On the convergence of $\sum_{n=1}^{\infty} f(nx)$ for measurable functions

by

Zoltán Buczolich¹ Department of Analysis Eötvös Loránd University Budapest, Hungary email: buczo@ludens.elte.hu

and

R. Daniel Mauldin² Department of Mathematics University of North Texas Denton, Texas 76203 email: mauldin@unt.edu

September 21, 1998

ABSTRACT. We answer questions of Haight and of Weizsäcker by proving the following theorem: **Theorem 1.** There exists a measurable function $f: (0, +\infty) \to \{0, 1\}$ and two nonempty intervals I_F , $I_{\infty} \subset [\frac{1}{2}, 1)$ such that for every $x \in I_{\infty}$ we have $\sum_{n=1}^{\infty} f(nx) = +\infty$ and for almost every $x \in I_F$ we have $\sum_{n=1}^{\infty} f(nx) < +\infty$. The function f is the characteristic function of an open set E.

¹ Research supported by the Hungarian National Foundation for Scientific Research Grant No. T 019476 and FKFP 0189/1997

² Research supported by NSF Grant DMS-9502952.

AMS(MOS) subject classifications(1980). Primary 28A35; Secondary 28A80 Key words and phrases. Borel-Cantelli lemma, simultaneous approximation.

INTRODUCTION

Recently one of us was reminded of a problem of Weizsäcker [W]: Given a Lebesgue measurable function $f: \mathbf{R}^+ \to \mathbf{R}^+$, is it true that either for Lebesgue measure almost every x > 0, the series $\sum_{n=1}^{\infty} f(nx)$ converges or, else for Lebesgue measure almost every x > 0, the series $\sum_{n=1}^{\infty} f(nx)$ diverges? Weizsäcker investigated this problem in his Diplomarbeit and in particular showed that if the function f is in L_1 , then the series converges almost surely. At about the same time, Haight [H1] showed that there is a Lebesgue measurable subset E of the positive real line with infinite measure such that if t and s are two distinct numbers in E then $t/s \notin \mathbf{N}$ and for each positive x, there are only finitely many positive integers n such that $nx \in E$. Thus, letting f be the characteristic function of E, we have a measurable function which is not integrable and yet the series $\sum_{n=1}^{\infty} f(nx)$ converges for all x > 0. Haight generalized his construction in [H2] and reiterated his question: If E is a Lebesgue measurable subset of the positive real line with infinite measure and $N(x, E) = card\{n \in \mathbf{N} \mid nx \in E\}$, is it true that either $N(x, E) = \infty$ for almost all x or else $N(x, E) < \infty$ for almost all x? In this note we shall construct an open set E which shows that the answer to both questions is no.

DEFINITIONS AND NOTATION

For $x \in [1, \infty)$ we set $\Phi(x) = [\frac{1}{2}, 1) \cap \{\frac{x}{n} : n \in \mathbb{N}\}.$

The intervals used in the Theorem will be defined as $I_F = (\frac{8}{9}, 1)$ and $I_{\infty} = [\frac{16}{25}, \frac{16}{24}]$.

For $\beta \neq 0$ we set $||x||_{\beta} = \min\{|x - n\beta| : n \in \mathbb{Z}\}$. If $\beta = 1$, we simply write ||x|| instead of $||x||_1$. Observe that $||-x||_{\beta} = ||x||_{\beta}, ||x+y||_{\beta} \leq ||x||_{\beta} + ||y||_{\beta}$ and $||x|| = q||\frac{x}{q}||_{1/q}$ when q > 0.

The Lebesgue measure of the set A is denoted by |A|. We denote by $\chi_A(x)$ the characteristic function of A, that is, $\chi_A(x) = 1$ for $x \in A$, and $\chi_A(x) = 0$ otherwise.

In this paper we denote by $\log x$ the logarithm in base 2.

PRELIMINARY RESULT

We will use Kronecker's Theorem on simultaneous inhomogenous approximation [C, p. 53]. Here we state a special case of it which will be used later.

Kronecker's Theorem. Assume $\theta_1, ..., \theta_L \in \mathbf{R}$ and $(\alpha_1, ..., \alpha_L)$ is a real vector. The following two statements are equivalent:

A) For every $\epsilon > 0$, there exists $p \in \mathbf{Z}$ such that

$$||\theta_j p - \alpha_j|| < \epsilon, \text{ for } 1 \le j \le L.$$

B) If $(u_1, ..., u_L)$ is a vector consisting of integers and

$$u_1\theta_1 + \ldots + u_L\theta_L \in \mathbf{Z},$$

then

$$u_1\alpha_1 + \ldots + u_L\alpha_L \in \mathbf{Z}.$$

MAIN RESULT

Theorem 1 easily follows from the following Lemma.

Lemma. There exists $K_0 \in \mathbf{N}$ such that for every $k \geq K_0$, there exists N_k with the property that for each integer $\nu \geq N_k$, there is an open set $H_k \subset (2^{\nu-1}, 2^{\nu})$ for which $I_{\infty} \subset \Phi(H_k)$ and $|I_F \cap \Phi(H_k)| < 5 \cdot 2^{-k}$.

Proof of Theorem 1 based on the Lemma. Using the Lemma, choose a sequence of integers $\nu_{K_0} < \nu_{K_0+1} < \dots$ such that for each ν_k , $(k \ge K_0)$, there exists an H_k satisfying the conclusions of the Lemma for $\nu = \nu_k$.

Let $f(x) = \sum_{k=K_0}^{\infty} \chi_{H_k}(x)$. It is clear that for every $x \in I_{\infty}$ and for each $k = K_0, K_0 + 1, ...$ there exists n_k such that $n_k x \in H_k$. Since the sets H_k are pairwise disjoint, $n_k \neq n_{k'}$, if $k \neq k'$ and therefore $\sum_{n=1}^{\infty} f(nx) = \infty$ on I_{∞} . On the other hand, by the Borel-Cantelli Lemma for almost every $x \in I_F$, there exists K_x such that $nx \notin H_k$ for all $k \geq K_x$ and $n \in \mathbb{N}$. Hence, $\sum_{n=1}^{\infty} f(nx)$ is finite almost everywhere on I_F . This completes the proof of Theorem 1.

Proof of the Lemma. Fix k. It is clear from the Prime Number Theorem that there is a positive integer $N_k \geq 3$ such that if $\nu \geq N_k$, then there are 2^k primes p_1, \ldots, p_{2^k} with

$$\frac{23}{16}2^{\nu} < p_1 < \dots < p_{2^k} < \frac{24}{16}2^{\nu}.$$

For each $\nu \geq N_k$, set $L = 2^k + 2^{\nu-2} + 1$ and define α_j and θ_j as follows:

$$\alpha_j = \begin{cases} \frac{j}{2^k} & j = 1, \dots, 2^k, \\ 0 & 2^k < j \le L; \end{cases}$$

and

$$\theta_j = \begin{cases} \log p_j & j = 1, \dots, 2^k, \\ \log n_j & 2^k < j \le L, \end{cases}$$

where $n_j = 7/8 \cdot 2^{\nu} + j - 2^k - 1$, for $2^k < j \leq L$. We note that n_j runs through all the $2^{\nu-2} + 1$ integers beginning with $7/8 \cdot 2^{\nu}$ and ending with $9/8 \cdot 2^{\nu}$. We show that condition B of Kronecker's theorem holds. Indeed, if a vector $(u_1, ..., u_L)$ consists of integers and $u_1\theta_1 + ... + u_L\theta_L = t \in \mathbf{Z}$, then $p_1^{u_1} \cdots p_{2^k}^{u_{2^k}} \cdot \prod_{2^k < j \leq L} n_j^{u_j} = 2^t$. Note that if $1 \leq j \leq 2^k < j' \leq L$, then $p_j > \frac{23}{16}2^{\nu} > \frac{9}{8}2^{\nu} \geq n_{j'}$. It follows from the Fundamental Theorem of Arithmetic that $u_j = 0$ for all $j, 1 \leq j \leq 2^k$. Since $\alpha_j = 0$ for $2^k < j \leq L$, we have

$$u_1\alpha_1 + \ldots + u_L\alpha_L = 0 \in \mathbf{Z}.$$

This shows that Condition B of Kronecker's Theorem holds and hence Condition A is also true. Thus, for $\epsilon = \frac{1}{4 \cdot 2^k}$, we can choose $q \in \mathbb{Z}$ such that

$$||\theta_j q - \alpha_j|| < \epsilon$$
 holds for all $j \leq L$.

The choice of ϵ and $\alpha_j = \frac{j}{2^k}$ for $j \leq 2^k$ implies that $q \neq 0$. If q > 0, set q' = qand $\alpha'_j = \alpha_j$. If q < 0, set q' = -q and $\alpha'_j = 1 - \alpha_j$. Then in both cases $||\theta_j q' - \alpha'_j|| < \epsilon$ holds for $j \in \mathcal{I}$. Observe that in both cases the set $\{\alpha'_j : j \leq 2^k\}$ equals (modulo 1) the set $\{\frac{j}{2^k} : j = 1, ..., 2^k\}$, and for $2^k < j \leq L$, $0 = \alpha_j$ equals (modulo 1) $\alpha'_j = 1$. Since these are the only properties we use, we can assume without limiting generality, that q > 0 and in the sequel we use q and α_j instead of q' and α'_j . Dividing by q we find that

$$||\theta_j - \frac{\alpha_j}{q}||_{\frac{1}{q}} < \frac{\epsilon}{q}$$
 holds for $j \le L$.

This means that if $j \leq 2^k$, we have

$$||\log p_j - \frac{j}{q \cdot 2^k}||_{\frac{1}{q}} < \frac{1}{q \cdot 4 \cdot 2^k},$$

while for $2^k < j \leq L$, we have

$$||\log n_j||_{\frac{1}{q}} < \frac{1}{q \cdot 4 \cdot 2^k}$$

Set

$$G = \{ x \in (\log \frac{8}{9} + \nu, \nu) : ||x||_{\frac{1}{q}} < \frac{1}{q \cdot 2^k} \}.$$

Clearly, G is open as is $H_k \subset (2^{\nu-1}, 2^{\nu})$ which is defined by $H_k = \{2^x : x \in G\}$.

We next show $I_{\infty} \subset \Phi(H_k)$. Let $y \in I_{\infty}$ and let $x = \log y$. Since $\{\alpha_j : j \leq 2^k\}$ equals (modulo 1) the set $\{\frac{j}{2^k} : j = 1, ..., 2^k\}$, we can choose $j_x \leq 2^k$ such that

$$||x + \frac{j_x}{q \cdot 2^k}||_{\frac{1}{q}} \le \frac{1}{q \cdot 2 \cdot 2^k}.$$

Then

$$||x + \log p_{j_x}||_{\frac{1}{q}} \le ||x + \frac{j_x}{q \cdot 2^k}||_{\frac{1}{q}} + ||\log p_{j_x} - \frac{j_x}{q \cdot 2^k}||_{\frac{1}{q}} \le \frac{1}{q \cdot 2 \cdot 2^k} + \frac{1}{q \cdot 4 \cdot 2^k} < \frac{1}{q \cdot 2^k}$$

Buczolich and Mauldin

Since $\log \frac{16}{25} \le x \le \log \frac{16}{24}$ and $\log(\frac{23}{16}2^{\nu}) < \log p_{j_x} < \log(\frac{24}{16}2^{\nu})$, we obtain

$$\nu + \log \frac{8}{9} < \nu + \log \frac{23}{25} \le x + \log p_{j_x} < \nu.$$

Thus, $x + \log p_{j_x} \in G$ which means $p_{j_x}y \in H_k$. Hence, $I_{\infty} \subset \Phi(H_k)$.

Finally, we show $|I_F \cap \Phi(H_k)| < 5 \cdot 2^{-k}$, if k is sufficiently large. Towards this end, set $G' = (\log \frac{8}{9}, 0) \cap \{x : ||x||_{\frac{1}{q}} < \frac{2}{q \cdot 2^k}\}$. We have the estimate

$$|G'| < card\{n : q \log \frac{8}{9} - \frac{2}{2^k} < n < \frac{2}{2^k}\} \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{8}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{2^k}) \cdot \frac{4}{q \cdot 2^k} \le (\frac{4}{2^k} + q \log \frac{9}{2^k}) \cdot \frac{4}{q \cdot 2^k} \cdot \frac{4}{q \cdot$$

Thus, for large values of k (that is, $k \ge K_0$), we have $|G'| < \frac{5}{2^k}$ and letting $H' = \{2^x : x \in G'\}$, we have $|H'| < \frac{5}{2^k}$ as well. We claim $I_F \cap \Phi(H_k) \subset H'$. To see this, suppose $y \in I_F \cap \Phi(H_k)$, that is, there exists n such that $ny \in H_k$. Set $x = \log y$. Since $\log \frac{8}{9} < x < 0$ and $x + \log n \in G$, we have

$$||x + \log n||_{\frac{1}{q}} < \frac{1}{q \cdot 2^k},$$

and

$$\nu + \log \frac{8}{9} \le x + \log n < \nu.$$

Hence,

$$\nu - x + \log \frac{8}{9} \le \log n < \nu - x,$$

and using $0 < -x < \log \frac{9}{8}$, we obtain

$$\nu + \log \frac{8}{9} < \log n < \nu + \log \frac{9}{8}.$$

Thus,

$$\frac{7}{8}2^{\nu} < \frac{8}{9}2^{\nu} < n < \frac{9}{8}2^{\nu}.$$

This implies $n = n_j$, for some j, $2^k < j \leq L$ and therefore,

$$||-\log n||_{\frac{1}{q}} = ||\log n||_{\frac{1}{q}} < \frac{1}{q \cdot 4 \cdot 2^k};$$

 \mathbf{SO}

$$||x||_{\frac{1}{q}} \le ||x + \log n||_{\frac{1}{q}} + || - \log n||_{\frac{1}{q}} < \frac{1}{q \cdot 2^k} + \frac{1}{4 \cdot q \cdot 2^k} < \frac{2}{q \cdot 2^k}$$

We infer that $x \in G'$ and $y \in H'$. This completes the proof of the Lemma.

Questions

1. Is there a continuus function f from the positive reals to the positive reals such that $|\{x: \sum_{n=1}^{\infty} f(nx) = +\infty\}| > 0$ and $|\{x: \sum_{n=1}^{\infty} f(nx) < +\infty\}| > 0$?

This first question relates back to the solutions of a problem of K. L. Chung [H-F]. 2. Is there an unbounded countable subset G of the positive reals such that for every measurable map f of the positive reals into the nonnegative reals either for almost every $x, \sum_{g \in G} f(gx) = +\infty$ } or else for almost every $x, \sum_{g \in G} f(gx) < \infty$ }

This second question is directly related to Haight's question in [H2].

REFERENCES

[C] J.W.S. Cassels, An Introduction to Diophantine Approximation, Cambridge University Press, 1957.

[F-H] A.R. Hyde, N.J. Fine, Solution of a problem proposed by K.L. Chung), Amer. Math. Monthly 64(1957), 119-120.

[H1] J.A. Haight, A linear set of infinite measure with no two points having integral ratio, *Mathematika* 17(1970), 133-138.

[H2] J.A. Haight, A set of infinite measure whose ratio set does not contain a given sequence, *Mathematika* 22(1975), 195-201.

[W] H. v.Weizsäcker, Zum Konvergenzverhalten der Reihe $\sum_{n=1}^{\infty} f(nt)$ für λ -messbare Funktionen $f: \mathbf{R}^+ \to \mathbf{R}^+$, Diplomarbeit, Universität München, 1970.