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ABSTRACT. We answer questions of Haight and of Weizsdcker by proving the following
theorem: Theorem 1. There exists a measurable function f : (0,+00) — {0,1} and two
nonempty intervals Ip, I C [%, 1) such that for every x € I, we have Y .- | f(nz) =
+oo and for almost every x € Ir we have Y .. | f(nz) < 4oo. The function f is the
characteristic function of an open set F.
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INTRODUCTION

Recently one of us was reminded of a problem of Weizséicker [W]: Given a Lebesgue
measurable function f : RT — R™T, is it true that either for Lebesgue measure almost every
x > 0, the series X2, f(nz) converges or, else for Lebesgue measure almost every =z > 0,
the series ¥22 , f(nx) diverges? Weizsicker investigated this problem in his Diplomarbeit
and in particular showed that if the function f is in L, then the series converges almost
surely. At about the same time, Haight [H1] showed that there is a Lebesgue measurable
subset F of the positive real line with infinite measure such that if ¢ and s are two distinct
numbers in E then t/s ¢ N and for each positive z, there are only finitely many positive
integers n such that nx € E. Thus, letting f be the characteristic function of F, we
have a measurable function which is not integrable and yet the series 32° , f(nz) converges
for all x > 0. Haight generalized his construction in [H2] and reiterated his question:
If F is a Lebesgue measurable subset of the positive real line with infinite measure and
N(z,FE) = card{n € N | nz € E}, is it true that either N(z, F) = oo for almost all x or
else N(z, F) < oo for almost all ? In this note we shall construct an open set E which
shows that the answer to both questions is no.

DEFINITIONS AND NOTATION

For z € [1,00) we set ®(z) = [1,1)N{Z :n e N}.
The intervals used in the Theorem will be defined as Ir = (3,1) and I, = [32, 35].

For 5 # 0 we set ||z||g = min{|z —npf| : n € Z}. If B = 1, we simply write ||z||
instead of [|z]1. Observe that || —z[|s = ||z[ls, [[z+ylls < [Jz|ls+|lylls and [|z]| = al[Z[l1/q
when ¢ > 0.

The Lebesgue measure of the set A is denoted by |A|. We denote by xa(z) the
characteristic function of A, that is, xa(z) =1 for x € A, and xa(z) = 0 otherwise.

In this paper we denote by logx the logarithm in base 2.

PRELIMINARY RESULT

We will use Kronecker’s Theorem on simultaneous inhomogenous approximation [C,
p. 53]. Here we state a special case of it which will be used later.

Kronecker’s Theorem. Assume 01,...,0;, € R and (a1, ...,ar) is a real vector.
The following two statements are equivalent:
A) For every e > 0, there exists p € Z such that

10;p — aj]] <€, for1<j<L.
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B) If (uy,...,ur) is a vector consisting of integers and
w101 + ... +urlp € Z,

then
Uiy + ... +upag € Z.

MAIN RESULT

Theorem 1 easily follows from the following Lemma.

Lemma. There exists Ko € N such that for every k > K, there exists Ny with
the property that for each integer v > Ny, there is an open set Hy, C (2¥71,2¥) for which
I, C ®(Hy,) and |Ip N ®(Hy)| < 5-27F.

Proof of Theorem 1 based on the Lemma. Using the Lemma, choose a sequence
of integers vk, < Vk,+1 < ... such that for each v, (k > Kj), there exists an Hj, satisfying
the conclusions of the Lemma for v = vy

Let f(x) = Yotk Xa,(x). It is clear that for every 2 € I and for each k =
Ky, Ko+ 1,... there exists ng such that ngpx € Hy. Since the sets Hy are pairwise disjoint,
ni # ng, if k # k' and therefore Y02 f(nz) = 0o on I. On the other hand, by the
Borel-Cantelli Lemma for almost every = € Ig, there exists K, such that nxz ¢ Hy, for all
k> K, and n € N. Hence, > | f(nz) is finite almost everywhere on I. This completes
the proof of Theorem 1. M

Proof of the Lemma. Fix k. It is clear from the Prime Number Theorem that
there is a positive integer Ni > 3 such that if v > Ny, then there are 2¥ primes p1, ..., por
with

23 24

—2<p <. < < —2v,
16° =M T

For each v > Ni, set L = 2% +2¥=2 4+ 1 and define a; and 6; as follows:

and

where n; = 7/8-2¥ 4+ j — 28 — 1, for 28 < j < L. We note that n; runs through
all the 2¥=2 + 1 integers beginning with 7/8 - 2V and ending with 9/8 - 2¥. We show
that condition B of Kronecker’s theorem holds. Indeed, if a vector (uy,...,uy) consists of
integers and u16y + ... + urfy =t € Z, then pi* p;{jk . H2k<j§L n}” = 2t. Note that
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if 1 <j <28 <4 <L, then pj > %—22” > %2” > njr. It follows from the Fundamental
Theorem of Arithmetic that u; = 0 for all j,1 < j < 2F. Since a; = 0 for 2k < j < L, we
have

Uiy + ... +upar, =0 € Z.

This shows that Condition B of Kronecker’s Theorem holds and hence Condition A is also

true. Thus, for ¢ = ﬁ, we can choose g € Z such that

16, — || < € holds for all j < L.

The choice of € and a; = Zj—k for 7 < 2% implies that ¢ # 0. If ¢ > 0, set ¢’ = ¢
and o = a;. If ¢ < 0, set ¢’ = —g and o = 1 — «;. Then in both cases ||0;¢" — a’|| < e
holds for j € Z. Observe that in both cases the set {of : j < 2*} equals (modulo 1) the set
{Zj—k :j=1,..,2%}, and for 2¥ < j < L, 0 = a; equals (modulo 1) o = 1. Since these are
the only properties we use, we can assume without limiting generality, that ¢ > 0 and in
the sequel we use ¢ and «; instead of ¢’ and a}. Dividing by ¢ we find that

10, — %212 < < holds for j < L.
q 1 q

This means that if 7 < 2¥. we have

J 1
Mogp; =25l < o aw
while for 2 < j < L, we have
1 il < =
I 0g"a||5 q-4-28
Set
G={re(l 8+ : < !
=z e llogg+vv):flzlly < -zt

Clearly, G is open as is Hj, C (271, 2") which is defined by Hy = {2 : x € G}.
We next show I, C ®(Hy). Let y € I, and let z = logy. Since {; : j < 2%}
equals (modulo 1) the set {J : j = 1,...,2F}, we can choose j, < 2¥ such that

J 1
q-2F a q-2-2

||z +

Then

Jz
q.2k

1 + 1 < 1
q-2-28 " q-4.2F T q. 2k

J
o+ Tog s, Iy < lla+ !l + [1ogps, — - olly <
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Since log 32 < z < log 12 and log(232¥) < logp;, < log(222¥), we obtain

8 23
v+log— <v+log— <z+logp;, <.
9 25 *
Thus, = + logp;, € G which means p; vy € Hy. Hence, 1o C ®(Hy).
Finally, we show |Ir N ®(Hy)| <5275 if k is sufficiently large. Towards this end,
set G' = (log 3,0) N {z: ||z|]» < q%} We have the estimate

1 <(4+ 1 9) 1
_ J— O — ) . .
q-2k — "2k 1708 3 q- 2k

8 2 2
G’ < card{n:qlog§ —op <n< 2—k}

Thus, for large values of k (that is, k > Kj), we have |G'| < 5 and letting H' = {27 :

z € G'}, we have |[H'| < 5 as well. We claim Ip N ®(Hy) C H'. To see this, suppose

y € IrN®(Hy), that is, there exists n such that ny € Hy. Set x = logy. Since log% <zr<0
and x + logn € G, we have

1
||x+logn||% < T

and 3
y+log§ <z +logn < wv.
Hence,

8
V—$+10g§§10gn<y—:c,

and using 0 < —z < log %, we obtain

8 9
y+log§ <logn<y+log§.

Thus,

7 8 9
=2V < =2 —2Y.
3 < 9 <n< 3

This implies n = n;j, for some j, 2k < j < L and therefore,
| = tognlly = lllognlly < — s

SO
1 2

< .
q -2k 4.q-2k q -2k
We infer that x € G’ and y € H'. This completes the proof of the Lemma. N

lells < lla+lognlls + [~ lognlls < —2r +

Questions
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1. Is there a continous function f from the positive reals to the positive reals such
that [{z : Y 02| f(nz) = 4+o00}| >0 and |[{z: >~ f(nz) < +o0}| > 07

This first question relates back to the solutions of a problem of K. L. Chung [H-F].

2. Is there an unbounded countable subset G of the positive reals such that for every
measurable map f of the positive reals into the nonnegative reals either for almost every
T, Y geq f(97) = +0oo} or else for almost every =, f(g7) < oo}

This second question is directly related to Haight’s question in [H2].
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