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§1. Introduction. In [MU1] we considered conformal infinite iterated function systems
exploring geometrical and dynamical properties of its limit set. That paper combined
and extended two continuing lines of research. Omne is the study of an infinite system
of similarity maps (e.g., [Mo], [MW]) and the other is the study of a finite system of
contracting conformal maps (e.g., [Pa]). We now call the systems considered in [MUI]
hyperbolic systems, since the derivatives of the maps in the system were required to be
uniformly bounded below one. We continued our investigation of these systems in [MU2]
and gave special attention to the limit sets of iterated function systems arising from the
standard (real) continued fraction algorithm with restricted entries. In [MU3] our subject
of interest was the residual set of the Apollonian packing. This was the first paper where
we had to seriously cope with a parabolic system. In the present paper we develop the
theory of general parabolic conformal iterated function systems S. In section two, we define
what it means for S to be parabolic and develop some basic results about its limit set and
coding map. In section three, we define the pressure function associated with S and relate
this notion to the standard one of the pressure of a function. We also note some important
parameters and features of this function. In section four, we study Perron-Frobenius
operators associated with the system S and the corresponding semiconformal measures,
i.e. eigen-measures for the dual operators. We also determine the Hausdorff dimension
of the limit set. Let h denote the Hausdorff dimension of the limit set of a parabolic
iterated function system S. In section five, we first describe the structure of ¢-conformal
measures with ¢ > h. Then we associate with the system S an (always infinite) hyperbolic
conformal system S* whose limit set may differ from the limit set of the system S by
at most a countable set. This hyperbolic system is our main tool to study h-conformal
measures for the system S. We prove that if S* is regular, then there exists a unique h-
conformal measure for S which is atomless. We also study invariant measures for S* which
are probabilities and invariant measures for S (which are o-finite, but which may happen
to be infinite) equivalent with conformal measures. In particular we provide necessary
and sufficient conditions for the latter measures to be finite. We also show that the h-
dimensional Hausdorff measure of the limit set is always finite and that under the strong
open set, condition the h-dimensional packing measure is positive. In section six we give
several examples. In particular, we return to the Apollonian packing to study invariant
measures equivalent with h-conformal measures showing that these are finite. Some of the
arguments given in [MU3] which used the general theory given here are completed. We
would like to mention here that although in [MU3] we have considered a slightly different
parabolic system and a different hyperbolic system derived from it, the results obtained
in the present paper also apply to the setting of [MU3]. We end the paper with a class of
one-dimensional examples.

§2. Preliminaries. Our setting is this. Let X be a compact connected subset of a
Euclidean space IR?. Suppose that we have countably many conformal maps ¢, : X — X,
n € I, where I has at least two elements satisfying the following conditions

(1) (Open Set Condition) ¢, (Int(X)) N ¢y, (Int (X)) = O for all m # n.
(2) |¢i(x)| < 1 everywhere except for finitely many pairs (i,z;), ¢ € I, for which z; is
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the unique fixed point of ¢; and |@;(z;)| = 1. Such pairs and indices ¢ will be called
parabolic and the set of parabolic indices will be denoted by €. All other indices will
be called hyperbolic.

(3) Vn > 1 Yw = (wy,...,wp) € I™ if w, is a hyperbolic index or w,—1 # wy,, then ¢,
extends conformally to an open connected set V C IR? and maps V into itself.

(4) If 4 is a parabolic index, then (1,5, ¢~ (X) = {z;} and the diameters of the sets
¢in (X)) converge to 0. -

(5) (Bounded Distortion Property) 3K > 1VYn > 1 Vw = (w1, ...,wy) € I" Vz,y € V if w,
is a hyperbolic index or w,,_1 # w,, then

o
o, ()] =

(6) 3s < 1VYn >1Vw e I" if w, is a hyperbolic index or wy,—1 # wy, then ||¢] || < s.

(7) (Cone Condition) There exist o, > 0 such that for every z € 0X C IR there exists
an open cone Con(z,a,l) C Int(X) with vertex x, central angle of Lebesgue measure
a, and altitude .

(8) There are two constants L > 1 and a > 0 such that

[16i ()| = 1o (@)]| < LI |lly — =],

for every ¢ € I and every pair of points z,y € V.

We call such a system of maps S = {¢; : i € I} a subparabolic iterated function system.
Let us note that conditions (1),(3),(5)-(7) are modeled on similar conditions which were
used to examine hyperbolic conformal systems in [MU1]. Condition (8) also held for many
of the systems studied in [MU1] but was not a general requirement. We need this condition
in the sequel. If Q # () we call the system {¢, : n > 1} parabolic. As declared in (2)
the elements of the set I\ Q are called hyperbolic. We extend this name to all the words
appearing in (5) and (6). By I'* we denote the set of all finite words with alphabet I and by
I°° all infinite sequences with terms in I. It follows from (3) that for every hyperbolic word
w, ¢, (V) C V. Note that our conditions insure that ¢}(z) # 0, for all i and z € V. We
provide below without proofs all the geometrical consequences of the bounded distortion
property (5), abbreviated as (BDP), derived in [MU1] which remain true in our setting.
We have for all hyperbolic words w € I* and all convex subsets C of V

(BDP1) diam (¢, (C)) < |9}, ||diam(C)

and

(BDP2) diam (¢, (V) < D¢, |,

where the norm ||-|| is the supremum norm taken over V and D > 1 is a universal constant.
Moreover,

(BDP3) diam(¢u (X)) = D71||¢, ||
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and
(BDP4) ¢u(B(z,7)) D B(du(z), K¢, |Ir),

for every z € X, every 0 < r < dist(X,0V), and every hyperbolic word w € I*. Also,
there exists 0 < 4 < a such that for all x € X and for all hyperbolic words w € I'*

(BDP5) ¢, (Int(X)) D Con(¢w(z), B, D||4L]]) D Con(¢u(z), 3, D~*diame,,(V)))

where Con (¢, (), 3, D7 |¢,,]|) and Con(¢. (), 3, D~2diam (¢, (V))) denote some cones
with vertices at ¢, (), angles 3, and altitudes D~!||¢/,|| and D~2diam(¢,,(V)) respectively.
Frequently, refering to (BDP) we will mean either (BDP) itself or one of the properties
(BDP1)-(BDP5). For each w € I* UI%°, we define the length of w by the uniquely deter-
mined relation w € I'*l. If w € I* UT™ and n < |wl|, then by w|, we denote the word
Wiws ...wy. Our first aim in this section is to prove the existence of the limit set. More
precisely, we begin with the following lemma.

Lemma 2.1. For all w € I the intersection (,,~ ¢, (X) is a singleton.

Proof. Since the sets ¢, (X) form a nested sequence of compact sets, the intersection
Np>o P, (X) is not empty. Moreover, it follows from (4) that if w is of the form 7i*,
T € I*,i € Q, then the diameters of the intersection ﬂZ:o bu|, (X) tend to 0 and, in the
other case, the same conclusion follows immediately from (6). In any case, (¢ ], (X)
is a singleton and we are done. H a

Improving a little bit the argument just given, we have the following.

Lemma 2.2. limy, e SUP|,|=p, {diam(¢y, (X))} = 0.

Proof. Let g(n) = max;cq{diam(¢;» (X)}. Since Q is finite it follows from (4) that
lim,, o g(n) = 0. Let w € I*°. Given n > 0 consider the word w|,. Look at the longest
block of the same parabolic element appearing in w|,. If the length of this block exceeds

v/n then, since due to (2) all the maps ¢;, j € I, are Lipschitz continuous with a Lipschitz
constant < 1, diam(p,,(X)) < g(v/n). Otherwise, we can find in wl, at least % =
v/n — 1 distinct hyperbolic indices. It then follows from (6) (and Lipschitz continuity with

a Lipschitz constant < 1 of all the maps ¢;, ¢ € I) that diam(¢, (X)) < sVP=1. The
proof is finished. W

We introduce on I*° the standard metric d(w,7) = e~™, where n is the largest number

such that wl,, = 7|,. The corollary below is now an immediate consequence of Lemma 2.2.
Corollary 2.3. The map 7: I = X, m(w) =[50 Pw|, (X), is uniformly continuous.
The limit set J = Jg of the system S = {¢; }ics satisfies

J=m(I7) = Uierdi(J)-
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Lemma 2.4. If X is a topological disk contained in € then every parabolic point lies on
the boundary of X.

Proof. Suppose on the contrary that a parabolic point x; € Int(X). Let D! = {2 € @':
|z] < 1} and let R : D' — Int(X) be the Riemann map (conformal homeomorphism) such
that R(0) = x;. Consider the composition R=' o ¢; o R : D! — D'. Then |(R~! 0o ¢; o
R)'(0)] = |[R'(0)]7Y|R'(0)| = 1. Thus by Schwarz’s lemma R~ o ¢; o R is a rotation. Since
¢;i = Ro (R Yo ¢;0oR)o R™L, it follows that ¢;(X) = Ro (R 'o¢;0oR)o R71(X) = X.
This contradiction finishes the proof. B

63. Topological pressure and associated parameters. Given a set F' C I and a
function f : F'*° — IR we define the topological pressure of f with respect to the shift map
o: F°° — F* to be

where [w] = {7 € F*° : 7||,| = w}. Since the sequence

n +— log Z exp( sup Zf (o7 (T
TE[wW]

wEeF™

is subadditive, the limit exists. If F' = I, we suppress the subscript F' and write simply
P(f) for Pr(f). We call a function f : I* — IR acceptable if it is uniformly continuous
and max;er{sup(f|p) —inf(f|;))} < oo. We shall prove the following.

Theorem 3.1. If f: I°° — IR is acceptable, then

P(f) = sup{Pr(f)},

where the supremum is taken over all finite subsets F' of I.

Proof. The inequality P(f) > sup{Pr(f)} is obvious. To prove the converse suppose
first that P(f) < co. Fix € > 0. By the acceptability of f, there exists [ > 1 such that
|f(w) = f(7)] <&, if w; = 7[; and M = max;er{sup(f|;;) — inf(f|E)} < oo. Now, fix
k > [l. By subadditivity,

%log Z exp( sup Zf (o7 (T > P(f).

lw|=k Telw] i

For each FF C I and m € N, set

Lo (F, f)= ) exp(sup Zf (0(r
TE[wW]

weFm™



So, there exists ¢ > 1 so large that writing F' = {1,2...,q} we have %long(F, f) >
P(f) —e. Put

k—1
=3 s
§=0
Then for every n > 1, we have
n—1 _
i (F, f) = Z exp sup Zfoa > Z exp Zinf(f“[,kjw])

n—1

> Z exp inf(ﬂ[akmlk])

weF’kn _7

I
=

But, if 7 <n — 1, then inf(f|[gkjw|k]) > sup (f|[gjkw|k]) —e(k —1) — MI. Hence,

Cin(F, f) > Z exp Zsup Flioriwg) — (B —1)e — Ml

— e—c(k=l)n—Min Z exp ZSUP f| kJUJ|k)

n

o= (k=)= M Z exp (sup(f|i))

TEFk
Therefore,

1 —e(k —1 Ml

Pe(f) = lim Ltogli(m ) > B0 M by osp() s
n—oo kn k k

provided k is large enough. Thus, letting € ~\ 0, the theorem follows. The case P(f) =

can be treated similarly. l

Looking at this theorem we should notice that our definition of pressure coincides with a
more complicated one given in [Sa] although we will not use this information in our paper.
We say a o-invariant Borel probability measure p on I°° is finitely supported provided
there exists a finite set F' C I such that p(F°°) = 1. The well-known variational principle

(see [Wa], comp. [PU]) tells us that for every finite set F' C I

Pr(f) =sup{lu(o) + [ )

where the supremum is taken over all g-invariant ergodic Borel probability measures u

with p(F>°) = 1. Applying Theorem 3.1, we therefore get the following.

6



Theorem 3.2. If f: I°*° — IR is acceptable, then

P(f) = sup{h, (o) + / fdu),

where the supremum is taken over all g-invariant ergodic Borel probability measures pu
which are finitely supported.

We consider the function g : I°° — IR given by the formula

g(w) =log|¢y, (m(a(w)))l.

Using heavily condition (8) we shall prove the following.

Proposition 3.3. The function g defined above is acceptable.
Proof. Fix n > 1 and w, 7 € I*® such that w|,, = 7|,. It then follows from (8) that

l9(w) = g(7)] = [log|@l,, (r(0(w)))] — log |4, (x((7)))||
19, (7(o(w)))] = |0, (7 (o ()]
— min{[¢,, (r(o (W), |4, (r(e (@)}
|46, ]
S'LIHH%J¢LlOWO(W)DL|¢L10ﬂ0(W)D|}

If wy is a hyperbolic index, then using the bounded distortion property, we get

9(w) = g(7)| < LK|r(0(w)) = 7(a(7))|*.

On the other hand, since there are only finitely many parabolic indices, there is a positive
constant M such that if wy is parabolic, then

m(o(w)) = m(o(7))]"

l9(w) = g(7)| < LM[x(0(w)) = m(o(7))[*.

Let L' = Lmax{K, M}. Since X being compact is bounded, taking n = 1, it follows
from the last inequalities that max;er{sup(g|p)) — inf(g|p;)} < L'diam®(X) < co. The
uniform continuity of g follows from inequality |g(w) — g(7)| < L'|r(0(w)) — (o (7))|* and
Corollary 2.3. The proof is complete. B

In [MU1], for each ¢ > 0 we have defined P(¢) by the formula

1 1 A
PO = Jiy s 3 Il
where ||¢]|| = sup{|¢.,(z)| : x € X }. Similarly, we define for each W C X
1 1 It
Pw(t) = lim — % |l¢}[lw

|w|=n



where ||¢.,||lw = sup{|¢,,(x)| : € W}. Let us note that

Pow(t) =inf{s: 3 3 [l /e < oo},

n>1 |jw|=n
Let us make the notation. For each i € Q, let I}, = {w € I? : w, # i}.

Lemma 3.4. P(o,tg) = P(%).

Proof. First, we show P(t) = P;(t). Clearly, P;(t) < P(t). To prove the converse
inequality, suppose P ;(t) < s. Then using (5)

Yo > e =

n>1 |w|:n

=D D> bllfe™™ 3 30> > e

n>1w|=n,w, g0 n>1i€Q k=1, -+
<KDL > Il ‘s””(tZZZ 2 lglalle™
n
e I S T D D W I I IR
n>1|w|=n,w, ¢Q n>1i€Q k=1 wEI;’[k

<K' D llgllhen

n>1|w|=n

So, P(t) < s and consequently P(t) < P;(¢). Next, we compute

n—1

1
P(o,tg) = nli)n;oﬁlog Z exp s;l[p]Ztg (o7 ( )))
|w|=n T =0

:ﬁﬁmzwﬁzmw<uw
|lw|=n T

1
= lim —log > ng[g]w (w(o™T))|f = nlggoﬁlog S Ll = Pa(t) = P(2).

|lw|=n |lw|=n

The proof is complete. B

Let
0 =0(S)=1inf{t > 0:P(t) < co}.

Following [MU1] we call # the finiteness parameter of the system S. If y is a Borel
probability measure supported on X, we denote the Hausdorff dimension of p by dimg (X),

8



the infimum of the Hausdorff dimensions of sets with p measure 1. Let a = {[i] : i € I} be
the partition of I°° into initial cylinders of length 1. We let H,(«) denote the entropy of
the partition o with respect to p. In [HMU] and [U2], the following theorem was proven
for hyperbolic systems.

Theorem 3.5. If p is a shift-invariant ergodic Borel probability measure on I°° such that
H, (o) < 00, xu(0) = [ —gdp < oo and either x, (o) > 0 or h,(c) > 0 (h,(c) > 0 implies
Xu(0) > 0), then

: 1y < (o)
dimpg(por™t) < 2222,
Xu(0)
If additionally, pom1(¢;(X) N ¢;(X)) =0 for all ¢ # j € I then
hy (o)

dimpg(pon™t) =

The same proof goes through in our case replacing only the bounded distortion property

by the consequence of (8) which says that Ijg;‘ < exp(Lly — z|*) for all ¢ € I and all

r,yeV.

Consider now an arbitrary finite subset F' of I. By the classical results (see [Ru], [Wal,
comp. [PU]) there exists a unique ergodic shift-invariant measure p; = g on F'*° which
is an equilibrium state for the potential ¢g|pe, meaning that h,, + [tgdu: = Pr(0o,tg).
Additionally, by the estimate obtained in the proof of Proposition 3.3, for every t >
0 the family tlog|¢;| : X — IR forms a Hoélder continuous system of functions in the
sense of [HMU] and [U2]. Then it follows from [HMU] and [U2] that u; satisfies the
property g o m (¢ (X) N ¢;(X)) = 0 for all ¢ # j € F. So, combining this remark,
Theorem 3.5 (which applies for any measure p with h,, (o) > 0 or x,(o) > 0, if I is finite)
and Theorem 3.1, we conclude that there exists a set M of ergodic finitely supported
measures p such that if either x,,(¢) > 0 or hy, (o) > 0, then dimpgy (por™1) = h,(0)/xu(0),
and

(3.1) P(o,9) = sup{hy (o) — txu}.
Let
= pB(S) = sup{dimp (uo ")},

where the supremum is taken over all ergodic finitely supported measures of positive en-
tropy. We shall prove the following.

Proposition 3.6. The pressure function P(¢) has the following properties:
(1) P(t) >0 forallt >0

(2) P(t) >0 forall 0 <t<pf.
(3) P(t) =0 for all t > 3.
(4) P(t) is non-increasing.



(5) P(t) is strictly decreasing on [6, (3].
(6) P(t) is continuous and convex on (6, co).

Proof. (1). Let i be a parabolic index and let x; be the corresponding parabolic point.
Then 7(i®°) = z; and let p be the Dirac measure supported on i>. Of course, u is
ergodic, finitely supported, and [tgdp = tlog|d;(x;)| = 0. Hence, by Theorem 3.2,
P(o,tg) > h,(o) + [tgdp =0 and (1) is proved.

(2). Suppose that ¢ < B. Then there exists an ergodic, finitely supported, measure p such
that dimg (pon~1) > t. Hence p({z; : i € Q}) = 0 and therefore it follows from condition
(2) and the Birkhoff ergodic theorem that x,(c) > 0. Since obviously x,(c) < oo and
H, () < oo, Theorem 3.5 applies to give t < dimg(pon~t) <h,(0)/xu(c) which due to
Theorem 3.2 implies that P(o,tg) > h, (o) + [tgdu > 0.

(3). Suppose that P(t) > 0 for some ¢ 2 0. Then in view of (3.1) there exists an ergodic
finitely supported measure o € M such that h,(c) —tx, (o) > 0. Therefore h, (o) > 0 and

hence t < :”((Z; = dimg(pon~t) < 3. We are done.

(4). Suppose that t; < to. It is clear from the definition of pressure that P(t3) = oo
implies P(t1) = oco. So, we may assume 0 < t; < to. Fix ¢ > 0. By Theorem 3.2 and
Proposition 3.3 there exists an ergodic finitely supported measure ps such that h,, (o) +
[ tagdps > P(o,t2g) —e. Then by Theorem 3.2, P(o,t19) > hy, (o) + [ t1gdus = h,,, (o) +
[ tagdps+ [(t1 —t2)gdps > hy, (o) + [ tagdps > P(o,tag) —e. Letting e \, 0, we are done.
(5). Suppose 0 < t; < t2 < (. Since P(0o,t2g) > 0, in view of (3.1) there exists an ergodic,
finitely supported, measure py € M such that

ts —t
4p

1
(3.2) hy, (o) + /tzgd,uz > max {5, 1— }P(a, t29)

Then hy,, (0) > P(0,t29)/2 > 0 and therefore by the properties of M, “2( o) = dimg (pg o

1o ()
7=1) < . Hence [ —gdus > hy,,(0)/8 > P(o,t29)/26. Thus, using (3 2), Theorem 3.2
and Proposition 3.3, we get

P(o,t1g9) > hy,(0) + /tlgduz =h,, (o) + /tzgdﬂz + /(tl — t2)gdps

to — 1 to — 1y
P(o,t

to —t

= P(o,t P(o,t
(0:t29) + Plortag)
(6). An application of Holder’s inequality shows that each function

t— Z exp sup Zg (o7 (T

|lw|=n TE[W] j=0

Z P(0-7 tzg) - P(0-7 tzg)

L > P(o, tag).

is log convex. Therefore the map t — P(t), t € (0,00), is convex and consequently
continuous. W
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Let us remark that it is possible for g = 6. We will call such systems “strange” and deal
with them in more detail in sections 5 and 6.

64. The Perron-Frobenius operator, semiconformal measures and Hausdorff
dimension. It follows from Proposition 3.6 that 3 is the first zero of the pressure function.
We shall provide below more characterizations of this number. Given ¢ > 6(S) we define
the associated Perron-Frobenius operator acting on C'(X) as follows

=Y 18 (@) [ f(¢i(x)).

el

Notice that the nth composition of £ satisfies:

= ) 1oL @) f(pu(@)).

lwl=n

Consider the dual operator £ acting on the space of finite Borel measures on X as follows

Li(w)(f) = v(£e(f)):

Notice that the map v — Ly (v)/Lf(v)(1) sending the space of Borel probability measures
into itself is continuous and by the Schauder-Tichonov theorem it has a fixed point. In
other words L}(v) = Av, for some probability measure v, where A = L}(v)(1) > 0. A
probability measure m is said to be (A, t)-semiconformal provided if £} (m) = Am. If A =1
we simply speak about ¢-semiconformal measures. Repeating a short argument from the
proof of Theorem 3.5 of [MU] we shall first prove the following.

Lemma 4.1. If m is a (A, t)-semiconformal measure for the system S with A > 0, then
m(J) = 1.

Proof. For each n > 1 let X;, = Ujy|=n¢u(X). The sets X,, form a descending family
and ﬂn>1 X,, = J. Notice that ]lXIw\ o¢, = llx for all w € I'* and therefore, using
(A, t)-semiconformality of m, we obtain for every n > 1.

)\”m(Xn):/llxndEZ‘”( ) = /E"(llx / > ¢l lH(lx, o ¢u)dm
|lw|=n
/g_:nms ‘tdm = /llxdﬁ*"

= /A”]lem ="

Thus, m(X,) = 1 and therefore m(.J) = m([(),,>; Xn) = 1. The proof is complete. B
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We set
Pu(t) = > gLl

|lw|=n

We note that 6(S) = inf{t : ¢(t) = ¥1(t) < co}. In order to demonstrate the existence of
(eP®) t)-semiconformal measures we shall prove the following.
Lemma 4.2. If t > §(S) and £}(m) = Am for some measure m on X, then A = ),

Proof. We first show the easier part that A < eP®), Indeed, for all n > 1
= [ erdm = [ 37 6@ dn) < [ 30 eltdn = 3 116!
|lw|=n |lw|=n |lw|=n

and therefore

. g —
(4.1) log A < lim —log 3 [l6L 1" = P(1)

|lw|=n

In order to prove the opposite inequality, for each p > 1, let T, = > /v [|¢,[|*, where TP
g

is the set of those words w € I” such that w,_;,w, are not the same parabolic element.
For each n,

Yalt) = D 1011

|lw|=n
= S T e S S A 1 e S S o [ A e N | Y
wely iEQwejg—l ieQweIg_z 1€
n
k=0

where Tp = 1. Take 0 < ¢(n) < n that maximizes Ty. Then ¢, < (n + 1)#QT(,) and
therefore

log(n+1)  q(n)
n * n  q(n)

n—oo 1, n—00

1 1
P(t) = lim —log, < liminf < log Ty(n) + — log #Q>
n

1
(4.2) < maX{O,limsup—long}.

n— 00

Let ~
Lry= Y 14Ll"

wEI;‘

It follows from condition (5) that for alln > 1,w € I3 and all v € X

16ll" < K|, (2)]".
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Summing we have T}, < K*£?(1)(z) and integrating this inequality with respect to the
measure m, we get

T, < K' / Er(1)(z)dm(z) < KA.

Thus, by (4.2)
1
P(t) < max{0,limsup — log T}, } < max{0,logA}.

n—oo I

If now t < 3(S), then by Proposition 3.6(2), P(¢) > 0, and we therefore get P(¢) < log A.
Thus, we are done in this case. So, suppose that ¢ > (3(S). Then by Proposition 3.6(3),
P(t) = 0 and in view of (4.1) we are left to show that A > 1. In order to do it fix an
arbitrary 0 < n < 1. It follows from conditions (4) and (2) that for all n large enough, say
n > ng, |¢pin(x)| > n™ for all i € Q and all z € X. Fix j € Q. We then have for all n > ng

A":/ndc*"(m) :/ > |¢;|tdmz/|¢;n|tdm2/nt”dm:nt”-
|lw|=n

Thus A > n' and letting n 1 we get A > 1. The proof is complete.

Lemma 4.3. For every t > 0(S) a (P(t), t)-semiconformal measure exists.

Proof. In view of Lemma 4.2, it suffices to prove the existence of an eigenmeasure of the
conjugate operator £f. But this has been done in the paragraph preceding Lemma 4.1
which completes the proof. B

Let e = e(S) be the infimum of the exponents for which a ¢-semiconformal measure exists.
We shall shortly see this infimum is a minimum. Also, let h = hg be the Hausdorff
dimension of the limit set J. As an immediate consequence of Proposition 3.6(3) and
Lemma 4.3 we get the following.

Lemma 4.4. e(S) < 3(95).

Now, suppose that m is t-semiconformal or equivalently,
(1.4) [ X 6Lkt o b dm = [ fam.
weln

for every continuous function f : X — IR. Since this equality extends to all bounded
measurable functions f, we get

(4.5) m@o ()= 3 [l ey o by dm > [ 1]t dm

TEI™

for all m > 1, w € I™ and all Borel subsets A of X.
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Our next task in this section is to note that h < e. But this follows immediately from the
following lemma whose proof, using (4.4), is the same as the proof of Lemma 4.3 of [MU1].

Lemma 4.5. If m is a t-semiconformal measure, then H? J < m and the Radon-Nikodym

. . t . .
derivative % is uniformly bounded from above.

Since obviously 8 < h, we have thus proved the following.
Theorem 4.6. ¢ = 3 = h =the minimal zero of the pressure function.

As an immediate of Lemma 4.5, Lemma 4.3, Proposition 3.6(3) and Theorem 4.6 we get
the following

Corollary 4.7. The h-dimensional Hausdorff measure of the limit set .J is finite.

65. The associated hyperbolic system. Conformal and invariant measures. In
this section we describe how to associate to our parabolic system a new system which
is hyperbolic and we apply its properties to study the original system, in particular to
prove the existence of h-conformal measures. However we begin this section with a result
describing the structure of ¢-semiconformal measures with exponents ¢ > h. Let

Qu ={do(x;) i € Quwe I}

So, €, is the set of orbits of parabolic points. The following theorem allows us to conclude
a t-semiconformal measure is conformal provided the parabolic orbits do not mix.

Theorem 5.1. If t > h and m; is a t-semiconformal measure, then m; is supported on
Q,, that is m;(Q,) = 1. If for every w € I'* and every i € Q, 71 (¢, (x;)) = wi™®, then
each t-semiconformal measure (¢ > h) is t-conformal.

Proof. For every r > h let m, be an r-semiconformal measure. Note that the existence
of at least one such measure (for every r > h) has been proved in Lemma 4.3, comp.
also Proposition 3.6(3) and Theorem 4.6. Repeating the reasoning from Proposition 3.6
of [MU1], we see that for every r > h there exists a Borel probability measure m,. on I
such that m, o 7=t = m, and m,([w]) = [ |¢},|"dm,., for all w € I*. Now, fix t > h and
h<s<t Let Q, ={wi™:icQuwel*} Ifwd¢Q,, then there exists an increasing
infinite sequence {ny}3>; such that either w,, ¢ Q or wy,, 1 # wy,. In either case, using
condition (5) we get

ma(lhn) = [ 16L,, s < (160, 1 = 116, 116, |1

(5.0) <ol 7K [ 16, = K, (] ).
It immediately follows from conditions (6) and (2) that limg_, ||q5"dnk || = 0. Combining

this and (5.0) we conclude that 7, (I°° \ ©,) = 0 or equivalently m;(Q,) = 1. Since

14



Q) D Q., we get my () = my o 1(Qy) > mt(fz*) = 1. The proof of the first part
of Theorem 5.1 is complete. The proof of the second part is an immediate consequence of
(4.4) applied to the indicator functions of the sets of the form ¢, (A), where w € I* and A
is a Borel subset of X. W

Consider now the system S* generated by I, the set of maps of the form
Pinj,
where n > 1,14 € €, ¢ # j, and the maps

¢k7

where k € T\ Q. It immediately follows from our assumptions that the following is true.
Theorem 5.2. The system S* is a hyperbolic conformal iterated function system.
We recall that J* is the limit set generated by the system S*.

Lemma 5.3. The limit sets J and J* of the systems S and S* respectively differ only by
a countable set: J* C J and J\ J* is countable.

Proof. Indeed, it is obvious that J* C .J. On the other hand, the only infinite words
generated by S but not generated by S* are of the form w:*°, where w is a finite word and
¢ is a parabolic element of S. H

Definitions. If S is an iterated function system with limit set .J, then a measure v
supported on J is said to be invariant for the system S provided

v(E) =v (U (m(E))

iel
and v is said to be ergodic for the system S provided v(E) = 0 or v(J \ E) = 0 whenever
V(EAUier ¢i(E)) = 0.

Let us make some notation. Let Jy C J consist of all points with a unique code under S.
For each x = m(w) € Jp express w = i"7, where i is a parabolic element, n > 0, 71 # i and
define n(xz) = n. For each k > 0, put

B ={z € Jy:n(x) =k} and Dy, = {z € Jy: n(z) > k}.

Theorem 5.4. Suppose that pu* on J* is a probability measure invariant under S* and
p*(Jo) = 1. Define the measure p by setting for each Borel set E C Jp,

(5.1) wE) =) > u(du(E)NDy)

k=0 |w|=k

15



Then p is a o-finite invariant measure for the system S and p* is absolutely continuous
with respect to p. If, for each ¢ € I, the measure p* o ¢; is absolutely continuous with
respect to the measure p*, then p and p* are equivalent and if p* is ergodic for the system
S*, then p is ergodic for the system S. Moreover, in this last case p is unique up to a
multiplicative constant.

Proof. Let us check first that p is S-invariant. Indeed,

’ (U @(E)) S Y (%(U @-(E)ka)

iel k=0 |w|=k iel

=>. > ((U %(Eka) =2 > D W (Bui(B)N Dy)

= Z Z ZN*(¢wi(E)ﬂDk+1)+Z Z ZN*(¢wi(E))mBk)

k=0 |w|=k i€l k=0 |w|=k i€l
= Z Z ) N Dy,) + p*(E)
k=1|w|=k
=3 Y W) N D) = (),
k=0 |w|=k
where
Z Z ZN*(QSM(E)HB/C) = Z “(Pui(E +ZZ Z “(ir 5( = p*(E)
k=0 |w|=Fk i€l i€I\Q k=1ieQ jel\{i}

due to invariantness of p* under S* and the 6** equality sign holds since E = E N Dy.

The invariantness of 1 has been proved. Since Jy = |J,,~ Bn, in order to show that y is
o-finite it suffices to demonstrate that u(B,) < oo for every n > 0. And indeed, given
n > 0 we have

(5.2) w(Br) => > 1 (bu(Ba) N Dk) =D > p* (¢ (Bn) N Dy).

k=0 |w|=k k=0i€Q

Now, for every ¢ € €2,
¢ix (Bn) N Dy = ¢in (By) C B U By,

al’ld for j € Q\{i}, p*(dir (Bn) N DN (Bn) N Dy) = 0. Hence pu(By) < 2377, p*(Bg) =
1* (Upeo Br) = 2p*(X) = 2. Thus, p is o-finite. It follows in turn from (5.1) that

p,(E) = 0 implies p*(E) = p*(EN DO) = 0. So, p* is absolutely continuous with respect

to u.

Now suppose that for each ¢ € I, the measure u* o ¢; is absolutely continuous with respect

to the measure p*. If p*(F) = 0, then p*(¢,(F)) = 0 for all w € I*. Thus, it follows
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from (5.1) that u(E) = 0 and the equivalence of y and p* is shown. Suppose now that
E is S-invariant, implying that | J;c; ¢:(E) C E. Then (J,c; éu(E) C E and since p* is
ergodic, either p*(E) =0 or p*(E°) = 0. Since p is absolutely continuous with respect to
p*, this implies that either u(E) = 0 or u(E€) = 0. Hence p is ergodic and the proof is
complete. l

Theorem 5.5. If the assumptions of Theorem 5.4 are satisfied, then the o-finite measure
it produced there is finite if and only if

Z nu*(By,) < co.

n>1

Proof. Let us set Bl ={z € Jy:x = n(j"r),j € Q\ {i},7 € I, 7, # j} and
D' =J,,>0 B;,- By (5.2), we can write

M(J) = Z N(Bn) = Z ZZ/I’*(QSN“ (Bn))

n>0 n>0k>0icQ
=3NS W Brgn) + DD wt(hir (BL))
k>0n>0 k>0n>0 i€l
=3 > W (Brin) + Z w (i (D)
=Y (D) (Ba) + D> p*(Ba) = Y (n+2)"(Bn).

The proof is therefore complete. B

We recall from [MU1] that a probability measure m is said to be t-conformal for the system
S provided m(J) = 1 and for every Borel set A C X and every i,j € I with i # j,

(5.3) m(i(A)) = /A 16} tdm
and
(5.4) m(¢; (X) N ¢j(X)) =0.

A straightforward computation shows (see for ex. [MU1], p. 118) that any ¢-conformal
measure is t-semiconformal. We also recall from [MU1] that a conformal hyperbolic system
is regular if P(h) = 0 or equivalently an h-conformal measure exists. We shall now prove
a little but useful lemma concerning general hyperbolic systems.

Lemma 5.6. If S = {¢; : X — X,i € I} is a regular hyperbolic conformal iterated
function system, then its hg-conformal measure is atomless.

Proof. Suppose to the contrary that m(z) > 0 for some z € J. Then, by Corollary 3.11 of
[MU1], m(w) > 0 for some w € m~1(2), where m is the measure produced in Lemma 3.6 of
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[MU1]. Let p* be the o-invariant probability measure produced in Theorem 3.8 of [MU1].
Since for every n, p*(0"(w)) > p*(w) > 0 and p* is a probability measure, w is eventually
periodic meaning that there exist & > 0 and ¢ > 1 such that 09(c*(w)) = 0% (w). Therefore,
we can write o¥(w) = 7°°, for some 7 € I'*. Since m(n(w)) > 0, m(w(7>°)) > 0 and by the
conformality of m we have m(mw(7°°)) = m(¢(7(7%°))) = fn(Too) |- s dm < m(m(7°°))
which is a contradiction finishing the proof. Il

Theorem 5.7. Suppose that S is a parabolic conformal iterated function system and the
associated hyperbolic system S* is regular. Then m, the h-conformal measure for S* is
also h-conformal for S and m is the only h-semiconformal measure for S.

Proof. Let m be the h-conformal measure for the system S*. We will first show that m
is h-conformal for the system S over the limit set J. We will then associate with S one
more hyperbolic system S$** and use some properties of this system to verify that m is
h-conformal for S. Since m(.J*) = 1, the probability measure m clearly satisfies the first
condition for conformality: m(J) = 1. Next, we will show that m satisfies equation (5.3)
for all Borel subsets A of J. Since .J\ J* is countable and m is atomless, it suffices to show
that (5.3) holds for Borel subsets of J*. Also, since (5.3) holds whenever i is a hyperbolic
index even for Borel subsets of X, we only need to verify (5.3) for parabolic indices. Let

G ={A: Ais a Borel subset of J* and (5.3) holds Vi € Q}.

Since G is closed under monotone limits, it suffices to show that (5.3) holds for every subset
U of J* which is relatively open. Let

I'={welX:w=(a1b1), (az2b2),(asbs),...;Vn an,b, € Q, b, # an,ant1}.

Let W = =n(T'). Using Theorem 3.8 from [MU1] and the Birkhoff ergodic theorem, we
see that m(W) = 0 and m(¢;(W)) = 0,Vi € . Let us demonstrate that if i € Q and
w = (w1, ws,ws,...) € I°\T, then there is some [ such that for every k > [, (w1, ..., w) € I}
and the concatenation ¢ * wq * ... * wg can be parsed so that it represents an element of
I¥. To see this, first suppose that wy € I\ Q. Then [ = 1 since i * wy * ... ¥ w can be
parsed as w1, ws, ...wx which is an element of I}. Now, suppose w; = p"q where p € 2 and
p # q. If p = i, then again [ = 1, since i * wy * ... * wy can be parsed as i"T1q, wo, ...ws
which is an element of If. If ¢ # p and n > 1, then i x wy * ... x wg can be parsed

as (ip,p" " tq,wz,ws,...,w) € I* and also in this case [ = 1. If, on the other hand,
n =1 and p = i, then w; = a1by, where a; € Q and by # a;. If by € T\ Q, then
i % wi * ...k wy can be parsed as (iay, by, ws,ws,...,wg) € I} and [ = 1. So, suppose that

by € Q. Now, consider ws. If we € I'\ €2, then the concatenation i*wj ... xwy can parsed as
(tay1,bywsa, ws, ... ,w) € If and | = 2. Otherwise wy = p"q, where p € Q, ¢ # p and n > 1.
If p = by, then i % wy * ... ¥ wy, can be parsed as (iay, b} g, ws,...,wy) € I and [ = 2. If
p # by and n > 1, then i*wy *...xwy, can be parsed as (iay, b1p, p"~1q,ws,...,wx) € I} and
[ = 2. If, on the other hand, n = 1, then wy = agbs, where as # by, be. If by € T '\ 2, then
i*wi *...xwy can be parsed as (iay, biag, ba,ws, . ..,wg) € IF and [ = 2. So, we may assume
that by € Q. Now, excluding inductively in this manner the cases when % % wy * ... % wg can

be parsed in a fashion that it would belong to I}, we would end up with the conclusion
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that w € I' contrary to our assumption. Now, let U C J* be relatively open. Then there
is a set M C I}, consisting of incomparable words such that U\ W C U,ep¢-(J*) C U,
and if 7 € M then ¢ x 7 € I}. Thus,

m(¢i(U)) = m(di(Ug- (J*)) U (U \ U, (J*)) = Y m(di(¢7 (7))

_ 5 1 h — Ih — 11h
=3 [ Nooatam=3 [ = [ jglam,

where the third equality follows since m is h-conformal for the system S* and in the fourth
equality we additionally employed the change of variables formula. Now, we want to show

m($:(J) 1 (1)) = 0

whenever ¢ # j. Again, it suffices to verify this when J is replaced by J* and at least one
of the indices ¢ and j is parabolic. As before there is a set M; C I} of incomparable words
such that J* \ W C Urenm, ¢-(J*) C J*, and if 7 € M; then i« 7 € IF. Also, let M; C I*
have similar properties with respect to the index j. Then

m($i(J) N ¢;(T)) = m(Ur pent,xa; dir (T) N 4o (7)) < Y m(ir (J*) N jp(J7)) = 0.

MZ'XMJ‘

Finally, to show that m is conformal, we must demonstrate that (5.3) and (5.4) hold
whenever A is a Borel subset of X. Note that it suffices to show that m(A) = 0 implies
m(pi(A)) = 0, for all Borel subsets A of X and all parabolic indices i. In order to prove this,
we introduce a new hyperbolic system. The index set for this system is I, = I3\ {(4,4,1) :
i€ Q}U{p"q:p € Q,q+#p,n>2}. Let us prove that the system S** satisfies the bounded
distortion property. To see this read a word w € I, as a word in I* : w = (w1, ws, ..., wp).
If wy, € T\, then we have bounded distortion by property (5) of the system S. If w,, € Q
and w,_1 # wy, then again by property (5) we have bounded distortion with constant K.
If w, 1 = wy, then w,, o # w,_1, by the definition of I},. Then the word w|,_; satisfies
the hypothesis of condition (5) and so

6L (w)] 1By, (Pun W)IE0, ()] . IPAl g
L (@) 1L, (P, @)L, (v)] =K {min{¢;(w) wex) 'S Q}

where the last number is finite since €2 is. To see that S** satisfies the open set condition,
notice that ¢;jr (Int(X))Nper (Int(X)) = 0 for all ijk # pgr. Next consider ¢;n ;(Int(X))N
Ppmq(Int(X)), where n,m > 2. If i # p, this intersection is empty. Also if i = p and
n # m, the intersection is empty. Otherwise, ¢ # j and the intersection is empty. Finally,
consider ¢;n;(Int(X)) N ¢pgr (Int(X)), where n > 2. If ¢ # p or if ¢ = p and ¢ # 1,
the intersection is empty. Otherwise, ¢ = p = ¢ and in this case r # ¢ since the word
(i,7,4) is not allowed in I,,. Finally, the hyperbolicity of the system S** is an immediate
consequence of property (6). So, S** is a hyperbolic conformal iterated function system.
Also, since each element of I2° can be parsed into an element of IJY, we have J** = J* =

*%k )
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J \ {eventually parabolic points}. Also notice that if the system S* is regular, then the
system S** is regular. To see this note that we have already shown that if m is conformal
for S*, then m is conformal for S over .J. Thus m is conformal for S** over J. So, for each
n, 1= [rdm=[;> crm |9, (x)|dm. But, for each x € J, we have

DolgLllt = D el @) = (k)T Z [EAls

where K** is the distortion constant for the system S** over X. Integrating this formula
against the measure m we get

DRI = =0 ead il W | 13

welr, welr,

From this it immediately follows that P**(h) = 0. But, this is equivalent to saying that
there is an h- conformal measure m** for the system S** over X. We only need to prove
that m** = m. Let G be open relative to J*. Let W be a collection of incomparable words
in I, such that G = {J, ¢y #w(J*). Since m is conformal for S** over J,

/ GLldm < S KMl < 3 KPE / 6 [dm™* = KM m*(G)

weWw weW weWw

Interchanging m and m** in the above estimate we get
(KhK**h)_lm**(G) < m(G) < KhK**hm**(G)

From this it follows that m and m** are equvialent. To show that m = m** let A be a
Borel subset of X. Then m(qﬁw(A)) = m(¢u,(ANJ))+m(éd,(A\ J)). But, since m** is
conformal over X m**(A\ = fA\J gL |Pdm** = 0. So, since m is conformal for S over

J, we have m(¢,(A)) = [, 1¢L1"dm = [, |¢,,|"dm. Also one can show that (5.4) holds
using the same procedure Thus, m is conformal for S** over X.

Finally, to see that m is conformal for the entire system S over X, let ¢ € 2 and choose
an arbitrary q # 4, ¢ € I. Then iq € I, and iqi € I,. Thus,

[ 1ty m = (G 0i(4)) = m(is(A)) = [ 161l
bi(A)
So, if m(A) = 0, then since |¢;q|h is positive on ¢;(A), we have m(¢;(A)) = 0.

In order to prove the second part of our theorem suppose that v is an arbitrary measure
supported on J and satisfying

(5.8) V(pu(A)) > /A 6L |



for all Borel sets A C X and all w € I*. We show that m is absolutely continuous with
respect to v. Indeed, for every w € I} we have

v(pu(X)) > /X 6P > K[| = K /X 6, [Pdm = K~ (X)).

Next, consider an arbitrary Borel set A C X such that v(A) = 0. Fix ¢ > 0. Since
v is regular there exists an open subset G' of X such that AN J* C G and v(G) < e.
There now exists a family F C I} of mutually incomparable words such that AN J* C
Uper o (X) C G. Lemma 2.6 of [MU1] states that there exists a universal upper bound
M on the multiplicity of the family {¢,(X) : w € F}. Hence, using the fact that m is
supported on J*, we obtain

m(A) =m(ANJ*) <m ( U ¢W(X)) <Y m(¢u(X))

wEF wEF

< K" v($pu(X)) < K"Mv ( U ¢w(X)> < K"Mv(G)

weF wEF
< KM"Me.

Thus, letting € N\, 0, we get m(A) = 0 which finishes the proof of the absolute continuity of
m with respect to v. Our next aim is to show that v(J\ J*) = 0. Suppose on the contrary
that v(J \ J*) > 0. Set P = {¢,(x;) : i € Q,w € I*}. Since J \ J* C P, v(P) > 0. Write
v = vy + v1, where vg|x\p = 0 and v1|p = 0. Thus v(P) = v(P) > 0. Since ¢, (P) C P
for all w € I'*, we get for every Borel set A C X and every w € I'*

Vo(9(4)) > 10($u(AN P)) = v($u(AN P)) > /

ANP

16w = / 16| dv.
A

Hence multiplying vy by 1/v9(X), we conclude from what has been proved that m is
absolutely continuous with respect to vy. Since vo(X \ P) = 0, this implies that m(X\ P) =
0, and consequently m(P) = 1. Since P is countable we arrive at a contradition with
Lemma 5.6. Thus v(J*) = 1. Since, by Lemma 4.1, any h-semiconformal measure v
is supported on J and, by (4.5), satisfies (5.8), we conclude that any h-semiconformal
measure is supported on J* and satisfies (5.8). Since, additionally, by regularity of the
system S*, P*(h) = 0, it follows from Lemma 3.10 of [MU1] that v is h-conformal for S*.
An application of Theorem 3.9 of [MU1] implying the uniqueness of h-conformal (even
h-semiconformal) measures for the hyperbolic system S*, shows that v = m. The proof is
complete. l

Following the case of hyperbolic systems (see [MU1]) we call a parabolic system regular

if there exists an h-conformal measure for S supported on J*. Since such a measure is
h-conformal for §*, as an immediate consequence of Theorem 5.7 we get the following.
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Corollary 5.8. The parabolic system is regular if and only if the associated system S* is
regular.

Trying to say something about parabolic systems which are not regular we are led to
introduce the class of strange systems which by definition are those systems for which
there is no ¢ with 0 < P(¢) < oo. In the hyperbolic case the strange systems coincide (see
[MU2]) with systems which are not strongly regular or equivalently with those with 6 = h.
This last characterization continues to be true also for parabolic systems and this class
may also be characterized by the requirement of the existence of a number o (which then
turns out to be # = h) such that P(t) = oo for all t < @ and P(t) = 0 for all £ > «. Let
us remark that we do not want to call the strange systems “irregular” since the irregular
hyperbolic systems are precisely those for which no conformal measure exists whereas for
a strange parabolic system the following questions remains open

Questions. Can there exist a strange parabolic system such that the associated hyperbolic
system is regular? Can there exist a strange parabolic system with a purely atomic h-
conformal measure?

We shall prove the following.

Proposition 5.9. If the system S is strange, then so is S*.

Proof. Since hg« = hg, P*(t) < 0 for all £ > hg. So, we are only left to show that
P*(t) = oo for all ¢ < hg. And indeed, fix t < hg. Since S is strange, P(t) = oo and
therefore ¢ () = oo. Since €2 is finite, this implies that >, 1 ¢ ||@i||P = co. But then

P*(E) = Yiene ||p%||* = oo. Hence P*(t) = oo and we are done. W

Let us briefly touch on the packing measure of J. Since J* is dense in .J, as an immediate
consequence of Theorem 5.7 and Lemma 4.3 of [MU1] we get the following.

Corollary 5.10. Suppose that S is a parabolic iterated function system and the associated
hyperbolic system S* is regular. If JNInt(X) # 0 (that is, if the strong open set condition
is satisfied), then the h-dimensional packing measure of .J is positive.

Let us remark here that in Corollary 4.7 we have proved that the h-dimensional Hausdorff
measure of J is finite.

Finally, let us give some results about equivalent ergodic invariant measures for regular
systems. As a consequence of Theorem 5.7 we have the following.

Corollary 5.11. Suppose that S is a parabolic iterated function system, the associated
hyperbolic system S* is regular and let m be the corresponding h-conformal measure.
Then there exists a unique probability measure p* equivalent with m, which is ergodic
and invariant under S* and, up to a multiplicative constant, there exists a unique o-finite
measure 4 equivalent with m and ergodic invariant under S.
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Proof. The first part of this corollary is an immediate consequence of Theorem 3.8 and
Corollary 3.11 from [MU1]. That m is h-conformal for S follows from Theorem 5.7. The
last part is a consequence of this conformality (the measures p*o¢; are therefore absolutely
continuous with respect to p*) and Theorem 5.4. W

Corollary 5.12. If the assumptions of Corollary 5.11 are satisfied, the o-invariant measure
i produced there is finite if and only if

S [ lehaltam <
X;

iEQn=1

where Xl = Uj;éi ¢J(X)

Proof. Since by Theorem 3.8 and Corollary 3.11 from [MU1] m and p* are equivalent
with Radon-Nikodym derivatives are bounded away from 0 and infinity, it therefore follows
from Theorem 5.5 that p is finite if and only if the series ) -, nm(B,) converges. Since
m(Bn) =Y ica [x. |#in|"dm, the proof is complete. W

Corollary 5.13. If for every i € €2 there exists some (; and a constant C; > 1 such that
for all n > 1 and for all z € X;

IR R R s
Cin 7 < |im(2)] < Cin™ 7

Y

then the o-finite invariant measure p produced in Corollary 5.11 is finite if and only if

h>2max{ pi :iGQ}.

Bi +1

Proof. The proof is an immediate consequence of Corollary 5.12. B

§6. Examples. This section contains examples illustrating some of the ideas developed
in this paper. We begin with the following.

Example 6.1. (Apollonian packing) Consider on the complex plane the three points z; =
e?mi/3 j = 0,1,2 and the following additional three points ag = v/3—2, a1 = (2—+/3)e™/6
and ay = (2—+/3)e™ "4 /6. Let fo, f1, and fo be the Mdbius transformations determined by
the following requirements: fo(z0) = 20, fo(21) = a2, fo(22) = a1, fi(20) = a2, f1(21) = 21,
fl(Zz) = ag, fQ(Z()) = a1, fQ(Zl) = ag, and fQ(ZQ) = Z2. Set X = E(O, 1), the closed ball
centered at the origin of radius 1. It is straightforward that the images fo(X), f1(X)
and f2(X) are mutually tangent (at the points ap, a1 and asg, respectively) disks whose
boundaries pass through the triples (zp, a1, a2), (21, ag, az) and (22, ag, a1) respectively. Of
course all the three disks fo(X), f1(X) and f>(X) are contained in X and are tangent to
X at the points zp, 21 and zy respectively. Let S = {fo, f1, f2} be the iterated function
system on X generated by fy, fi1 and fs. Notice that all the maps fy, f1 and fo are
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parabolic with parabolic fixed points 2y, 21 and 22 respectively. It is not difficult to check
that all the requirements of a parabolic system are satisfied. Observe that the limit set
J of the parabolic system S coincides with the residual set of the Apollonian packing
generated by the curvilinear triangle with vertices zg, 21, 2z2. In [MU3], using a slightly
different iterated function system, we have dealt with geometrical properties of .J proving
that 1 < h = dimg(J) < 2, 0 < H" < 0o and P"(J) = co. In this paper we want to
study its dynamical properties. Let us first notice that the system S* is regular. Indeed,
we proved in [MU3] that

(V3—n)z+n

fiz) =R

and
3

"'(z) = :
By the symmetry of the situation this implies that
1

(o f3)' ()] =

for all i # j. Hence *(t) < >, < %, where 1*(t) is the psi function of the system S*
introduced just before Lemma 4.2. Thus 0(S*) = 1/2 and ¢*(1/2) = occ. Hence, it follows
from Theorem 3.20 of [MU1] that the system S* is regular, even more it is hereditarily
regular. Thus, the assumptions of Theorem 5.7 and Corollary 5.11 are satisfied in our
case. Let m be the h-conformal measure for S and let p be an S-invariant o-finite measure
equivalent with m. We shall prove the following.

Theorem 6.2. The invariant measure p of the Apollonian system { fo, f1, fo} is finite.

Proof. In the proof of regularity of S* we have observed that |(f)'| < 1/n? on X,
t =0,1,2. Since h > 1 = 2%, it therefore follows from Corollary 5.13 that p is finite.
The proof is complete. B

Example 6.3. A large class of examples appears already in the case when X is a compact
subinterval of the real line IR. We call such systems one-dimensional. If the parabolic
elements ¢; of a one-dimensional system S have around parabolic fixed points x; a repre-
sentation of the form

(6.1) i(z) = & + a(z — ;)" + o(w — 2;) ')
then (see [U1] for ex.)

Bi+1

(6.2) |Gin ()] < 0”7

outside every open neighbourhood of x;. Hence the following theorem is a consequence of
Theorem 5.7. and Corollary 5.13.

Theorem 6.4. If S is a one-dimensional parabolic system with finite alphabet and satis-
fying (6.1), then S is regular and any S-invariant invariant measure p equivalent with the

hs-conformal measure is finite if and only if A > 2 max{ ﬁ?jrl (i€ Q).
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Proof. The regularity of S* is checked in exactly the same way as in Example 5.1. So, the
systems S is regular by Corollary 5.8. Since the other assumptions of Corollary 5.13 are

satisfied by 6.2, the proof of this theorem is an immediate consequence of Corollary 5.13.
|

Corollary 6.5. If S is a one-dimensional parabolic system with finite alphabet, and if
for all i € Q, 3; > 1 (or equivalently if all ¢;’s are twice differentiable at x;), then S is
regular and the corresponding invariant measure p equivalent with hg-conformal measure
is infinite.

Proof. The proof is an immediate consequence of Theorem 6.4 and the fact that h < 1.
|

We would like to close this section with examples which are strange.

Example 6.6. Our aim here is to describe a class of one-dimensional systems which are
strange. Towards this end consider an arbitrary hyperbolic system S = {¢; : i € I'} on the
interval X = [0, 1] such that ¢ (0(S)) < oo or equivalently P(0(S)) < oo (examples of such
systems may be found in the section Examples of [MU1]); we may assume that there is an
interval G = [0,7) with G C X \ ;¢ ¢:(X). Consider also a parabolic map ¢ : X — G
such that 0 is its parabolic point and ¢ has the following representation around 0

d(z) =2 — azPt + 0(35*3“),

where 0(S )% > 1 and a > 0. We shall prove the following.

Theorem 6.7. If F C I is a sufficiently large finite set, then the system Sgp = {¢} U {¢; :
i €I\ F} is strange.

Proof. In view of (6.2) and the relation between 0(S) and 3 there exists a constant C' > 1
such that for each i € I, 3" o /(g™ 0 ¢;)'[|5) < C||¢5]|°¢5). Since 95(0(S)) < oo, for
every sufficiently large finite set ' C I we have (C'+1) > ;cp\ ||$41°¢9) < 1. Hence

Y5 (005) = Y lIH1P S+ D0 D (6" 0 0) 117

i€I\F i€T\F n>1

Do IS+ Y (gl ")

ieI\F i€I\F

=(C+1) Y 19" < 1.

i€I\F

IN

Hence Pg _(0(S)) < 0 and therefore, as hs: = hsy, Ps,(t) = 0 for all £ > 6(S). On
the other hand, since for every ¢ < 6(S), 9s(t) = oo and since F' is finite, 9g,(t) =
1" + > senr ||95]|" = co. Hence P, (¢) = oo and the proof is complete. B
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Example 6.8. We would like to construct here an example of parabolic one-dimensional
system which is regular but strange. We start of with a hyperbolic regular but strange
system system S = {¢; };cr on the interval [0, 1] such that ¢1(0) = 0 and

U #i(10,1]) = [0,1]

i€eIN
A way of constructing such systems is described in Example 5.4 of [MU1]. Since Lebesgue
measure is a 1-conformal measure for S (so S is regular) and since S is strange, 1 () = co
for all 0 <t < 1 and P(1) = 0. Replace now the contraction ¢; by a parabolic element b1
such that 0 is its parabolic point and ¢;([0,1]) = ¢;([0,1]). Denote the new system by S.
Then obviously ¢ ¢(t) = oo for all 0 < ¢ < 1 and consequently Pg(t) = oo forall 0 <¢ < 1.
Since dimH(J§) <1, Pg(t) =0 for all t > 1. Hence S is strange and dimH(J§) = 1. Since

$:([0.1)) | JJ #:([0.1]) = [0, 1],

i>2

the Lebesgue measure A on the interval [0,1] is 1-conformal for the system S. Since
obviously A({¢,(0) : w € IN*}) = 0, the system S is regular. B
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