe�cients �

�n
k

�
mod ��n�k is m�automatic if and only if m is a power of ��

�� Polynomials in kvariables

All results of this note also hold for polynomials r � IFq
x�� � � � � xk� Then the rescaled evolution
sets are fractal subsets in the k � ��dimensional Euclidean space IRk	�� For the standard scaling
seqiences a � a � �qt�t�� and the parameters a � �� � � � � � �s � � this is proved in 
�� For example
the standard rescaled evolution set A��r� of the polynomial r�x�� x�� � � � x� � x� � IF�
x�� x� is
the Sierpinski pyramid	 
���

�� Hausdor� dimension of rescaled evolution sets does not depend on scaling sequences

The squeezing trick of S� Willson	 
��	 applied in section � implies� if a � b � �a�n��n�� are
scaling sequences and

Aa�r� �� � lim
n��

sa�n����Xa�n��r� ����

then

dimHAa�r� �� � dimHAq�r� �� ���

S� Willson proved this for s � �� �� � � with the following argument� For every n choose the natural
number kn such that qkn � a�n� � qkn	�	 then

Xqkn �r� �� � Xa�n��r� �� � Xqkn���r� ���

and

sq�kn���Xqkn �r� ��� � sa�n�q�kn���sa�n����Xa�n��r� ���� � sq�kn���Xqkn���r� ���� ����

By choosing a suitable subsequence if necessary we may assume that limn��
a�n�

q�kn��
� �� By taking

limit in ���� we obtain

sq���Aq�r� ��� � s��Aa�r� ��� � Aq�r� ���

which implies the assertion�

��



�� Open questions

Let r�� � � � � rs be polynomials with the coe�cients in the Galois �eld IFq and let ��� � � � � �s be positive
real numbers�

� Is the Hausdor� dimension ����� � � � � �s� � dimHAq�r� �� �� a continuous function on � �
���� � � � � �s� for a �xed r � �r�� � � � � rs�!

� Is there a simple formula for the Hausdor� dimension of dimHAq�r� �� ��!

��
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