ON THE 0-CLASS GENERATED BY OPEN BALLS
STEVE JACKSON AND R. DANIEL MAULDIN!

ABSTRACT. We show that in the finite dimensional space R provided with a
metric induced by a norm, the collection of Borel sets is the smallest collection
containing the open balls and closed under complements and countable disjoint
unions.

1. INTRODUCTION

A family £ of subsets of a set X is said to be a o-class provided L is closed
under complements and countable disjoint unions. Such families arise in the study
of quantum logic and have been termed a concrete quantum logic [6] or a g-sigma-
algebra [7]. If C is a family of subsets of X, then £(C), the o-class generated by C, is
the smallest o-class which includes C. It is known that if C is closed with respect to
intersection, then £(C) = B(C), the Borel field or o-algebra generated by C. In this
paper, X is a metric space and we concern ourselves with the family £y = Lo(X),
the o-class generated by the family of all open balls in X. Since a o-class is closed
under the intersection of a descending sequence of sets [6], Lo = By, the Borel field
generated by the open subsets of X, provided every open set is in Lg. The question
naturally arises as to whether Ly is always By for a metric space X. The answer to
this question is no even for compact metric spaces. Davies has given an example
of a compact metric space, D and two distinct Borel probability measures p and v
which agree on all balls [3]. Of course, if two measures give the same measure to
all balls, then they agree on Lg. Thus, for Davies’ space, Lo # Bp. On the other
hand, it is clear that if X = R!, then £y = By. In fact, Olejéek showed that if
X = R?, then Lo(R?) = B(R?) [7]. Also, it is known that if two Borel probability
measures, i and v agree on the family of all balls in a separable Banach space, then
u = v [9]. The technique of proof uses Fourier transforms and does not directly
address our problem. However, this does provide some evidence that the answer
to the following question (which seems to have been posed in some form by Preiss
and independently by Neubrunn [6]) is positive.

QUESTION. Let X be a separable Banach space. Is it true that the o-class
generated by the family of all open balls in X is the standard Borel field on X7

In this paper, we shall show that the answer is yes for finite dimensional Banach
spaces, by proving the following theorem in §3.

Theorem 1.1. For each positive integer d, consider R¢ with a metric induced by
some norm. Then Lo(R?Y) = By(R?).

We shall prove the theorem in §2 for the special case that the norm is the
Euclidean norm. The proof in this case requires a slight variation of Besicovitch’s
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covering theorem. In §3 we give the necassary changes to the proof for a metric
induced by a general norm. It turns out that not only do we need the variation of
the covering theorem, but also a result on the Hausdorff measure of the intersection
of the boundaries of random translates of bounded, open, convex sets.

2. THE EUCLIDEAN CASE

As we remarked above, £y is closed under countable increasing unions and count-
able decreasing intersections.

Our proofs make use of the following combinatorial lemma, valid for any metric
space. In essence, the lemma states that if there are p nets of open balls in a metric
space X such that a closed set () can be covered by the level j sets in the nets,

then @ € Lo(X).

Lemma 2.1. Let (X, p) be a metric space, and Q C X be closed. Suppose there
are finitely many families N, ... , NP of open balls in X, with each N* = U;N7},
satisfying the following properties.

1. For every ball B € N}, diam(B) < 1/j.

2. For every j, QQ C U1§igp L,I/\/']Z That is, the collection of balls Ulgigp/v;
covers ().

3. For any 1 < i < p, if B1,By € N, then either By N By = 0, B; C Bs, or
B, C B,.

Then @ € Lo(X).
Proof. Define a sequence of sets G1,G>,... ,G, as follows. Let
G = En

k n>k

where

E,=|J{BeN,;:BnQ #0}.
Next, let

G=U N U B

i1 kzil nZk

where

Emil:U{Be]\/ﬁ:BHQ#@/\BQAforanyAE UNsl}

S:i1

In general, for ¢ < p, define

(1) a=JU - U N UZEu. i

i1 2>y ip—120—2 k>it—1 n>k

where
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(2) Eniroie =\ {BENL:BNQ#OABE Aforany Ae | J N U

S:il

n n
UJNu-—u | M
s=is s=it_1
To finish the proof, it suffices to show that the sets G; have the following properties.
(i) For each t, G; € Lo.
(ii) The sets G, 1 <t < p are pairwise disjoint.
(i) Q = UI_,G.
First we note the following two properties.
(A). If H C Nt for some 1 <t < p, then UH € Lg.
and
(B). For each 1 <t <p, j <t—1, and i; < i we have
En,il,...

. . . . .
sljyeeeslt—1 - Enyhy--- sljseeenlt—1

i.e., the sets E are increasing in the j** variable.

Property (A) follows immediately from property 3 of the nets A't, while property
(B) is immediate from equation (2).

We first verify (i). For each i1,...,4;—1 and k > i;_1,

U En7i17---7it—1 € Lo

n>k
by property (A). For each 41,... ,4;—; and k < k' we also have
U Eniy,... i C U Eniy,...ie_s
n>k' n>k
Thus, for fixed ¢1,...,%—1, the set Ng>s,_, Un>k Eni,...,i;_, i a decreasing
intersection of sets in Ly, and thus lies in L.
Fix 71,... ,%4j-1, where j <t. We claim the sets

Si; = Si; (i1, yij—1) = U U ﬂ U Enjiy,ijyo iven

ij+12ij itflzitfz kZii_l nZk

are increasing with i;. To see this, let i; < ij. Suppose x € S;;. This means there
are integers i; <441 < ... <4y such that

S ﬂ l JEn,ih---,ij71,ij,ij+1,~~.,it71'

k>ig_1 n>k
But, by property (B),
where for

That is, for infinitely many n, £ € Ey iy, i; i 410 vie—1-
we then have for infinitely many n, that = € Emh___7ij_17i;_7i;_+17___7i;_1
I > j, iy = max{i;,i};}. Thus z € Sy An immediate induction now gives G; € Lo.
Next we verify (ii). Suppose x € G, NGy, with t; < 1. Fixid) <iy <... <ip
such that © € NMg>y  Upsk Eni o Also, fix i < i) < ... <4} _, such
Z g —1 - 201 oty —1 2
that € Ng>ir | Un>k Eniy, Let 4 = max{i;-,i;-’} for j < t; — 1 and
>l >
i = max{i;-',iél_l} for j > t1 — 1. Thus z € meiil—l Un>k En,il,---,iil—1 and

211 .
g —1
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T € Ng>iy, 4 Un>k En7i17~~~7it1—17~~~yitz—l‘ In particular, z € En7i17~~~7it1—1’ for some
n > i;. Fix a ball B = B,(z,¢) in N' such that z € B. Now, let m > n
with 2 € Em,,.. i, ,- S0, there is some ball C' such that © € C' € N2 and
C ¢ A for any ball A € U;’L:itlj\/stl. Since iy, < n < m, we have C ¢ B. Thus,
diam C' > € — p(z,2). But, diam(C) < 1/m as C € Nf2. Taking m sufficiently
large, we have a contradiction.

Finally, we verify (iii). As @ is closed, clearly Gy C @ for all 1 <t < p. To see
the other inclusion, let z € Q. Now, Vn 3i < p [z € UN] by property 2 of the nets.
Thus, there is a least ¢ such that for infinitely many n, z lies in some ball in A, If
t = 1, then clearly x € GG;. Otherwise, fix i1 < ... < i;—1 such that Vn > ¢, x lies
in no ball in NV!. However, there are infinitely many n > i;_; such that x lies some
ball B,, € N, and we cannot have B,, C B for any ball B € N, for [ < t, m > ij.
Thus, £ € N>, Un>k Enjiy,... i1, and so x € Gy.

O

We now specialize to the case X = R? with the Euclidean distance. To complete
the proof of theorem 1.1 for this case, it suffices to show that every compact Q C R?
is in Lo, since every closed set in R? is an increasing union of compact sets. So, fix
a compact set Q C R?. It now suffices to construct finitely many families of balls
N1 ... NP satisfying the hypotheses of lemma 2.1. We use the following slight
variation of a theorem of Besicovitch [1].

Theorem 2.1 (Besicovitch). For every integer d > 1, there is an integer b(d) (de-
pending only on d) with the following properties. Let A be a bounded subset of R?,
and B a family of open balls (in the usual Fuclidean metric) such that each point
of A is the center of some ball in B. Then there are sub-families C1, ... ,Cyqy C B

with A C UMY UC; such that Vi ¥By, By € C; By N By = {).

Remark 2.1. We have not found Besicovitch’s covering theorem stated exactly in
this form in the literature. However, a proof can be given by following the proof
in [4]. One simply replaces the closed balls in the proof with our open balls and
also in the last stage the families By, Bs, ... are constructed inductively by adding
a new ball to the collection not when it is disjoint from the preceding balls, but
rather when its closure is disjoint from the closures of the preceding balls.

Remark 2.2. The proof below really only uses the special case of the Besicovitch
theorem where all the balls in B have the same radius. In this case, the theorem is
comparatively easy.

Definition 2.1. If B is a family of balls in R?, we say z is a multiple point of B if
x lies on the boundaries of at least d of the balls in B. Also, for z € R we define
the multiplicity of x with respect to B, mults(z), to be the number of balls B € B
such that z € 9(B).

We note the simple fact that if d balls in R? meet in more than two points, then
the centers of these balls lie on a d — 2 dimensional plane in R?. We say a set of
points in R? is in general position if no d of the points lie on a d — 2 dimensional
plane in R? (for d = 2 this imposes no restriction). Thus, if the centers of a finite
family of balls are in general position, then there are only finitely many multiple
points for this family.

Let p = b(d)(d + 2). We define the finite sub-families of balls N/, for 1 <i < p,
inductively on j. To begin, let B = {B(z,1): x € Q}. Applying theorem 2.1,
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there are finite sub-families C',...,C"% C B such that (a) C = Uf(:dl) C* covers Q
and (b) the closures of the balls in each C? form a pairwise disjoint collection. By
compactness, we may further assume that each C? is finite. Also by compactness,
there is an € > 0 such that if each ball in C is translated by no more than ¢, thereby
producing new families C = C*U---UC"@, then these new families also satisfy (a),
(b). Enumerate the balls in C as C1,...,C;. By successively translating each ball
in C by less than €, it is now easy to arrange that the centers of the balls in C are in
general position, and 6(C~’k) does not contain any of the multiple points relative to
Ci, ..., Cr_1. Having done this, we let N} =C?, ..., ./\/’f(d) =C'D and Ni =0
for b(d) < i <p.

Assume now N/ has been defined for 1 <i < pandj < n. Let D = Ji_, Ui, N
be the finite collection of balls so far defined. Assume these families satisfy proper-
ties 1, 2 of lemma 2.1, the following slight strengthening (3') of (3), and two extra
properties:

3'. For any 1 <i < p and distinct balls By, By € Jj_, N}, 8(B1) N d(By) = 0.
4. The centers of the balls in D are in general position.
5. Vo € R? multp(z) < d.

For n = 1, the N satisfy the required properties.

Let (D) = U{0(B): B € D} be the union of the boundaries of all the balls so far
constructed. For each z € (D), let B, be a ball centered at z of radius < %H such
that K, = {i: B, NO(B) # B for some B € Ujgn/\fji} has size < d. This is possible
since z lies on at most d boundaries of balls in D. Let B = {B,: = € 9(D)}. Apply
now theorem 2.1 to the set (D) and the balls B. This produces finite sub-families
W, ..., WHD C B whose union W covers d(D) such that the closures of any two
distinct balls in any W? are disjoint. We now “color” the balls in W, that is, we
decide for which ¢ we shall place the ball in AV} ,. For any ball B, € Wy, color
the ball the least i not in K,. Note that the color of each ball in W*! is an integer
< d+ 1. In general, suppose we have colored the balls in W', ... ,W¥, using only
colors < k(d+1). For each ball B, € W**+1 color it the least integer i > k(d+1) not
in K,. Since |K,| < d, each ball in W¥*! gets a color < (k+1)(d+1). Continuing,
we color all the balls in W, using at most b(d)(d + 1) colors. By construction, for
any two balls By, By € WUD, if 8(B1) N 9(Bs) # 0, then By, By have different
colors.

Consider now K = Q@ —|J{B: B € W}. Let 0 < § < min{1/(n+1), p(K,9(D))}.
Let ¢ = {B(z,0): z € K}. Applying theorem 2.1 to K and C produces families
V=V'U---UV9 C C such that V covers K and the closures of any two distinct
balls in any V! are disjoint. Color now all the balls in V¥ color b(d)(d + 1) + k.
Thus, we use colors < b(d)(d + 2) = p in coloring the balls from WU V.

By construction, if By, B, € DUWUY have the same color, then 9(B1)N9(Bs) =
(. Also, the balls in WUV cover Q. By compactness, there is an € > 0 such that
if all the balls in W UV are translated no more than e, then the resulting families
W, V also have these two properties. We successively translate the balls in WUV,
producing W, V, so that the collection of centers of the balls in F = DUWUV is
in general position, and Vz multy(z) < d.

For 1 <i < p, let Vi, be all the balls in WUV of color i. The NV, then satisfy
(1), (2), (3"), (4), and (5) as required. This completes the proof of theorem 1.1 for
the Euclidean metric on R?. O
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3. GENERAL NORMS ON R¢

We turn now to the general case of theorem 1.1. Fix a norm z — [|z|| € RZ°
on R?, and let p(z,y) = ||z — y|| be the corresponding metric. Any norm on
R? is necessarily continuous, so the balls B,(z,r) are open, convex, bounded sets
containing x, which are also symmetric about z (recall that in any topological
vector space V' the continuous norms are in correspondence with the open, convex,
symmetric neighborhoods U of 0 which are bounded in the sense that for all x #
0, sup{t: tz € U} < oo0). Throughout this section, 7* refers to s-dimensional
Hausdorff measure. When we say “for almost all y € R¢,” we mean with respect to
Lebesgue measure on R? that is <.

Inspecting the proof of theorem 1.1 shows that there are two properties of the
family of Euclidean balls in R? which we must generalize to the balls B,(z,r). First
is the Besicovitch theorem, and secondly we must generalize the “general position”
argument used in that proof.

For the first, we use the following variation of Besicovitch’s theorem. This is a
slightly altered form of the theorem proven by A. P. Morse [5].

Theorem 3.1 (Morse). For every integer d > 1 and metric on R? induced by
some norm, there is an integer b(d) (depending only on d and the norm) with the
following properties. Let A be a bounded subset of R?, and B a family of open balls
(with respect to the metric) such that each point of A is the center of some ball in
B. Then there are sub-families Cy,... ,Cyq) C B with A C Ui’(:dl) UC; such that Vi
VB,,Bs € C; Bl N Bz = 0.

Remark 3.1. Again, we have not found Morse’s covering theorem stated exactly
in this form in the literature. However, again a proof can be given by following
the proof in [4]. One simply replaces the closed balls in the proof with our open
balls (with respect to the norm). Again, in the last stage the families By, Bs, ...
are constructed inductively by adding a new ball to the collection not when it is
disjoint from the preceding balls, but rather when its closure is disjoint from the
closures of the preceding balls. Finally, one also also uses the fact that there is an
integer J(d) depending only on d and the norm such that if F is a family of balls
all containing some point and no ball contains the center of another ball, then the
cardinality of F is no more than .J(d).

It remains to generalize the general position argument for the Euclidean balls
used in the proof of theorem 1.1. We say a family U of bounded, open, convex sets
in R? is in general position if for any d of the sets in the family, Uy, ... , Uy, we have
that (Uy) N...NA(Uy) is finite. We say that z € R? is a multiple point for U if for
some Uy,...,Us € U we have x € O(U;) N ...NI(Uy). Thus, if I is finite and in
general position, there are only finitely many multiple points for ¢/. Also as before,
we say the maultiplicity of € R? with respect to U is the cardinality of U € U such
that x € 9(U).

We claim it suffices to prove the following theorem.

Theorem 3.2. Let Uy,... ,Uq be bounded, open, convex sets in R?. Then for
Lebesgue measure almost all vy, ... ,vq € R?, the sets Uy = Uy +v;, 1 <i < d, are
in general position.
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Assuming theorem 3.2, suppose the sub-families /\f; for 1 <i <p, j<n have
been defined and satisfy (1), (2), (3'), (4), and (5), where (4) now reads: the balls
of D are in general position. Inductively, we assume also the family F = D satisfies:

6. For all 1 < e < d and By,...,B, € F, and for any 7ey1,...,7q € QF,
for Lebesgue measure almost all z.y1,...,74 € R? we have that the p-balls
Bi,...,B., By(Teq1,Tet1), ... ,Bp(xq,rq) are in general position.

Construct the families W, V as in the proof of theorem 1.1, and color them
also as in that theorem. We may assume that each ball in W UV is of the form
B,(z,r) where r € Q. Thus, the balls in WUV satisfy (1), (2), (3'), and we
fix € > 0 such that if we translate these balls each by a distance less than e, then
the translated balls still satisfy these three properties. Let Ei, ..., Ey enumerate
the balls in & = W U V. We successively translate the E; (by distances < €) to
new balls E} which satisfy also (4), (5), (6). Assume that Ef,...,E] for some
[ < k have been defined, and that 7 = D U {E],..., E]} satisfies (4), (5), (6).
Let By = By(i41,7141), so 141 € Q. (From theorem 3.2, Fubini’s theorem,
and the countable additivity of Lebesgue measure, it follows that for almost all
yi+1 € RY, and for almost all 27,2, ... , 214 € R? and any s;42,... ,544 € QF, that
B,(yi+1,7141), Bp(z1+2, S1+2), - - Bp(2144, S1+4) are in general position. Again by
Fubini, for almost all y;41, and any e < d -1, By,... ,B. € DU{E],... ,E]},
and Se12,...,5¢ € QF, for almost all z.ys,...,2q € R¢ we have that By,...,B,,
B,(Yi+1,7141), Bp(Zet2,8¢42),... ,By(za,84) are in general position. Also, for al-
most all y;11 and any By,... ,Bg_1 € DU{E],... ,E[}, the balls By,... ,B41,
B, (Yi41,71+1) are in general position. Finally, since DU{E],... , E}} are in general
position and O(Fj;) has Lebesgue (i.e. H?) measure zero, for almost all y;41, and
any Bi,...,Bq € DU{E1,... ,E}}, wehave O(B,(yi+1,71+1))NO(B1)N- - -NI(Byg) =
(. If we choose y;+1 to lie in the complement of the measure zero sets just
described, and with y;41 less than e from x;11 in Euclidean distance, and set
Ej . = By(y141,7141), then the balls DU {Ef, ..., E]} satisfy (4), (5), and (6).
This completes the proof of theorem 1.1.

It remains to prove theorem 3.2.

Definition 3.1. A Borel set A C R? has the s-dimensional lower density property
if 3,0 >0Vr e AVO<r <6 [H(ANB(z,r)) > cr?l.

The following elementary lemma is well-known, and included for the sake of
completeness.

Lemma 3.1. If U C R? is a bounded, open, convex set, then O(U) has the d — 1
dimensional lower density property.

Proof. Without loss of generality we may assume 0 € U. Fix Ry, Ry > 0 such that
B(0,R,) CU C B(0,Ry). For any = # 0 in R?, let N, be the d — 1 dimensional
plane through = and normal to the line containing 0 and z. Note that if z € 9(U)
then the interior of the “cone” C, which is the convex hull of {z} and B(0, R;) is
contained in U. Thus there is a 6y < 7/2 such that if x € 9(U) and T, is a support
hyperplane for U containing x, then the angle between N, and T, is < 6y. For
Ry < |z| < Ry, let C, be the convex hull of {z} and B(0, R,/2).

Let 6 > 0 be sufficiently small so that the following properties are satisfied. First,
suppose |z| > Ry and r < 8. Let B = B(z,r), and let D = BN C.. Then for any
y € D, the portion of the line L, containing 0 and y between y and N is contained
within B. Second, for any y € B and any support hyperplane T, for U through =z,
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the angle between L, and T}, is greater than 6;, for some fixed 6; > 0. That this is
possible follows from 6y < 7/2.

To see this works, fix z € 9(U), and r < §, and let B = B(x,r). Let D = D,
be the disk D, = BN N, where N is the hyperplane (parallel to N,) containing
d(B)NCY. Let T, be a support hyperplane for U through z. Note that T,,NC% = ().
For any y € D, if the line L, from 0 to y intersects T, before N, (not necessarily
strictly before), then L, NB contains a point of (V). Let E = E, C D be the set of
y for which this happens. Thus, H? 1(E) > (1/2)H? (D). Fory € E, let p, be the
point p, = L, NO(U), and let ¢, = L, NT,. For any y € E, the angle §(y) between
L, and T}, is bounded below by 6; > 0. It follows that there is a constant C' > 0,
which is independent of x, such that for all y1,y2 € E, |¢y, —qy.| < C|py, —Pys|, that
is, the map p, — ¢y is uniformly Lipschitz with constant C. Let E' = {p, : y € E},
and E" = {q, : y € E}. Thus, H¢=Y(E") < C4"'H=1(E"). But clearly there is a
constant D > 0 independent of o such that H4~1(E") > DH1(E). Thus,

d=1(pn D
H= B row) > w ) > T s Do),

Since the vertex angles of the cones C!, are bounded away from 0, there is a constant
a > 0 such that H?~Y(D,) > aH¥ 1 (3(B)) for all x € (U) and B = B(z,r) where
r < . Hence,

_ aD
HIYBNOWU)) > e

for some constant ¢ > 0 independent of . O

HIO(B) > er ™!

We recall also the well-known fact that if U is a bounded, open, convex set in
R?, then H4=1(d(U)) is finite (in the notation of the previous proof, the map that
sends y € 9(B(0, Ry)) to L, NA(U) is Lipschitz). To prove theorem 3.2, it suffices
to prove the following more general result (recall H° is just counting measure).

Theorem 3.3. Let Ay,...,A; CR? be Borel sets with Hi™1(A;) < oo for 1 < j <
i, and such that each A; has the d — 1 dimensional lower density property. Then
for Lebesgue almost all vy, ... ,v; € RE, HI7¥ (1, (A1) N--- N7y, (4;)) < 00, where
Tw(A) = A+wv.

In order to prove theorem 3.3, we require the following lemma which is essentially
theorem 2 of [2] (though stated in a slightly different form).

Lemma 3.2. Let A, B C R? be Borel sets with H*(A) < oo, H!(B) < co. Suppose
A has the s-dimensional lower density property. Then H*T{(A x B) < oo.

Proof. By the lower density property, fix ¢ > 0 and rg > 0 such that Va € A Vr < rg
[H* (AN B(z,r)) > crf]. Let 0 < € < 19, and § > 0. Let D be an e-mesh cover of B
such that ) ,cp, |D]* < HY(B) + 6, where |D| denotes the diameter of D. For each
D e D,let CP = {B(z,r) : # € A,r = |D|/2}. By Besicovitch’s covering theorem,
let CP,...,CR, be subfamilies of C with A C JI') UCP and such that the balls in
each subfamily CP are pairwise disjoint. Since

H(A) > Z H*(AN B(z,r)) > card(CP) - er®,

B(z,r)ecP
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it follows that card(CP) < % for each i. Let W = Upcp Uf(:dl) UCECP C x D.
Then W is a v/2¢ mesh cover of A x B. Also,

b(d) b(d)
Z Z Z IC x D+ < 2(s+0/2 Z Z Z D>+
DED i=1 cecP DeD i=1 cecP
b(d)
< 2(s+t)/2 Z |D|s+t Z card(CiD)
DeD =1
(s)/2 s+t DA (4)
<2 > D] D

DeD
< 26FD2h(@) 12 (A)(HE(B) + 9).
Letting ¢ go to 0, we have
HoE (A x B) <209 20(d) 2 (A)H' (B).
Letting € go to 0, we have H> (A x B) < 26+0/2p(d)H* (A)H!(B). O

We now prove theorem 3.3 by induction on i. For ¢ = 1 the statement is trivial.
Assume now the theorem holds for ¢ < d, and we verify it for ¢ + 1. By Fubini,
it suffices to fix vy,... ,v; € R? such that H? (7, (A1) N---N 7y, (4;)) < 00, and
show that for Lebesgue almost all v;1; € R? that H? " 1(7,, (A1) N -+ N7, (4i) N
Tvig1 (AZ-H)) < o0.

Theorem 7.7 of [4] states that if A C R", f: A — R™ is a Lipschitz map, and
m < s < n, then

/ AN £ {y)) dE™y < 2a(m) Lip(f)"H(4),

where [* denotes the upper integral, and a(m) is a constant depending only on m
(the m-dimensional measure of the unit ball in R™). Let C' = 7, (41)N- - N7y, (A;),
so H4H(C) < oo. Consider the map S: R x R? — R? given by S(z,y) = = — y.
Clearly S is Lipschitz. ;From lemma 3.2, H2¢#~1(C x A;11) < co. Applying the
above formula with f =S, n =2d, m =d, and s =2d —i — 1 > m, we have

/ HETH(C x Ajpr) N S™Hy)) dLdy < cH* 1O x Ajq) < o0,

In particular, for almost all y € R? we must have that H?*~!(E,) is finite, where
E, =(C x A1) NS y}. Now, E, = {(z,z —y): 2 € C,x —y € A;+1}. Since
H?~ "L is translation invariant, H? " 1(E,) = H " 1(CN71y(Ais1)) < co. Writing
Vi1 = ¥, this verifies theorem 3.3 for 7 + 1. This finishes the proof of theorem 3.3,
and hence of theorem 1.1.
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