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x�� Introduction� In �MU�� we considered conformal in�nite iterated function systems
exploring geometrical and dynamical properties of its limit set� That paper combined
and extended two continuing lines of research� One is the study of an in�nite system
of similarity maps �e�g�� �Mo�� �MW�� and the other is the study of a �nite system of
contracting conformal maps �e�g�� �Pa��� We now call the systems considered in �MU��
hyperbolic systems� since the derivatives of the maps in the system were required to be
uniformly bounded below one� We continued our investigation of these systems in �MU��
and gave special attention to the limit sets of iterated function systems arising from the
standard �real� continued fraction algorithm with restricted entries� In �MU
� our subject
of interest was the residual set of the Apollonian packing� This was the �rst paper where
we had to seriously cope with a parabolic system� In the present paper we develop the
theory of general parabolic conformal iterated function systems S� In section two� we de�ne
what it means for S to be parabolic and develop some basic results about its limit set and
coding map� In section three� we de�ne the pressure function associated with S and relate
this notion to the standard one of the pressure of a function� We also note some important
parameters and features of this function� In section four� we study Perron�Frobenius
operators associated with the system S and the corresponding semiconformal measures�
i�e� eigen�measures for the dual operators� We also determine the Hausdor� dimension
of the limit set� Let h denote the Hausdor� dimension of the limit set of a parabolic
iterated function system S� In section �ve� we �rst describe the structure of t�conformal
measures with t � h� Then we associate with the system S an �always in�nite� hyperbolic
conformal system S� whose limit set may di�er from the limit set of the system S by
at most a countable set� This hyperbolic system is our main tool to study h�conformal
measures for the system S� We prove that if S� is regular� then there exists a unique h�
conformal measure for S which is atomless� We also study invariant measures for S� which
are probabilities and invariant measures for S �which are ���nite� but which may happen
to be in�nite� equivalent with conformal measures� In particular we provide necessary
and su�cient conditions for the latter measures to be �nite� We also show that the h�
dimensional Hausdor� measure of the limit set is always �nite and that under the strong
open set condition the h�dimensional packing measure is positive� In section six we give
several examples� In particular� we return to the Apollonian packing to study invariant
measures equivalent with h�conformal measures showing that these are �nite� Some of the
arguments given in �MU
� which used the general theory given here are completed� We
would like to mention here that although in �MU
� we have considered a slightly di�erent
parabolic system and a di�erent hyperbolic system derived from it� the results obtained
in the present paper also apply to the setting of �MU
�� We end the paper with a class of
one�dimensional examples�

x�� Preliminaries� Our setting is this� Let X be a compact connected subset of a
Euclidean space IRd� Suppose that we have countably many conformal maps �n 
 X � X�
n � I� where I has at least two elements satisfying the following conditions

��� �Open Set Condition� �n�Int�X�� � �m�Int�X�� � � for all m �� n�

��� j��i�x�j � � everywhere except for �nitely many pairs �i� xi�� i � I� for which xi is
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the unique �xed point of �i and j��i�xi�j � �� Such pairs and indices i will be called
parabolic and the set of parabolic indices will be denoted by �� All other indices will
be called hyperbolic�

�
� �n � � �� � ���� ���� �n� � In if �n is a hyperbolic index or �n�� �� �n� then ��
extends conformally to an open connected set V 	 IRd and maps V into itself�

��� If i is a parabolic index� then
T
n�� �in�X� � fxig and the diameters of the sets

�in�X� converge to 	�

��� �Bounded Distortion Property� 
K � � �n � � �� � ���� ���� �n� � In �x� y � V if �n
is a hyperbolic index or �n�� �� �n� then

j����y�j
j����x�j

� K�

��� 
s � � �n � � �� � In if �n is a hyperbolic index or �n�� �� �n� then jj���jj � s�

��� �Cone Condition� There exist 	� l � 	 such that for every x � 
X 	 IRd there exists
an open cone Con�x� 	� l� 	 Int�X� with vertex x� central angle of Lebesgue measure
	� and altitude l�

��� There are two constants L � � and 	 � 	 such that��j��i�y�j � j��i�x�j�� � Ljj��ijjjy � xj��

for every i � I and every pair of points x� y � V �

We call such a system of maps S � f�i 
 i � Ig a subparabolic iterated function system�
Let us note that conditions �����
��������� are modeled on similar conditions which were
used to examine hyperbolic conformal systems in �MU��� Condition ��� also held for many
of the systems studied in �MU�� but was not a general requirement� We need this condition
in the sequel� If � �� � we call the system f�n 
 n � �g parabolic� As declared in ���
the elements of the set I n � are called hyperbolic� We extend this name to all the words
appearing in ��� and ���� By I� we denote the set of all �nite words with alphabet I and by
I� all in�nite sequences with terms in I� It follows from �
� that for every hyperbolic word
�� ���V � 	 V � Note that our conditions insure that ��i�x� �� 	� for all i and x � V� We
provide below without proofs all the geometrical consequences of the bounded distortion
property ���� abbreviated as �BDP�� derived in �MU�� which remain true in our setting�
We have for all hyperbolic words � � I� and all convex subsets C of V

�BDP�� diam����C�� � jj���jjdiam�C�

and

�BDP�� diam����V �� � Djj���jj�

where the norm jj
jj is the supremum norm taken over V and D � � is a universal constant�
Moreover�

�BDP
� diam����X�� � D��jj���jj






and

�BDP�� ���B�x� r�� � B����x�� K
��jj���jjr��

for every x � X� every 	 � r � dist�X� 
V �� and every hyperbolic word � � I�� Also�
there exists 	 � � � 	 such that for all x � X and for all hyperbolic words � � I�

�BDP�� ���Int�X�� � Con
�
���x�� ��D

��jj���jj
� � Con����x�� ��D��diam���V ��

�
where Con

�
���x�� ��D

��jj���jj
�
and Con

�
���x�� ��D

��diam����V ��
�
denote some cones

with vertices at ���x�� angles �� and altitudesD
��jj���jj andD��diam����V �� respectively�

Frequently� refering to �BDP� we will mean either �BDP� itself or one of the properties
�BDP����BDP��� For each � � I� � I�� we de�ne the length of � by the uniquely deter�
mined relation � � I j�j� If � � I� � I� and n � j�j� then by �jn we denote the word
���� � � � �n� Our �rst aim in this section is to prove the existence of the limit set� More
precisely� we begin with the following lemma�

Lemma ���� For all � � I� the intersection
T
n�� ��jn�X� is a singleton�

Proof� Since the sets ��jn�X� form a nested sequence of compact sets� the intersectionT
n�� ��jn�X� is not empty� Moreover� it follows from ��� that if � is of the form �i��

� � I�� i � �� then the diameters of the intersection Tk
n�� ��jn�X� tend to 	 and� in the

other case� the same conclusion follows immediately from ���� In any case�
T
n�� ��jn�X�

is a singleton and we are done�

Improving a little bit the argument just given� we have the following�

Lemma ���� limn�� supj�j�nfdiam����X��g � 	�
Proof� Let g�n� � maxi��fdiam

�
�in�X�g� Since � is �nite it follows from ��� that

limn�� g�n� � 	� Let � � I�� Given n � 	 consider the word �jn� Look at the longest
block of the same parabolic element appearing in �jn� If the length of this block exceedsp
n then� since due to ��� all the maps �j � j � I� are Lipschitz continuous with a Lipschitz

constant � �� diam���jn�X�� � g�
p
n�� Otherwise� we can �nd in �jn at least n�pnp

n
�p

n� � distinct hyperbolic indices� It then follows from ��� �and Lipschitz continuity with
a Lipschitz constant � � of all the maps �i� i � I� that diam���jn�X�� � s

p
n��� The

proof is �nished�

We introduce on I� the standard metric d��� �� � e�n� where n is the largest number
such that �jn � � jn� The corollary below is now an immediate consequence of Lemma ����

Corollary ���� The map 
 
 I� � X� 
��� �
T
n�� ��jn�X�� is uniformly continuous�

The limit set J � JS of the system S � f�igi�I satis�es

J � 
�I�� � �i�I�i�J��
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Lemma ���� If X is a topological disk contained in CI� then every parabolic point lies on
the boundary of X�
Proof� Suppose on the contrary that a parabolic point xi � Int�X�� Let D� � fz � CI 

jzj � �g and let R 
 D� � Int�X� be the Riemann map �conformal homeomorphism� such
that R�	� � xi� Consider the composition R

�� � �i � R 
 D� � D�� Then j�R�� � �i �
R���	�j � jR��	�j��jR��	�j � �� Thus by Schwarz�s lemma R�� ��i �R is a rotation� Since
�i � R � �R�� � �i � R� �R��� it follows that �i�X� � R � �R�� � �i � R� �R���X� � X�
This contradiction �nishes the proof�

x�� Topological pressure and associated parameters� Given a set F 	 I and a
function f 
 F� � IR we de�ne the topological pressure of f with respect to the shift map
� 
 F� � F� to be

PF �f� � lim
n��

�

n
log

�
� X
��Fn

exp� sup
�����

n��X
j��

f��j����

�
A �

where ��� � f� � F� 
 � jj�j � �g� Since the sequence

n �� log

�
� X
��Fn

exp� sup
�����

n��X
j��

f��j����

�
A

is subadditive� the limit exists� If F � I� we suppress the subscript F and write simply
P�f� for PI�f�� We call a function f 
 I� � IR acceptable if it is uniformly continuous
and maxi�Ifsup�f j�i��� inf�f j�i��g ��� We shall prove the following�

Theorem ���� If f 
 I� � IR is acceptable� then

P�f� � supfPF �f�g�

where the supremum is taken over all �nite subsets F of I�

Proof� The inequality P�f� � supfPF �f�g is obvious� To prove the converse suppose
�rst that P�f� � �� Fix � � 	� By the acceptability of f� there exists l � � such that
jf��� � f���j � �� if �jl � � jl and M � maxi�Ifsup�f j�i�� � inf�f j�i��g � �� Now� �x
k � l� By subadditivity�

�

k
log

�
�X
j�j�k

exp� sup
�����

k��X
j��

f��j�����

�
A � P�f��

For each F 	 I and m � N� set

�m�F� f� �
X
��Fm

exp� sup
�����

m��X
j��

f��j�����
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So� there exists q � � so large that writing F � f�� � � � � � qg we have �
k log �k�F� f� �

P�f�� �� Put

f �
k��X
j��

f � �j �

Then for every n � �� we have

�kn�F� f� �
X

��Fkn

exp

�
� sup
�����

n��X
j��

f � �kj���
�
A �

X
��Fkn

exp

�
�n��X

j��

inf
�
f j��kj��

��A

�
X

��Fkn

exp

�
�n��X

j��

inf
�
f j��kj�jk�

��A �

But� if j � n� �� then inf�f j��kj�jk�� � sup �f j��jk�jk��� ��k � l��Ml� Hence�

�kn�F� f� �
X

��Fkn

exp

�
�n��X

j��

sup
�
f j��kj�jk�

�� �k � l���Ml

�
A

� e���k�l	n�Mln
X

��Fkn

exp

�
�n��X

j��

sup
�
f j��kj�jk�

��A

�

�
�e���k�l	�Ml

X
��Fk

exp
�
sup
�
f j�� �

���A
n

�

Therefore�

PF �f� � lim
n��

�

kn
log �kn�F� f� � ���k � l�

k
� Ml

k
� P�f�� � � P�f�� 
��

provided k is large enough� Thus� letting �� 	� the theorem follows� The case P�f� ��
can be treated similarly�

Looking at this theorem we should notice that our de�nition of pressure coincides with a
more complicated one given in �Sa� although we will not use this information in our paper�
We say a ��invariant Borel probability measure � on I� is �nitely supported provided
there exists a �nite set F 	 I such that ��F�� � �� The well�known variational principle
�see �Wa�� comp� �PU�� tells us that for every �nite set F 	 I

PF �f� � supfh���� �
Z
fd�g�

where the supremum is taken over all ��invariant ergodic Borel probability measures �
with ��F�� � �� Applying Theorem 
��� we therefore get the following�
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Theorem ���� If f 
 I� � IR is acceptable� then

P�f� � supfh���� �
Z

fd�g�

where the supremum is taken over all ��invariant ergodic Borel probability measures �
which are �nitely supported�

We consider the function g 
 I� � IR given by the formula

g��� � log j�����
�������j�
Using heavily condition ��� we shall prove the following�

Proposition ���� The function g de�ned above is acceptable�

Proof� Fix n � � and �� � � I� such that �jn � � jn� It then follows from ��� that
jg���� g���j � ��log j�����
�������j � log j�����
�������j��

�
��j�����
�������j � j�����
�������j��
minfj�����
�������j� j�����
�������jg

� L
jj���� jj

minfj�����
�������j� j�����
�������jg
j
������� 
������j��

If �� is a hyperbolic index� then using the bounded distortion property� we get

jg���� g���j � LKj
������� 
������j��
On the other hand� since there are only �nitely many parabolic indices� there is a positive
constant M such that if �� is parabolic� then

jg���� g���j � LM j
������� 
������j��
Let L� � LmaxfK�Mg� Since X being compact is bounded� taking n � �� it follows
from the last inequalities that maxi�Ifsup

�
gj�i�

� � inf�gj�i��g � L�diam��X� � �� The
uniform continuity of g follows from inequality jg���� g���j � L�j
�������
������j� and
Corollary ��
� The proof is complete�

In �MU��� for each t � 	 we have de�ned P�t� by the formula

P�t� � lim
n��

�

n
log

X
j�j�n

jj���jjt�

where jj���jj � supfj����x�j 
 x � Xg� Similarly� we de�ne for each W 	 X

PW �t� � lim
n��

�

n

X
j�j�n

jj���jjtW �

�



where jj���jjW � supfj����x�j 
 x �Wg� Let us note that

PW �t� � inffs 

X
n��

X
j�j�n

jj���jjtW e�sn ��g�

Let us make the notation� For each i � �� let Ipgi � f� � Ip 
 �p �� ig�

Lemma ���� P��� tg� � P�t��

Proof� First� we show P�t� � PJ �t�� Clearly� PJ�t� � P�t�� To prove the converse
inequality� suppose PJ �t� � s� Then using ���

X
n��

X
j�j�n

jj���jjte�sn �

�
X
n��

X
j�j�n��n 	��

jj���jjte�sn �
X
n��

X
i��

nX
k��

X
��In�k

gi

jj���ik jjte�sn

� Kt
X
n��

X
j�j�n��n 	��

jj���jjtJe�sn �Kt
X
n��

X
i��

nX
k��

X
��In�k

gi

jj���ijjtJe�sn

� Kt
X
n��

X
j�j�n��n 	��

jj���jjtJe�sn �Kt
X
n��

X
i��

nX
k��

X
��In�k

gi

jj���ijjtJe�s�n�k
�	

� Kt
X
n��

X
j�j�n

jj���jjtJe�sn ���

So� P�t� � s and consequently P�t� � PJ�t�� Next� we compute

P��� tg� � lim
n��

�

n
log

X
j�j�n

exp
�
sup
�����

n��X
j��

tg��j����
�

� lim
n��

�

n
log

X
j�j�n

exp
�
sup
�����

nX
j��

t log j���j �
��j�����j
�

� lim
n��

�

n
log

X
j�j�n

sup
�����

j����
��n���jt � lim
n��

�

n
log

X
j�j�n

jj���jjJ � PJ �t� � P�t��

The proof is complete�

Let
� � ��S� � infft � 	 
 P�t� ��g�

Following �MU�� we call � the �niteness parameter of the system S� If � is a Borel
probability measure supported on X� we denote the Hausdor� dimension of � by dimH�X��

�



the in�mum of the Hausdor� dimensions of sets with � measure �� Let 	 � f�i� 
 i � Ig be
the partition of I� into initial cylinders of length �� We let H��	� denote the entropy of
the partition 	 with respect to �� In �HMU� and �U��� the following theorem was proven
for hyperbolic systems�

Theorem ���� If � is a shift�invariant ergodic Borel probability measure on I� such that
H��	� ��� ����� �

R �gd� � � and either ����� � 	 or h���� � 	 �h���� � 	 implies
����� � 	�� then

dimH�� � 
��� � h����
�����

�

If additionally� � � 
����i�X� � �j�X�� � 	 for all i �� j � I then

dimH�� � 
��� � h����
�����

�

The same proof goes through in our case replacing only the bounded distortion property

by the consequence of ��� which says that j
�i�y	j
j
�
i
�x	j � exp

�
Ljy � xj�� for all i � I and all

x� y � V �

Consider now an arbitrary �nite subset F of I� By the classical results �see �Ru�� �Wa��
comp� �PU�� there exists a unique ergodic shift�invariant measure �t � �tg on F

� which
is an equilibrium state for the potential tgjF�� meaning that h�t �

R
tgd�t � PF ��� tg��

Additionally� by the estimate obtained in the proof of Proposition 
�
� for every t �
	 the family t log j��ij 
 X � IR forms a H�older continuous system of functions in the
sense of �HMU� and �U��� Then it follows from �HMU� and �U�� that �t satis�es the
property �t � 
����i�X� � �j�X�� � 	 for all i �� j � F � So� combining this remark�
Theorem 
�� �which applies for any measure � with h���� � 	 or ����� � 	� if I is �nite�
and Theorem 
��� we conclude that there exists a set M of ergodic �nitely supported
measures � such that if either ����� � 	 or h���� � 	� then dimH���
��� � h�����������
and

�
��� P��� tg� � sup
M
fh����� t��g�

Let
� � ��S� � supfdimH�� � 
���g�

where the supremum is taken over all ergodic �nitely supported measures of positive en�
tropy� We shall prove the following�

Proposition ���� The pressure function P�t� has the following properties


��� P�t� � 	 for all t � 	
��� P�t� � 	 for all 	 � t � ��

�
� P�t� � 	 for all t � ��

��� P�t� is non�increasing�

�



��� P�t� is strictly decreasing on ��� ���

��� P�t� is continuous and convex on ������
Proof� ���� Let i be a parabolic index and let xi be the corresponding parabolic point�
Then 
�i�� � xi and let � be the Dirac measure supported on i�� Of course� � is
ergodic� �nitely supported� and

R
tg d� � t log j��i�xi�j � 	� Hence� by Theorem 
���

P ��� tg� � h���� �
R
tgd� � 	 and ��� is proved�

���� Suppose that t � �� Then there exists an ergodic� �nitely supported� measure � such
that dimH�� � 
��� � t� Hence ��fxi 
 i � �g� � 	 and therefore it follows from condition
��� and the Birkho� ergodic theorem that ����� � 	� Since obviously ����� � � and
H��	� ��� Theorem 
�� applies to give t � dimH�� � 
��� � h���������� which due to
Theorem 
�� implies that P��� tg� � h���� �

R
tg d� � 	�

�
�� Suppose that P�t� � 	 for some t � 	� Then in view of �
��� there exists an ergodic
�nitely supported measure � �M such that h����� t����� � 	� Therefore h���� � 	 and

hence t � h���	
����	

� dimH�� � 
��� � �� We are done�

���� Suppose that t� � t�� It is clear from the de�nition of pressure that P�t�� � �
implies P�t�� � �� So� we may assume � � t� � t�� Fix � � 	� By Theorem 
�� and
Proposition 
�
 there exists an ergodic �nitely supported measure �� such that h����� �R
t�gd�� � P��� t�g�� �� Then by Theorem 
��� P��� t�g� � h������

R
t�gd�� � h������R

t�gd���
R
�t�� t��gd�� � h������

R
t�gd�� � P��� t�g���� Letting �� 	� we are done�

���� Suppose � � t� � t� � �� Since P��� t�g� � 	� in view of �
��� there exists an ergodic�
�nitely supported� measure �� �M such that

�
��� h����� �

Z
t�gd�� � max

�
�

�
� �� t� � t�

��

	
P��� t�g�

Then h����� � P��� t�g��� � 	 and therefore by the properties of M � h�� ��	

��� ��	
� dimH��� �


��� � �� Hence
R �gd�� � h������� � P��� t�g����� Thus� using �
���� Theorem 
��

and Proposition 
�
� we get

P��� t�g� � h����� �
Z
t�gd�� � h����� �

Z
t�gd�� �

Z
�t� � t��gd��

� P��� t�g�� P��� t�g� t� � t�
��

� P��� t�g�
t� � t�
��

� P��� t�g� � P��� t�g�
t� � t�
��

� P��� t�g��

���� An application of H�older�s inequality shows that each function

t ��
X
j�j�n

exp
�
sup
�����

n��X
j��

g��j����
�

is log convex� Therefore the map t �� P�t�� t � ������ is convex and consequently
continuous�

�	



Let us remark that it is possible for � � �� We will call such systems �strange� and deal
with them in more detail in sections � and ��

x�� The Perron	Frobenius operator
 semiconformal measures and Hausdor�

dimension� It follows from Proposition 
�� that � is the �rst zero of the pressure function�
We shall provide below more characterizations of this number� Given t � ��S� we de�ne
the associated Perron�Frobenius operator acting on C�X� as follows

Lt�f��x� �
X
i�I

j��i�x�jtf��i�x���

Notice that the nth composition of L satis�es


Lnt �f��x� �
X
j�j�n

j����x�jtf����x���

Consider the dual operator L�t acting on the space of �nite Borel measures on X as follows

L�t ����f� � ��Lt�f���

Notice that the map � �� L�t ����L�t ������ sending the space of Borel probability measures
into itself is continuous and by the Schauder�Tichonov theorem it has a �xed point� In
other words L�t ��� � ��� for some probability measure �� where � � L�t ������ � 	� A
probability measure m is said to be ��� t��semiconformal provided if L�t �m� � �m� If � � �
we simply speak about t�semiconformal measures� Repeating a short argument from the
proof of Theorem 
�� of �MU� we shall �rst prove the following�

Lemma ���� If m is a ��� t��semiconformal measure for the system S with � � 	� then
m�J� � ��

Proof� For each n � � let Xn � �j�j�n���X�� The sets Xn form a descending family
and

T
n��Xn � J � Notice that ��Xj�j

� �� � ��X for all � � I� and therefore� using
��� t��semiconformality of m� we obtain for every n � ��

�nm�Xn� �

Z
��Xn

dL�nt �m� �
Z
Lnt ���Xn

�dm �

Z X
j�j�n

j���jt���Xn
� ���dm

�

Z X
j�j�n

j���jtdm �
Z
��XdL�nt �m�

�

Z
�n��Xdm � �n�

Thus� m�Xn� � � and therefore m�J� � m
�T

n��Xn� � �� The proof is complete�

��



We set
�n�t� �

X
j�j�n

jj���jjt�

We note that ��S� � infft 
 ��t� � ���t� � �g� In order to demonstrate the existence of
�eP�t	� t��semiconformal measures we shall prove the following�

Lemma ���� If t � ��S� and L�t �m� � �m for some measure m on X� then � � eP�t	�

Proof� We �rst show the easier part that � � eP�t	� Indeed� for all n � �

�n �

Z
Lnt ���X�dm �

Z X
j�j�n

j����x�jtdm�x� �
Z X

j�j�n
jj���jjtdm �

X
j�j�n

jj���jjt

and therefore

����� log� � lim
n��

�

n
log

X
j�j�n

jj���jjt � P�t��

In order to prove the opposite inequality� for each p � �� let Tp �
P

��Ipg jj���jjt� where Ipg
is the set of those words � � Ip such that �p��� �p are not the same parabolic element�
For each n�

�n�t� �
X
j�j�n

jj���jjt

�
X
��Ing

jj���jjt �
X
i��

X
��In��g

jj���jjtjj��ijjt �
X
i��

X
��In��g

jj���jjtjj��iijjt � � � ��
X
i��

jj��in jjt

�
nX

k��

 �Tk�

where T� � �� Take 	 � q�n� � n that maximizes Tk� Then �n � �n � �� �Tq�n	 and
therefore

P�t� � lim
n��

�

n
log�n � lim inf

n��



log�n� ��

n
�
q�n�

n

 �

q�n�
logTq�n	 �

�

n
log �

�

� max
�
	� lim sup

n��
�

n
logTn

	
������

Let
!Lnt ��� �

X
��Ing

j���jt�

It follows from condition ��� that for all n � �� � � Ing and all x � X

jj���jjt � Ktj����x�jt�

��



Summing we have Tn � Kt !Lnt ����x� and integrating this inequality with respect to the
measure m� we get

Tn � Kt

Z
!Lnt ����x�dm�x� � Kt�n�

Thus� by �����

P�t� � maxf	� lim sup
n��

�

n
log Tng � maxf	� log�g�

If now t � ��S�� then by Proposition 
������ P�t� � 	� and we therefore get P�t� � log��
Thus� we are done in this case� So� suppose that t � ��S�� Then by Proposition 
���
��
P�t� � 	 and in view of ����� we are left to show that � � �� In order to do it �x an
arbitrary 	 � � � �� It follows from conditions ��� and ��� that for all n large enough� say
n � n�� j��in�x�j � �n for all i � � and all x � X� Fix j � �� We then have for all n � n�

�n �

Z
��dL�n�m� �

Z X
j�j�n

j���jtdm �
Z
j��jn jtdm �

Z
�tndm � �tn�

Thus � � �t and letting � � � we get � � �� The proof is complete�

Lemma ���� For every t � ��S� a �P�t�� t��semiconformal measure exists�

Proof� In view of Lemma ���� it su�ces to prove the existence of an eigenmeasure of the
conjugate operator L�t � But this has been done in the paragraph preceding Lemma ���
which completes the proof�

Let e � e�S� be the in�mum of the exponents for which a t�semiconformal measure exists�
We shall shortly see this in�mum is a minimum� Also� let h � hS be the Hausdor�
dimension of the limit set J � As an immediate consequence of Proposition 
���
� and
Lemma ��
 we get the following�

Lemma ���� e�S� � ��S��

Now� suppose that m is t�semiconformal or equivalently�

�����

Z X
��In

j���jt�f � ��� dm �
Z
f dm�

for every continuous function f 
 X � IR� Since this equality extends to all bounded
measurable functions f � we get

����� m����A�� �
X
��In

Z
j��� jt��
��A	 � �� � dm �

Z
A

j���jt dm

for all n � �� � � In and all Borel subsets A of X�

�




Our next task in this section is to note that h � e� But this follows immediately from the
following lemma whose proof� using ������ is the same as the proof of Lemma ��
 of �MU���

Lemma ���� Ifm is a t�semiconformal measure� thenHt J � m and the Radon�Nikodym
derivative dHt

dm is uniformly bounded from above�

Since obviously � � h� we have thus proved the following�

Theorem ���� e � � � h �the minimal zero of the pressure function�

As an immediate of Lemma ���� Lemma ��
� Proposition 
���
� and Theorem ��� we get
the following

Corollary ���� The h�dimensional Hausdor� measure of the limit set J is �nite�

x�� The associated hyperbolic system� Conformal and invariant measures� In
this section we describe how to associate to our parabolic system a new system which
is hyperbolic and we apply its properties to study the original system� in particular to
prove the existence of h�conformal measures� However we begin this section with a result
describing the structure of t�semiconformal measures with exponents t � h� Let

�� � f���xi� 
 i � �� � � I�g
So� �� is the set of orbits of parabolic points� The following theorem allows us to conclude
a t�semiconformal measure is conformal provided the parabolic orbits do not mix�

Theorem ���� If t � h and mt is a t�semiconformal measure� then mt is supported on
��� that is mt���� � �� If for every � � I� and every i � �� 
������xi�� � �i�� then
each t�semiconformal measure �t � h� is t�conformal�

Proof� For every r � h let mr be an r�semiconformal measure� Note that the existence
of at least one such measure �for every r � h� has been proved in Lemma ��
� comp�
also Proposition 
���
� and Theorem ���� Repeating the reasoning from Proposition 
��
of �MU��� we see that for every r � h there exists a Borel probability measure !mr on I

�

such that !mr � 
�� � mr and !mr����� �
R j���jrdmr� for all � � I�� Now� �x t � h and

h � s � t� Let !�� � f�i� 
 i � �� � � I�g� If � �� !��� then there exists an increasing
in�nite sequence fnkg�k�� such that either �nk �� � or �nk�� �� �nk � In either case� using
condition ��� we get

mt���jnk �� �
Z
j���nk j

tdmt � jj���nk jj
t � jj���nk jj

t�sjj���nk jj
s

� jj���nk jj
t�sKs

Z
j���nk j

sdms � K�sjj���nk jj
t�sms���jnk ������	�

It immediately follows from conditions ��� and ��� that limk�� jj���nk jj � 	� Combining
this and ���	� we conclude that !mt�I

� n !��� � 	 or equivalently mt�!��� � �� Since

��




������ � !��� we get mt���� � !mt � 
������ � !mt�!��� � �� The proof of the �rst part
of Theorem ��� is complete� The proof of the second part is an immediate consequence of
����� applied to the indicator functions of the sets of the form ���A�� where � � I� and A
is a Borel subset of X�

Consider now the system S� generated by I�� the set of maps of the form

�inj �

where n � �� i � �� i �� j� and the maps

�k�

where k � I n �� It immediately follows from our assumptions that the following is true�

Theorem ���� The system S� is a hyperbolic conformal iterated function system�

We recall that J� is the limit set generated by the system S��

Lemma ���� The limit sets J and J� of the systems S and S� respectively di�er only by
a countable set
 J� 	 J and J n J� is countable�
Proof� Indeed� it is obvious that J� 	 J� On the other hand� the only in�nite words
generated by S but not generated by S� are of the form �i�� where � is a �nite word and
i is a parabolic element of S�

De
nitions� If S is an iterated function system with limit set J� then a measure �
supported on J is said to be invariant for the system S provided

��E� � �

�

i�I

�i�E�

�

and � is said to be ergodic for the system S provided ��E� � 	 or ��J nE� � 	 whenever
��E"

S
i�I �i�E�� � 	�

Let us make some notation� Let J� 	 J consist of all points with a unique code under S�
For each x � 
��� � J� express � � in� � where i is a parabolic element� n � 	� �� �� i and
de�ne n�x� � n� For each k � 	� put

Bk � fx � J� 
 n�x� � kg and Dk � fx � J� 
 n�x� � kg�

Theorem ���� Suppose that �� on J� is a probability measure invariant under S� and
���J�� � �� De�ne the measure � by setting for each Borel set E 	 J��

����� ��E� �
X
k��

X
j�j�k

������E� �Dk�

��



Then � is a ���nite invariant measure for the system S and �� is absolutely continuous
with respect to �� If� for each i � I� the measure �� � �i is absolutely continuous with
respect to the measure ��� then � and �� are equivalent and if �� is ergodic for the system
S�� then � is ergodic for the system S� Moreover� in this last case � is unique up to a
multiplicative constant�

Proof� Let us check �rst that � is S�invariant� Indeed�

�

�

i�I

�i�E�

�
�

�X
k��

X
j�j�k

��
�
���



i�I

�i�E�� �Dk

�

�
�X
k��

X
j�j�k

��
�
�


i�I

��i�E� �Dk

�
�

�X
k��

X
j�j�k

X
i�I

�����i�E� �Dk�

�
�X
k��

X
j�j�k

X
i�I

�����i�E� �Dk
�� �
�X
k��

X
j�j�k

X
i�I

�����i�E�� �Bk�

�
�X
k��

X
j�j�k

������E� �Dk� � ���E�

�
�X
k��

X
j�j�k

������E� �Dk� � ��E��

where

�X
k��

X
j�j�k

X
i�I

�����i�E� � Bk� �
X
i�In�

�����i�E�� �
�X
k��

X
i��

X
j�Infig

����ikj�E�� � ���E�

due to invariantness of �� under S� and the �th equality sign holds since E � E � D��
The invariantness of � has been proved� Since J� �

S
n��Bn� in order to show that � is

���nite it su�ces to demonstrate that ��Bn� � � for every n � 	� And indeed� given
n � 	 we have

����� ��Bn� �
X
k��

X
j�j�k

������Bn� �Dk� �
X
k��

X
i��

����ik�Bn� �Dk��

Now� for every i � ��

�ik�Bn� �Dk � �ik�Bn� 	 Bk �Bn
k

and for j � �nfig� ����ik�Bn��Dk��jk�Bn��Dk� � 	� Hence ��Bn� � �
P�

k�� �
��Bk� �

��� �
S�
k��Bk� � ����X� � �� Thus� � is ���nite� It follows in turn from ����� that

��E� � 	 implies ���E� � ���E �D�� � 	� So� �
� is absolutely continuous with respect

to ��
Now suppose that for each i � I� the measure �� ��i is absolutely continuous with respect
to the measure ��� If ���E� � 	� then ������E�� � 	 for all � � I�� Thus� it follows

��



from ����� that ��E� � 	 and the equivalence of � and �� is shown� Suppose now that
E is S�invariant� implying that

S
i�I �i�E� 	 E� Then

S
��I� ���E� 	 E and since �� is

ergodic� either ���E� � 	 or ���Ec� � 	� Since � is absolutely continuous with respect to
��� this implies that either ��E� � 	 or ��Ec� � 	� Hence � is ergodic and the proof is
complete�

Theorem ���� If the assumptions of Theorem ��� are satis�ed� then the ���nite measure
� produced there is �nite if and only ifX

n��
n���Bn� ���

Proof� Let us set Bi
n � fx � J� 
 x � 
�jn��� j � � n fig� � � I�� �� �� jg and

Di �
S
n��B

i
n� By ������ we can write

��J� �
X
n��

��Bn� �
X
n��

X
k��

X
i��

����ik�Bn��

�
X
k��

X
n��

���Bk
n� �
X
k��

X
n��

X
i�I

����ik�B
i
n��

�
X
k��

X
n��

���Bk
n� �
X
k��

X
i��

����ik�D
i�

�
X
n��
�n� �����Bn� �

X
n��

���Bn� �
X
n��
�n� �����Bn��

The proof is therefore complete�

We recall from �MU�� that a probability measure m is said to be t�conformal for the system
S provided m�J� � � and for every Borel set A 	 X and every i� j � I with i �� j�

���
� m��i�A�� �

Z
A

j��ijtdm

and

����� m��i�X� � �j�X�� � 	�

A straightforward computation shows �see for ex� �MU��� p� ���� that any t�conformal
measure is t�semiconformal� We also recall from �MU�� that a conformal hyperbolic system
is regular if P�h� � 	 or equivalently an h�conformal measure exists� We shall now prove
a little but useful lemma concerning general hyperbolic systems�

Lemma ���� If S � f�i 
 X � X� i � Ig is a regular hyperbolic conformal iterated
function system� then its hS�conformal measure is atomless�
Proof� Suppose to the contrary that m�z� � 	 for some z � J � Then� by Corollary 
��� of
�MU��� !m��� � 	 for some � � 
���z�� where !m is the measure produced in Lemma 
�� of

��



�MU��� Let �� be the ��invariant probability measure produced in Theorem 
�� of �MU���
Since for every n� ����n���� � ����� � 	 and �� is a probability measure� � is eventually
periodic meaning that there exist k � 	 and q � � such that �q��k���� � �k���� Therefore�
we can write �k��� � ��� for some � � I�� Since m�
���� � 	� m�
����� � 	 and by the
conformality of m we have m�
����� � m��� �
��

���� �
R
����	

j��� jhSdm � m�
�����
which is a contradiction �nishing the proof�

Theorem ���� Suppose that S is a parabolic conformal iterated function system and the
associated hyperbolic system S� is regular� Then m� the h�conformal measure for S� is
also h�conformal for S and m is the only h�semiconformal measure for S�

Proof� Let m be the h�conformal measure for the system S�� We will �rst show that m
is h�conformal for the system S over the limit set J� We will then associate with S one
more hyperbolic system S�� and use some properties of this system to verify that m is
h�conformal for S� Since m�J�� � �� the probability measure m clearly satis�es the �rst
condition for conformality
 m�J� � �� Next� we will show that m satis�es equation ���
�
for all Borel subsets A of J� Since J nJ� is countable and m is atomless� it su�ces to show
that ���
� holds for Borel subsets of J�� Also� since ���
� holds whenever i is a hyperbolic
index even for Borel subsets of X� we only need to verify ���
� for parabolic indices� Let

G � fA 
 A is a Borel subset of J� and ���
� holds �i � �g�

Since G is closed under monotone limits� it su�ces to show that ���
� holds for every subset
U of J� which is relatively open� Let

� � f� � I�� 
 � � �a�b��� �a�b��� �a�b��� � � � # �n an� bn � �� bn �� an� an
�g�

Let W � 
���� Using Theorem 
�� from �MU�� and the Birkho� ergodic theorem� we
see that m�W � � 	 and m��i�W �� � 	� �i � �� Let us demonstrate that if i � � and
� � ���� ��� ��� ���� � I�� n�� then there is some l such that for every k � l� ���� ���� �k� � I��
and the concatenation i � �� � ��� � �k can be parsed so that it represents an element of
I�� � To see this� �rst suppose that �� � I n �� Then l � � since i � �� � ��� � �k can be
parsed as i��� ��� ����k which is an element of I

�
� � Now� suppose �� � pnq where p � � and

p �� q� If p � i� then again l � �� since i � �� � ��� � �k can be parsed as in
�q� ��� ����k
which is an element of I�� � If i �� p and n � �� then i � �� � ��� � �k can be parsed
as �ip� pn��q� ��� ��� � � � � �k� � I�� and also in this case l � �� If� on the other hand�
n � � and p � i� then �� � a�b�� where a� � � and b� �� a�� If b� � I n �� then
i � �� � ��� � �k can be parsed as �ia�� b�� ��� ��� � � � � �k� � I�� and l � �� So� suppose that
b� � �� Now� consider ��� If �� � I n�� then the concatenation i��� � �����k can parsed as
�ia�� b���� ��� � � � � �k� � I�� and l � �� Otherwise �� � pnq� where p � �� q �� p and n � ��
If p � b�� then i � �� � ��� � �k can be parsed as �ia�� bn
�� q� ��� � � � � �k� � I�� and l � �� If
p �� b� and n � �� then i��� � �����k can be parsed as �ia�� b�p� pn��q� ��� � � � � �k� � I�� and
l � �� If� on the other hand� n � �� then �� � a�b�� where a� �� b�� b�� If b� � I n �� then
i���� �����k can be parsed as �ia�� b�a�� b�� ��� � � � � �k� � I�� and l � �� So� we may assume
that b� � �� Now� excluding inductively in this manner the cases when i � �� � ��� � �k can
be parsed in a fashion that it would belong to I�� � we would end up with the conclusion

��



that � � � contrary to our assumption� Now� let U 	 J� be relatively open� Then there
is a set M 	 I�� � consisting of incomparable words such that U nW 	 ���M�� �J

�� 	 U�
and if � �M then i � � � I�� � Thus�

m��i�U�� � m��i���� �J���� � �U n ��� �J��� �
X
�

m��i��� �J
����

�
X
�

Z
J�
j��i � �� ��jhdm �

X
�

Z

� �J�	

j��ijhdm �
Z
U

j��ijhdm�

where the third equality follows since m is h�conformal for the system S� and in the fourth
equality we additionally employed the change of variables formula� Now� we want to show

m��i�J� � �j�J�� � 	

whenever i �� j� Again� it su�ces to verify this when J is replaced by J� and at least one
of the indices i and j is parabolic� As before there is a set Mi 	 I�� of incomparable words
such that J� nW 	 ���Mi

�� �J
�� 	 J�� and if � � Mi then i � � � I�� � Also� let Mj 	 I��

have similar properties with respect to the index j� Then

m��i�J� � �j�J�� � m����
�Mi�Mj
�i� �J

�� � �j
�J��� �
X

Mi�Mj

m��i� �J
�� � �j
�J��� � 	�

Finally� to show that m is conformal� we must demonstrate that ���
� and ����� hold
whenever A is a Borel subset of X� Note that it su�ces to show that m�A� � 	 implies
m��i�A�� � 	� for all Borel subsets A ofX and all parabolic indices i� In order to prove this�
we introduce a new hyperbolic system� The index set for this system is I�� � I� nf�i� i� i� 

i � �g�fpnq 
 p � �� q �� p� n � �g� Let us prove that the system S�� satis�es the bounded
distortion property� To see this read a word � � I��� as a word in I

� 
 � � ���� ��� ���� �n��
If �n � I n�� then we have bounded distortion by property ��� of the system S� If �n � �
and �n�� �� �n� then again by property ��� we have bounded distortion with constant K�
If �n�� � �n� then �n�� �� �n��� by the de�nition of I���� Then the word �jn�� satis�es
the hypothesis of condition ��� and so

j����y�j
j����x�j

�
j���jn�����n�y��jj���n�y�j
j���jn�����n�y��jj���n�y�j

� Kmax

� jj��ijj
minf��i�x� 
 x � Xg 
 i � �

	
�

where the last number is �nite since � is� To see that S�� satis�es the open set condition�
notice that �ijk�Int�X����pqr�Int�X�� � � for all ijk �� pqr� Next consider �inj�Int�X���
�pmq�Int�X��� where n�m � �� If i �� p� this intersection is empty� Also if i � p and
n �� m� the intersection is empty� Otherwise� q �� j and the intersection is empty� Finally�
consider �inj�Int�X�� � �pqr�Int�X��� where n � �� If i �� p or if i � p and q �� i�
the intersection is empty� Otherwise� i � p � q and in this case r �� i since the word
�i� i� i� is not allowed in I��� Finally� the hyperbolicity of the system S�� is an immediate
consequence of property ���� So� S�� is a hyperbolic conformal iterated function system�
Also� since each element of I�� can be parsed into an element of I��� � we have J

�� � J� �

��



J n feventually parabolic pointsg� Also notice that if the system S� is regular� then the
system S�� is regular� To see this note that we have already shown that if m is conformal
for S�� then m is conformal for S over J � Thus m is conformal for S�� over J � So� for each
n� � �

R
J
dm �

R
J

P
��In�� j����x�jdm� But� for each x � J � we have

X
��In��

jj���jjh �
X
��In��

j����x�jh � �K����h
X
��In��

jj���jjh�

where K�� is the distortion constant for the system S�� over X� Integrating this formula
against the measure m we get

X
��In��

jj���jjh � � � �K����h
X
��In��

jj���jjh�

From this it immediately follows that P���h� � 	� But� this is equivalent to saying that
there is an h� conformal measure m�� for the system S�� over X� We only need to prove
that m�� � m� Let G be open relative to J�� Let W be a collection of incomparable words
in I�� such that G �

S
��W ���J

��� Since m is conformal for S�� over J �

m�G� �
X
��W

Z
J

j���jdm �
X
��W

Khjj���jj �
X
��W

KhK��h
Z
J

j���jdm�� � KhK��hm���G�

Interchanging m and m�� in the above estimate we get

�KhK��h���m���G� � m�G� � KhK��hm���G��

From this it follows that m and m�� are equvialent� To show that m � m�� let A be a
Borel subset of X� Then m����A�� � m����A � J�� �m����A n J��� But� since m�� is
conformal over X�m���A n J� � R

AnJ j���jhdm�� � 	� So� since m is conformal for S over

J� we have m����A�� �
R
A	J j���jhdm �

R
A
j���jhdm� Also one can show that ����� holds

using the same procedure� Thus� m is conformal for S�� over X�
Finally� to see that m is conformal for the entire system S over X� let i � � and choose
an arbitrary q �� i� q � I� Then iq � I� and iqi � I��� Thus�Z


i�A	

j��iqjhdm � m��iq��i�A�� � m��iqi�A�� �

Z
A

j��iqijhdm�

So� if m�A� � 	� then since j��iqjh is positive on �i�A�� we have m��i�A�� � 	�
In order to prove the second part of our theorem suppose that � is an arbitrary measure
supported on J and satisfying

����� �����A�� �
Z
A

j���jhd�

�	



for all Borel sets A 	 X and all � � I�� We show that m is absolutely continuous with
respect to �� Indeed� for every � � I�� we have

�����X�� �
Z
X

j���jhd� � K�hjj���jjh � K�h
Z
X

j���jhdm � K�hm����X���

Next� consider an arbitrary Borel set A 	 X such that ��A� � 	� Fix � � 	� Since
� is regular there exists an open subset G of X such that A � J� 	 G and ��G� � ��
There now exists a family F 	 I�� of mutually incomparable words such that A � J� 	S
��F ���X� 	 G� Lemma ��� of �MU�� states that there exists a universal upper bound

M on the multiplicity of the family f���X� 
 � � Fg� Hence� using the fact that m is
supported on J�� we obtain

m�A� � m�A � J�� � m

� 

��F

���X�

�
�
X
��F

m����X��

� Kh
X
��F

�����X�� � KhM�

� 

��F

���X�

�
� KhM��G�

� KhM��

Thus� letting �� 	� we get m�A� � 	 which �nishes the proof of the absolute continuity of
m with respect to �� Our next aim is to show that ��J nJ�� � 	� Suppose on the contrary
that ��J n J�� � 	� Set P � f���xi� 
 i � �� � � I�g� Since J n J� 	 P � ��P � � 	� Write
� � �� � ��� where ��jXnP � 	 and ��jP � 	� Thus ���P � � ��P � � 	� Since ���P � 	 P
for all � � I�� we get for every Borel set A 	 X and every � � I�

������A�� � ������A � P �� � �����A � P �� �
Z
A	P

j���jhd� �
Z
A

j���jhd���

Hence multiplying �� by �����X�� we conclude from what has been proved that m is
absolutely continuous with respect to ��� Since ���XnP � � 	� this implies thatm�XnP � �
	� and consequently m�P � � �� Since P is countable we arrive at a contradition with
Lemma ���� Thus ��J�� � �� Since� by Lemma ���� any h�semiconformal measure �
is supported on J and� by ������ satis�es ������ we conclude that any h�semiconformal
measure is supported on J� and satis�es ������ Since� additionally� by regularity of the
system S�� P��h� � 	� it follows from Lemma 
��	 of �MU�� that � is h�conformal for S��
An application of Theorem 
�� of �MU�� implying the uniqueness of h�conformal �even
h�semiconformal� measures for the hyperbolic system S�� shows that � � m� The proof is
complete�

Following the case of hyperbolic systems �see �MU��� we call a parabolic system regular
if there exists an h�conformal measure for S supported on J�� Since such a measure is
h�conformal for S�� as an immediate consequence of Theorem ��� we get the following�

��



Corollary ���� The parabolic system is regular if and only if the associated system S� is
regular�

Trying to say something about parabolic systems which are not regular we are led to
introduce the class of strange systems which by de�nition are those systems for which
there is no t with 	 � P�t� ��� In the hyperbolic case the strange systems coincide �see
�MU��� with systems which are not strongly regular or equivalently with those with � � h�
This last characterization continues to be true also for parabolic systems and this class
may also be characterized by the requirement of the existence of a number 	 �which then
turns out to be � � h� such that P�t� � � for all t � 	 and P�t� � 	 for all t � 	� Let
us remark that we do not want to call the strange systems �irregular� since the irregular
hyperbolic systems are precisely those for which no conformal measure exists whereas for
a strange parabolic system the following questions remains open

Questions� Can there exist a strange parabolic system such that the associated hyperbolic
system is regular$ Can there exist a strange parabolic system with a purely atomic h�
conformal measure$

We shall prove the following�

Proposition ���� If the system S is strange� then so is S��

Proof� Since hS� � hS � P
��t� � 	 for all t � hS � So� we are only left to show that

P��t� � � for all t � hS � And indeed� �x t � hS � Since S is strange� P�t� � � and
therefore ��t� � �� Since � is �nite� this implies that Pi�In� jj��ijjt � �� But then
���t� �Pi�In� jj��ijjt ��� Hence P��t� �� and we are done�

Let us brie%y touch on the packing measure of J� Since J� is dense in J � as an immediate
consequence of Theorem ��� and Lemma ��
 of �MU�� we get the following�

Corollary ����� Suppose that S is a parabolic iterated function system and the associated
hyperbolic system S� is regular� If J � Int�X� �� � �that is� if the strong open set condition
is satis�ed�� then the h�dimensional packing measure of J is positive�

Let us remark here that in Corollary ��� we have proved that the h�dimensional Hausdor�
measure of J is �nite�

Finally� let us give some results about equivalent ergodic invariant measures for regular
systems� As a consequence of Theorem ��� we have the following�

Corollary ����� Suppose that S is a parabolic iterated function system� the associated
hyperbolic system S� is regular and let m be the corresponding h�conformal measure�
Then there exists a unique probability measure �� equivalent with m� which is ergodic
and invariant under S� and� up to a multiplicative constant� there exists a unique ���nite
measure � equivalent with m and ergodic invariant under S�

��



Proof� The �rst part of this corollary is an immediate consequence of Theorem 
�� and
Corollary 
��� from �MU��� That m is h�conformal for S follows from Theorem ���� The
last part is a consequence of this conformality �the measures ����i are therefore absolutely
continuous with respect to ��� and Theorem ����

Corollary ����� If the assumptions of Corollary ���� are satis�ed� the ��invariant measure
� produced there is �nite if and only if

X
i��

�X
n��

n

Z
Xi

j��in jhdm ���

where Xi �
S
j 
�i �j�X��

Proof� Since by Theorem 
�� and Corollary 
��� from �MU�� m and �� are equivalent
with Radon�Nikodym derivatives are bounded away from 	 and in�nity� it therefore follows
from Theorem ��� that � is �nite if and only if the series

P
n�� nm�Bn� converges� Since

m�Bn� �
P

i��
R
Xi
j��in jhdm� the proof is complete�

Corollary ����� If for every i � � there exists some �i and a constant Ci � � such that
for all n � � and for all z � Xi

C��i n
� �i��

�i � j��in�z�j � Cin
� �i��

�i �

then the ���nite invariant measure � produced in Corollary ���� is �nite if and only if

h � �max

�
�i

�i � �

 i � �

	
�

Proof� The proof is an immediate consequence of Corollary �����

x�� Examples� This section contains examples illustrating some of the ideas developed
in this paper� We begin with the following�

Example ���� �Apollonian packing� Consider on the complex plane the three points zj �
e��ij	�� j � 	� �� � and the following additional three points a� �

p

��� a� � ���

p

�e�ij	�

and a� � ���
p

�e��ij	�� Let f�� f�� and f� be the M�obius transformations determined by

the following requirements
 f��z�� � z�� f��z�� � a�� f��z�� � a�� f��z�� � a�� f��z�� � z��
f��z�� � a�� f��z�� � a�� f��z�� � a�� and f��z�� � z�� Set X � B�	� ��� the closed ball
centered at the origin of radius �� It is straightforward that the images f��X�� f��X�
and f��X� are mutually tangent �at the points a�� a� and a�� respectively� disks whose
boundaries pass through the triples �z�� a�� a��� �z�� a�� a�� and �z�� a�� a�� respectively� Of
course all the three disks f��X�� f��X� and f��X� are contained in X and are tangent to
X at the points z�� z� and z� respectively� Let S � ff�� f�� f�g be the iterated function
system on X generated by f�� f� and f�� Notice that all the maps f�� f� and f� are

�




parabolic with parabolic �xed points z�� z� and z� respectively� It is not di�cult to check
that all the requirements of a parabolic system are satis�ed� Observe that the limit set
J of the parabolic system S coincides with the residual set of the Apollonian packing
generated by the curvilinear triangle with vertices z�� z�� z�� In �MU
�� using a slightly
di�erent iterated function system� we have dealt with geometrical properties of J proving
that � � h � dimH�J� � �� 	 � Hh � � and Ph�J� � �� In this paper we want to
study its dynamical properties� Let us �rst notice that the system S� is regular� Indeed�
we proved in �MU
� that

fn� �z� �
�
p

� n�z � n

�nz � n�
p



and

�fn� �
��z� �




��nz � n�
p

��

�

By the symmetry of the situation this implies that

j�fni � fj���z�j �
�

n�

for all i �� j� Hence ���t� � Pn��
�
n�t
� where ���t� is the psi function of the system S�

introduced just before Lemma ���� Thus ��S�� � ��� and ������� ��� Hence� it follows
from Theorem 
��	 of �MU�� that the system S� is regular� even more it is hereditarily
regular� Thus� the assumptions of Theorem ��� and Corollary ���� are satis�ed in our
case� Let m be the h�conformal measure for S and let � be an S�invariant ���nite measure
equivalent with m� We shall prove the following�

Theorem ���� The invariant measure � of the Apollonian system ff�� f�� f�g is �nite�
Proof� In the proof of regularity of S� we have observed that j�fni ��j � ��n� on Xi�
i � 	� �� �� Since h � � � � �

�
� � it therefore follows from Corollary ���
 that � is �nite�
The proof is complete�

Example ���� A large class of examples appears already in the case when X is a compact
subinterval of the real line IR� We call such systems one�dimensional� If the parabolic
elements �i of a one�dimensional system S have around parabolic �xed points xi a repre�
sentation of the form

����� �i�x� � x� a�x� xi�
�
�i � o��x� xi�

�
�i�

then �see �U�� for ex��

����� j��in�x�j � n
� �i��

�i

outside every open neighbourhood of xi� Hence the following theorem is a consequence of
Theorem ���� and Corollary ���
�

Theorem ���� If S is a one�dimensional parabolic system with �nite alphabet and satis�
fying ������ then S is regular and any S�invariant invariant measure � equivalent with the
hS�conformal measure is �nite if and only if h � �maxf �i

�i
�

 i � �g�

��



Proof� The regularity of S� is checked in exactly the same way as in Example ���� So� the
systems S is regular by Corollary ���� Since the other assumptions of Corollary ���
 are
satis�ed by ���� the proof of this theorem is an immediate consequence of Corollary ���
�

Corollary ���� If S is a one�dimensional parabolic system with �nite alphabet� and if
for all i � �� �i � � �or equivalently if all �i�s are twice di�erentiable at xi�� then S is
regular and the corresponding invariant measure � equivalent with hS�conformal measure
is in�nite�

Proof� The proof is an immediate consequence of Theorem ��� and the fact that h � ��

We would like to close this section with examples which are strange�

Example ���� Our aim here is to describe a class of one�dimensional systems which are
strange� Towards this end consider an arbitrary hyperbolic system S � f�i 
 i � Ig on the
interval X � �	� �� such that ����S�� �� or equivalently P���S�� �� �examples of such
systems may be found in the section Examples of �MU���# we may assume that there is an
interval G � �	� �� with G 	 X nSi�I �i�X�� Consider also a parabolic map � 
 X � G
such that 	 is its parabolic point and � has the following representation around 	

��x� � x� ax�
� � o�x�
���

where ��S��
�� � � and a � 	� We shall prove the following�

Theorem ���� If F 	 I is a su�ciently large �nite set� then the system SF � f�g � f�i 

i � I n Fg is strange�
Proof� In view of ����� and the relation between ��S� and � there exists a constant C � �
such that for each i � I�

P
n�� jj��n � �i��jj��S	 � Cjj��ijj��S	� Since �S���S�� � �� for

every su�ciently large �nite set F 	 I we have �C � ��
P

i�InF jj��ijj��S	 � �� Hence

��SF ���S�� �
X
i�InF

jj��ijj��S	 �
X
i�InF

X
n��

jj��n � �i��jj��S	

�
X
i�InF

jj��ijj��S	 � C
X
i�InF

jj��ijj��S	

� �C � ��
X
i�InF

jj��ijj��S	 � ��

Hence P�SF ���S�� � 	 and therefore� as hS�
F
� hSF � PSF �t� � 	 for all t � ��S�� On

the other hand� since for every t � ��S�� �S�t� � � and since F is �nite� �SF �t� �
jj��jjt �Pi�InF jj��ijjt ��� Hence PSF �t� �� and the proof is complete�

��



Example ���� We would like to construct here an example of parabolic one�dimensional
system which is regular but strange� We start of with a hyperbolic regular but strange
system system S � f�igi�I on the interval �	� �� such that ���	� � 	 and


i�IN
�i��	� ��� � �	� ���

A way of constructing such systems is described in Example ��� of �MU��� Since Lebesgue
measure is a ��conformal measure for S �so S is regular� and since S is strange� ��t� ��
for all 	 � t � � and P��� � 	� Replace now the contraction �� by a parabolic element !��
such that 	 is its parabolic point and !�i��	� ��� � �i��	� ���� Denote the new system by !S�
Then obviously � 
S�t� �� for all 	 � t � � and consequently P 
S�t� �� for all 	 � t � ��

Since dimH�Jx� � �� P 
S�t� � 	 for all t � �� Hence !S is strange and dimH�Jx� � �� Since
!�i��	� ���




i��

�i��	� ��� � �	� ���

the Lebesgue measure � on the interval �	� �� is ��conformal for the system !S� Since
obviously ��f���	� 
 � � IN�g� � 	� the system !S is regular�
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