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§1. Introduction: Setting and Notation

Let I be a nonempty subset of N, the set of all positive integers such that I # N.
Let J; be the set of all irrational numbers z whose standard continued fraction has the
form

1

by +
b2+b3+;

z =

where each partial denominator b; is an element of I. We concern ourselves here with the
geometric measure theoretic properties of the set J = J;. In particular, we are interested
in the Hausdorff, packing, and box dimension of J and corresponding measures. It is easy
to see (comp. [MU], Section 6) that J is the limit set of the conformal iterated function
system generated by the maps ¢p(z) = 1/(b+ z), b € I. Our investigations of J are based
on this representation. We call the family S = {¢p, : b € I} a continued fraction system
and I the base for the continued fraction system.

The paper is organized as follows. Later in this section we recall from [MU] some
major features of general conformal iterated function systems. In section 2, we present
some new results for general conformal iterated function systems. In particular, we intro-
duce the absolutely regular systems which naturally occur among the continued fraction
systems. For regular systems, we obtain some useful necessary and sufficient conditions for
the Hausdorff measure of the limit set .J to be positive and also necessary and sufficient
conditions for the packing measure to be finite where the dimension parameter for both of
these is the Hausdorff dimension of the limit set J. We also give a simple and useful char-
acterization of the packing dimension of the limit set in terms of the Hausdorff dimension
of J and the box counting dimension of the set of first iterates of a point in the limit set, .J.
In section 4, we apply these results to continued fraction systems. It turns out that when
these characterizations are applied to a continued fraction system, these results have direct
interpretations in terms of some arithmetic density properties of the set I. So, in section
3, we discuss some of these density notions. Some of these notions do not seem to have
been discussed before. Again, in section 4, we give the relationship between these density
properties and Hausdorff measure and dimension. In section 5, we give the corresponding
properties for packing measure and dimension. In section 6, we examine some particular
continued fraction systems. The results of this paper include a detailed analysis of those
continued fraction systems when the index set [ is an arithmetic progression, the set of
powers of a given integer, the set of all integers raised to a given exponent, and the set of
prime numbers. Finally, we end the paper with some problems which remain unsolved.

Many papers have been written on estimating or determining the Hausdorff dimen-
sion of particular sets of continued fractions. The most detailed work has concerned the
case where the index set I is finite. We mention here the papers of T.J. Cusick [Cu], I.J.
Good [Go|, and D. Hensley [He]. However, none of these papers have dealt with the finer
geometry of these sets, e.g., whether the Hausdorff measure in the dimension is positive or
finite, but have mainly concentrated on other interesting aspects of these finite systems.
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Also, none of these papers have dealt with the corresponding properties of the packing
measure. It is after all a relatively new concept introduced independently by D. Sulli-
van and C. Tricot in the 1980’s. We shall be using several theorems concerning packing
measures as presented in Mattila’s book [Ma]. If the index set I is finite, then both the
Hausdorff and packing measures are positive and finite and each is up to a multiplicative
constant the conformal measure corresponding to the system. Here we concentrate on new
phenomena which occur when the index set I is infinite. In this paper, we demonstrate
that there are many continued fraction systems where the Hausdorff measure is trivial but
the packing measure is, geometrically speaking, the correct measure or conversely. We also
provide examples for which none of these measures is nontrivial.

We now recall the setting and some of the results developed in [MU] which will be used
in this paper. Let X be a nonempty compact subset of a Euclidean space R¢. Let I be
a countable index set with at least two elements and let S = {¢; : X — X : i € I} be
a collection of injective contractions from X into X for which there exists 0 < s < 1 such
that p(¢;(x), di(y)) < sp(x,y) for every i € I and for every pair of points z,y € X. Thus,
the system S is uniformly contractive. Any such collection S of contractions is called an
iterated function system. We are particularly interested in the properties of the limit set
defined by such a system. We can define this set as the image of the coding space under a
coding map as follows. Let I* =[], -, I", the space of finite words, and for w € I", n > 1,
let ¢y = Py © Py 0+ -0y, . fw € I*UT>® and n > 1 does not exceed the length of w,
we denote by w|, the word wyws .. .w,. Since given w € I, the diameters of the compact
sets ¢, (X), n > 1, converge to zero and since they form a descending family, the set

M bur (X)

is a singleton and therefore, denoting its only element by 7(w), defines the coding map
7w : I°*° — X. The main object of our interest will be the limit set

J:ﬂ—([oo): U m¢w|n(X)7

wel>* n=1

Observe that J satisfies the natural invariance equality, J = [J;c; ¢:(J). Notice that if I
is finite, then J is compact. However, our main interest centers on systems S which are
infinite. Some of the essential properties of J depend upon an object which appears only
when I is infinite. Let X (o00), the ”asymptotic boundary,” be the set of limit points of
all sequences ¢;(X), i € I', where I’ ranges over all infinite subsets of I. The geometric
behavior of the system at X (0o) directly affects the geometric properties of the limit set
J. For an infinite continued fraction system the only element of X (c0) is 0.

An iterated function system S = {¢; : X — X : 4 € I}, is said to satisfy the Open Set
Condition (abbreviated (OSC)) if there exists a nonempty open set U C X (in the topology
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of X) such that ¢;(U) C U for every i € I and ¢;(U) N ¢;(U) = 0 for every pair 4, j € I,
i # 7.
An iterated function system S satisfying OSC, is said to be conformal (c.i.f.s.) if the
following conditions are satisfied.

(a) X is a compact connected subset of a Euclidean space R? and U = Intga(X).

(b) There exist a,l > 0 such that for every 2 € X C R? there exists an open
cone Con(z,uy,a,l) C Int(X) with vertex z, direction vector u,, central angle
of Lebesgue measure «, and altitude .

(c) There exists an open connected set X C V C R? such that all maps ¢;, i € I, extend
to C'*¢ diffeomorphisms on V and are conformal on V.

(d) Bounded Distortion Property(BDP). There exists K > 1 such that |¢/ (y)| <
K|¢,(z)| for every w € I'* and every pair of points z,y € V, where |¢/, (z)| means
the norm of the derivative.

Each continued fraction system S = {¢p(z) = 1/(b+ z) : b € I} satisfies properties (a) -
(c). We take X = [0,1]. For V, we take an open interval such that X C V C (—1/4,5/4).
To check the bounded distortion property, we note that if w = (b1, ...,b,), then ¢/ (z) =
(—1)"/(qn + 2qn_1)?. Thus, ¢/, (y)| < 4|4, (z)|, for every pair of points z,y € X. So, we
may take the distortion constant K as close to 4 as we like by adjusting the open interval
V. There is one small point about these continued fraction systems. If 1 € I, then the
system is not uniformly contractive, since ¢} (0) = —1. However, this is not a real problem,
since the system of second level maps, {¢p,p, : b1,b2 € I}, has the same limit set and is
uniformly contractive.

As was demonstrated in [MU], conformal iterated function systems naturally break into
two main classes, irregular and regular. This dichotomy can be determined from either
the existence of a zero of a natural pressure function or, equivalently, the existence of a
conformal measure. The topological pressure function, P is defined as follows. For every
integer n > 1 define

Pal(t) = > ll6L 1"

welm™

and
P(t) = lim > log v (L).

n—oo N
For a conformal system S, we sometimes set s = 11 = 1. The finiteness parameter, g,
of the system S is defined by inf{t : ¢¥(t) < oo} = fs. In [MU], it was shown that the topo-
logical pressure function P(t) is non-increasing on [0, 00), strictly decreasing, continuous
and convex on [#,00) and P(d) < 0. Of course, P(0) = oo if and only if I is infinite. In
[MU] (see Theorem 3.15) we have proved the following characterization of the Hausdorff
dimension of the limit set .J, which will be denoted by dimg(.J) = hs.

Theorem 1.1. dimg(J) = sup{dimy(Jr) : F C I is finite} = inf{t : P(t) < 0}. If
P(t) =0, then t = dimg(J).
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We called the system S regular provided that there is some ¢ such that P(t) = 0. It follows
from [MU] that ¢ is unique. Also, the system is regular if and only if there is a t-conformal
measure. A Borel probability measure m is said to be ¢-conformal provided m(J) =1 and
for every Borel set A C X and every ¢ € 1

m(gi(A)) = /A 641t dim
and
m($:i(X) 1 (X)) =0,

for every pair¢,7 € I, 1 # j.

A system S = {¢;}icr is said to be strongly regular if 0 < P(t) < oo for some ¢t > 0. As an
immediate application of Theorem 1.1 we get the following

Theorem 1.2. A conformal system S is strongly regular if and only if A > 6.

In [MU] we called a a system S = {¢; };er hereditarily regular or cofinitely regular provided
every nonempty subsystem S’ = {¢;};cr/, where I’ is a cofinite subset of I, is regular. A
finite system is cofinitely regular and for an infinite system, we showed in [MU] that whether
a system is cofinitely regular can be also determined from the pressure function:

Theorem 1.3. An infinite system S is cofinitely or hereditarily reqular if and only if
PlO)=occe @) =00 {t: P(t) <o} =(0,0) & {t: () < oo} =(0,00).

Theorem 1.4. Fvery cofinitely reqular system is strongly reqular.
We also need another characterization of the finiteness parameter 6, Theorem 3.23 of [MU]:

Theorem 1.5. 0g = inf{dimu(Js') : S"is a cofinite subsystem of S}.

2. Results for general conformal systems.
First, let us introduce another subclass of the regular conformal systems.

Definition. A system S = {¢;}ics is said to be absolutely regular if and only if every
nonempty subsystem of S is regular.

The following two statements are obvious.

Theorem 2.1. A system S is absolutely reqular if and only if every non-empty subsystem
of S is cofinitely reqular.

Corollary 2.2. Fvery absolutely reqular system is cofinitely reqular.



Mauldin and Urbanski Page 5

Like cofinitely regular systems, whether an infinite conformal system is absolutely regular
can also be completely determined by the behavior of the pressure function.

Theorem 2.3. Let S = {¢;}icr be infinite. The following conditions are equivalent:

(1) S is absolutely regular.

(2) 6s = 0.
Proof. (2) = (1). Assume (2). Then for every infinite subsystem S’, fs: = 0, and since,
s (0) = 0o, S’ is regular. Thus, S is absolutely regular.

(1) = (2). Suppose §# = 0g > 0. Since S is infinite, we may assume that I =
N = {1,2,3,...}. Define inductively I,,, an increasing sequence of finite subsets of I, as
follows. Set Iy = () and suppose that I,, has been determined. Let M,, = max1I,. Since
Y(0(1 —27™)) = oo, there exists a finite subset A,, of [M,, + 1,00) such that ||#;[|?? " <
272n=1 for all i € A,, and 2" < Z ||¢;||9(1_2_n) < 27+l Then by setting I,,41 = I,UA,,

i€A,
we finish the recursion for the sequence {I,},>0. Set F' = U I,,. By construction, F' is
n>0
infinite. Since Z |ph]]? < 221 Z 1¢4]|P1=2") < 27", we conclude that
1€EA, 1€EA,
Yr@) = > g’ <D 27" =2 <.
n>0i€A, n>0

Also for every 0 < t < 0 there exists k such that t < §(1 — 27%). Thus,

Yr) >y Y =D > I > Y 2t = oo

n>ki€A, n>ki€A, n>k

Hence, 0 = 0 and ¢Yr(fr) < 2 < oo. Therefore, the subsystem generated by F is not
cofinitely regular and the system S is not absolutely regular. l

For a regular conformal system with P(h) = 0, we know that H"(J) < oo, where 3("(.J)
denotes the Hausdorff h-dimensional measure. It is possible for the measure to be zero. In
Lemma 4.11 of [MU] we gave a sufficient condition for 3"*(.J) > 0. In the next theorem
we extend this result, by giving some necessary and sufficient conditions for the Hausdorff
measure to be positive.

Theorem 2.4. Let S = {¢;}ics be regular. Then the following statements are equivalent.
(1) H™(J) > 0.

(1") 30 < L < oo Fy > 1 such that for all i € I and for all r > vydiamep;(X), there
is some x € ¢;(X) such that:
m(B(z,r)) < L.

(2) 30 < L < oo Fy > 1 and there exists a finite set F such that for all i € I \ F
and for all r > ydiam¢;(X), there is some x € ¢;(X) such that:

m(B(z,r)) < Lr".
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(2) 30 < L < oo Vy > 1 there exists a finite set F' such that for alli € I\ F and
for all r > ~vydiam¢p;(X), there is some x € ¢;(X) such that:

m(B(z,r)) < Lr".

(3) 30 < L < oo Iy > 1 and there exists a finite set F' such that for alli € I\ F
and for all r > ydiameg;(X), for all x € ¢;(X) :

m(B(z,r)) < L™

(3") 30 < L < oo Yy > 1 there exists a finite set F such that for all i € I\ F and
for all r > ~vdiam¢p;(X), for all x € ¢;(X) :

m(B(z,r)) < L.

Proof. Obviously (3') = (3) = (2) = (1') and (3') = (2') = (2) = (1'). It is straight-
forward to show that (1) = (2). Lemma 4.11 of [MU] shows that (1’) = (1). In order to
show that (1) implies (3') suppose that (3') fails. Then for every L > 1/dist?(X,dV) there
exists j € I such that m(B(z,r)) > Lr" for some z € ¢;(X) and some r > diam(¢;(X)).
Let J; be the image under 7 of all words of I*® such that each element of I occurs infin-
itely often. Consider z € Jy, z = m(w) € I* such that w, 1 = j for some n > 1. Then
there exists z, € ¢;(X) such that 2 = @, (2,). Since r < 1/LY/" < dist(X,dV), all the
geometric consequences of the bounded distortion property listed in Section 2 of [MU] are
applicable to the ball B(xz,r). In particular, we get |¢,,), (2n) — ¢u|, (7)| < D||q5(’u|n||r and

B(¢w|n(x)7 ||¢:‘J|n||r) D ¢w|n(B($,7")) Therefore, B(Zv (D + 1)||¢(ld|n||r) D ¢w|n(B('T7T))
By conformality and (BDP), this implies that

m(B(z, (D + D¢}, M) = K~"NlgL,, |"m(B(w,r) > K~"Lllg},,[|""

L
= ((D+1)||¢! . —
(0 + VI, I
Using Theorem 2.8(1) of [MU], we get 3"(J;) < C/L, for some constant C independent
of L. Now, letting L — oo we conclude that 3("*(J;) = 0. By Theorem 3.8 and Corollary
3.11 of [MU], m(J \ J;) = 0. This in turn, in view of Lemma 4.2 of [MU], shows that
H™(J\ J1) = 0. Thus, H"(J) = 0 and therefore (1) = (3'). The proof is finished. H

Similarly, we have some necessary and sufficient conditions for the packing measure to be
finite. We denote the h-dimensional packing measure by P". For its definition and other
informations about packing measures and dimensions the reader may look at the book [Ma)]
by P. Mattila for example.

Theorem 2.5. Let S = {¢;}icr be reqular. Then the following statements are equivalent
(1) PM(J) < oo.
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(1"Y3AL > 03¢ > 03y > 1 such that for all i € I and for all r with ydiam¢p;(X) <
r < & there is some x € ¢;(X) such that

m(B(z,r)) > Lr".

(2) 3L > 03¢ > 03y > 1 and there exists a finite set F' such that for all i € I\ F
and for all r with ydiamp;(X) < r < there is some x € ¢;(X) such that

m(B(z,r)) > Lr".

(2") AL > 03¢ > OVy > 1 there exists a finite set F' such that for alli € I\ F and
for all r with ydiamep;(X) < r < & there is some x € ¢;(X) such that

m(B(z,r)) > Lr".

(3) 3L > 03¢ > 03y > 1 and there exists a finite set F' such that for all i € I\ F
and for all x € ¢;(X) and for all r with ydiamep;(X) <r < &

m(B(z,r)) > Lr".

(3") AL > 03¢ > OVy > 1 there exists a finite set F' such that for alli € I\ F and
for all x € ¢;(X) and for all r with ydiam¢p;(X) < r < ¢

m(B(z,r)) > Lr".

Proof. It is straightforward to show that (2) = (1'). Lemma 4.10 of [MU] shows that
(1) = (1). Clearly, (3') = (3) = (2) and ((3') = (2') = (2). Finally, by way of contradic-
tion, let us assume (1) holds and (3') fails. Fix L > 0,£ > 0. Then there are vy > 1,i € I
and ydiame;(X) < r < ¢ such that for some x € ¢;(X), we have

m(B(z,r)) < L".

Since the system is regular, there is a Borel subset B of .J with m(B) = 1 and such that
each point z of B has a unique code, w, and 7(¢™(w)) is in the ball B(x,r/2) for infinitely
many n’s. For such a point z and integer n > 1, we have

(b (B (0" (@), 7/2))) < [|0L,, 1" m((B(r (0™ (@), 7/2) < ||, 1" Lr".
But, by the bounded distortion property of the system,
Puln (B(m (0" (W), 7/2)) D B(z, |4}, |1 K ~r/2).

So, m(B(z, ||¢],,|lr/2K)) < (||¢L}|n||r/2K)h(2K)hL. Using Theorem 2.9(1) of [MU], we

get Ph(J) > PM(J N B) > (2K)""L~!. Now, letting L. — 0 we get P"(J) = co. This
contradiction finishes the proof. B



Mauldin and Urbanski Page 8

We close this section with a stronger form of Lemma 4.15 of [MU]. This improved version
will be directly applied to continued fraction systems in Section 5. For completeness, and
to avoid confusion, we have included a proof since part of the hypothesis was unfortunately
left out of the statement of Lemma 4.15.

Theorem 2.6. Let {¢; : i € I} be a reqular conformal iterated function system. Suppose
that there exists a subset ) £ Z C X (00) such that for every z € Z there exist i(z) € I and
a set R(z) C (0, dist(X,0V)) such that

(a’) qsz(z) (B(Zv SupR(Z)) N J) = qsz(z) (B(z7 supR(z))) nJ,

(b) qsz(z) (B(Zv supR(z)) CX,

(c) inf{% cz€Z,re€ R(2)} =0.
Then P'(J) = .
Proof. First notice that since ¢;(,) is one-to-one, ¢;,)(F'NJ) = ¢y (F)NJ, for all z € Z
and all F' C B(z,sup R(z)). Let Jo, = (X)), where X, C X is the set of all sequences
containing each finite word infinitely often. Of course, J,, has full measure. Fix ¢ > 0
and take z € Z and r € R(z) such that m(B(z,r)) < er®. Fix x = n(w), w € Y. Then
there exists ¢ > 1 such that ¢, ,, (X)) C B(z,7/2) and wy = i(2). Now, z = ¢, (7(c%w)),
where o is the shift transformation on the coding space, IV. So, using (BDP.3) of [MU],
we get

m(B(z, K¢y, 1lr/2)) < m(dy),(B(r(0%w),r/2)) < m(dy, (B(z,1)).
Using the facts that ¢, (B(z,7)) C X, and condition (a) holds, we have

m(¢w|q(B(z,r))):m(¢w|q1(¢wq(B(z,7“))):/¢ - ))mJ||¢(/u|q_1||hdm

-/ 18, @I dm(a)
Pwq (B(z,m)NJ)

= [ G I, W dity)
B(z,r)NJ

=/ 180y, 11" dm < (|61, [1"m(B (2, 7)) < [Ig,, [I"er”
B(z,r))NnJ
= (2K) 7 (llg,, lIr)"e(2K)".

Since we may require ¢ to be as large as we wish and since r» > 0 is bounded from above,
the numbers (2K)~!|[¢,, ||r converge to zero and we finish the proof applying Theorem
2.9(1) of [ MU]. R

Recall that the Hausdorff dimension of a probability measure m is defined by dimg(m) =
min{dimg (F) : m(F) = 1}. In Theorem 3.24 of [MU] we have shown that the Haus-
dorff dimension of the conformal measure of every regular system for which the series
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>ier — log(||o))|1)]1¢;||" converges is equal to the Hausdorff dimension of the limit set. In
the proof of Corollary 2.25 of [MU] we have demonstrated that this class of systems com-
prises all the strongly regular systems. Here we shall prove a complementary result for the
packing dimension of the conformal measure m, dimp(m) = min{dimp(E) : m(E) = 1}.

Theorem 2.7. If S is a regular system andthe series Y, —log(||¢})[|)||#4]|" converges ,
then dimp(m) = dimg (J) = dimg(m).
Proof. We shall first show that

log(|l¢g,,, 1)

2.1 log([l'.. 1)
(2.1) noo log(160, 1D

=1,

for almost every w € I*°. Indeed, applying Birkhoff’s ergodic theorem similarly as it has
been done in the beginning of the proof of Theorem 3.24 of [MU], we conclude that for
almost every w € I°° thelimit

lim 1 log (m(ey, (J)))

n—o0o N,

exists and is independent of w. Since for all w € I*® and all n > 1, K_h||¢3(’d|n||h <
m(¢wl, (1)) < [l¢,,] |, formula (2.1) is therefore proved. Denote the set of points satisfying
(2.1) by Z. Fix e > 0. Consider w € Z. For ng sufficiently large, we have log([|¢[, |[) =
(14¢)log(l|¢y,, _,[|) for all n > ng or equivalently [|¢],, ||/]|¢] | > || || . For every

W|n w|n—1 w|n—1
r > 0, let n be the least number satisfying B(m(w),r) D ¢y, (X). Then m(B(n(w),r)) >
K_h||¢;|n||h and r < DI|¢,, ||, where D is given by (BDP.2) of [MU]. If r is small

enough, then n > ngy and therefore

el 11" e
h | h he. .h+he
||* - ———=—= > (DK) "D "¢r .

m(B(m(w),r)) > K~"||4, W, >

w|n71

Thus, dimp(7w(Z)) < h + he and since m(Z) = 1, we conclude that dimp(m) < h. Since
dimp(m) > dimg(m), the proof is finished. B

Finally, we close this section by characterizing the packing dimension of the limit
set J of a conformal iterated function system. As recalled in Theorem 1.1, we showed in
[MU] that the Hausdorff dimension of .J is given by dimg(J) = inf{t : P(¢t) < 0}. It turns
out the packing dimension is determined by the box counting dimension of the “level one”
portion of the orbits of points of J and the Hausdorff dimension of .JJ. For x € X, n € N,
set Ly (x) = {¢u(z) : w € I™}. We recall that N,.(E) is the minimum number of balls of
radius < r needed to cover a set . We also make some notation. If ¥ C X and R C I*, we
denote the set |J, cp ¢u(F) by O(F,R). If R = I", n > 1, we write O(F,n) for simplicity.
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In the sequel, we will need the following fact concerning conformal systems. Namely,
from (BDP.2) of [MU], there is some number D > 1 such that

diam(¢,, (V) < D||4. ]|,

for all finite words w.

Lemma 2.8. Let {¢; : i € I} be a conformal iterated function system. Then dimp(J) =
M = sup{dimg(J), dimp(L,(x)):x € .J, n € N}.
Proof. Recall from Theorem 3.1 of [MU] that dimp(J) = dimp(J). Fix t > M. Since
P(t) < 0, there is some @ such that if ¢ > @, then ¢, (t) < 47% and if |w| > Q, then ||¢] || <
1/4. Fix ¢ > Q and z € J. Choose A such that for all D > r > 0, N,.(L,(x)) < Ar~*. Now,
choose B such that if 1 <r < D, then N,.(J) < Br~* and such that B > 4*A/(1—4%,(t)).
We will show by induction that for each n € N, if 1/n < r < D, then N,.(J) < Br—t.
This inequality holds for 1. Suppose it holds for n and 1/(n 4+ 1) < r < 1/n. Let C,41 =
{w e I7: diam(p,(J)) < 1/2(n + 1)}. Since J = (Unecpsr dw(J)) U (Uperarc, yr b (J))

we have

Ne(J) € Nijnay() < Nygany | Ut |+ D0 Ny (o).
weCnt1 weIIN\Cpy1

For w € I\ Cnt1, we have Ni/gui1)(6u(J)) < Nijminiisrih () < Nijemrnignln ()-
Since ||¢), || <1/4 < (1/2)(n/n+1), we have 1/n < 1/(2(n+1)||¢L||). Since 1/(2(n+1)) <
diam(¢,, (J)) < D||¢L ]|, we have 1/(2(n + 1)||¢L,||) < D. So, by the induction hypothesis,
Nyjnin(6(J)) < B (2(n -+ DIgLID)" . Next, we claim that Nyjuisy (Upec, ,, 6u()) <
Nl/(Q(n_l_l))(L (x)). To see this, let B(y;,1/(2(n + 1))) be a collection of balls of radius
1/(2(n + 1)) covering Ly(x). Suppose z € ¢, (J), where w € Cy11. Then |z — ¢, (z)| <
diam(¢,(J)) < 1/(2(n + 1)). For some j,|p,(z) — y;j| < 1/(2(n + 1)). So, the balls
B(y;,1/(n+ 1)) cover Uwecn+1 ¢u(J). Our claim follows from this. Since n+1 < 2/r,

No(t) < A2 (n+ 1)" + > B2%(n + 1)!||¢L]|" < 4° [A+ Byy(t)]r~* < Br .

|wl=q

This completes the induction argument. It now follows that dimg(J) < ¢. From this
we have, dimp(J) =M. R

Our goal is to show that we can replace the supremum in Lemma 2.8 with a simple maxi-
mum. We use two propositions to accomplish this.

Proposition 2.9. If S is a c.i.f.s., then for all x,y € X, and alln > 1

dimp(O(z,n)) = dimp(O(y,n)).
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Proof. First notice that it suffices to prove this equality for n = 1 since for every n > 1
the collection of maps {¢, : w € I"} forms a conformal iterated function system again.
With this setting notice that

(2.2) IM >1% > OVz € R #{i € I : B(z,7)N;(X) # 0 and diam(¢p;(X)) > r/2} < M.

To see this (cf., proof of Lemma 4.11, [MU]) denote the set of such i’s by E and consider
i € F with this property and fix y € B(z,7) N ¢;(X). We repeat here a crucial geometric
condition from the definition of a conformal system. The “cone condition” (2.10) of [MU]
states: there exists 0 < # < « such that for all x € X and for all w € I'*

(23)  du(Ins(X)) D Con(d (). 5, DH|,]]) > Con (s (), 5. D diam((X))).

where Con (e, (z), 8, D7||¢,]|) and Con(¢, (), 3, D~*diam(X)) denote some cones with
vertices at ¢, (), angles 3, and altitudes D~||¢/)|| and D~2diam(X) respectively. Thus,
there exists a constant P > 0 such that

A(¢,(X) N B(z,2r)) > )\(qbz (X)nN Con(qbi (x), B, min{r, D_2diam(¢,~(X))})
> A(Con(dile). B, (2D%) 1)) > Pr?,

where = € X is such that ¢;(z) € B(z,r). Since all the sets ¢;(Int(X)) N B(z,2r)), i € E,

are mutually disjoint, #E < *(Blgjf’")) < 241_:‘,/‘1. So, it suffices to take M = Zd#. In
order to prove the proposition, it is enough to show that dimg(O(z, 1)) < dimg(O(y,1)).
Towards this goal, take 0 < r < diam(X) and let I, = {i € I : diam(¢;(X)) < r/2}. Then
N (O(y, I)) < Ny y2(O(z, 1)) Clearly, N.(O(z,I\ 1)) < #(I'\ 1), for all z € X. On the

other hand by (2.2), N,.(O(z,I\ 1)) > #(I \ I,)/M. Hence,

Nr(o(ya 1)) < NT/Z(O('TaIT)) + NT(O(yvl\Ir))
< N, jo(O(x, 1)) + MN.(O(2, T\ I,)) < (1 + M)N, 5(O(z,1)).

Therefore,
77— 108 N, (0(y, 1)) _ w— log Nr(O(a,1))

lim < lim
r—0 log r r—0 log r

The proof is finished. l

Lemma 2.10. If S is a c.i.f.s., then for all x € X and for allmn > 1,

dimg(O(z,n)) = dimg(O(z, 1)).

Proof. By Proposition 2.9, we may assume that = € Int(X), so B(z,p) C Int(X) for
some p > 0. First, we shall show that 0g < dimp(O(z,1)). To see this, fix t >t — s >
dimp(O(z,1)). Then fix e > 0 and consider the set

I(e) = {i € I: Kep™' < ||g}(w)]| < 2Kep1}.
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Since the balls B(¢;(x),e) with i € I(e) are disjoint, N.(O(z,1)) > #I(e). Since for all
e > 0 small enough e™* > ¢7*N_(O(z, 1)), we get for all k large enough, say k > ko the
following

SN < 3D 2K T ) < 2K Y 2Ny (O, 1)
k>koicI(2—F) k>ko k>ko

1
S (2Kp_1)t Z 2_ks S (2Kp_1)tm < o0.

Since limyepv ||¢5] = 0, the set I\ U~y 1(27%) is finite, and therefore ¢ > fg. Letting
t — dimp(O(x,1)), we get Og < dimp(O(z,1)).
Now, fix t > dimp(O(x,1)) again. We shall show by induction that for all n > 1 there
exists 0 < A,, < oo such that

N, (O(z,n)) < Apr~t,

for all 0 < r < 2D. Indeed, the existence of A; is immediate as t > dimg(O(z,1)). Suppose
that 0 < A,, < oo exists. To prove the existence of A, 1, set Iy = {w € I" : diam(¢,, (X)) <
r/2}. Then N, (O(z,Iy x I)) < N, j2(O(x,11)) < Npjo(O(m,n)) < 20Ar—t Ifw e I™\ Iy,
then N, (O(xz,{w} x I)) < Nyyjjg1(O(2,1)) < Ayl ||*r~*, where the second inequality
sign holds since r/||¢,,|| < 2diam(¢y, (X))/||¢L,|| < 2D. Thus, since t > fg,

N (O(z,n+1)) < 2PA,r~ "+ Ayr™? Z oL ||F < 28 Apr™" + Apap (t)r ™"
weln\I;

= (2'A, + Ay, (t))r—t

The proof is completed by setting A, 1 = 2t A, + A1, (t). B
As a corollary of Lemma 2.8 and Propositions 2.9 and 2.10, we have a simple means
of obtaining the packing dimension of the limit set.

Theorem 2.11. Let {¢; : i € I} be a conformal iterated function system. Then dimp(J) =
max{dimu(J), dimp(Li(x)) : x € J} = max{dimu(J), dimp(L1(xo))}, where xo is any
given point in X .

§3. Arithmetic relations.

In this section we collect some basic arithmetic definitions and relations. We begin with
the following notation. If I is a subset of N and 1 < p < ¢ < oo are two real numbers, then
by #I(p,q) we denote the number of elements of the intersection I N [p,q|. If p = 1, we
frequently use the notation S, (1) for #I(p,q).
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Lemma 3.1. IfI C N and 0 < k <1 <2k, then for all s > 0

(KD)* <= 1r(n) _ #I(k,1)
(I —k)* n2 = (1—k)s’

n==k

where the comparability constant depends only on s.

Proof. The proof follows immediately from the following computation.

(k)* = 1r(n) 12 = 1p(n)
(l_k)snz:; n2s ’\( _k)snz::k n2s
251 #(I(k,n)

= mlz—s (IN[k,n])=

Lemma 3.2. For each I C IN and foreach 0 <t <1

n—0o0 nt n—00 nt

Proof. We may assume that mnﬁww > 0. Let d = (1 — 27)limy, 00

#1(2%, 28

Suppose on the contrary that lim
k—oo 2kt

T 2k 2k+1
every k > 1 large enough, say k > S, we have M

9kt
HI(25, 2k +1) #1(27,2941) . 20—k G—t)t 1
Jj= Jj=
Thus,
O HIL2MY) RIS ¢
hmk—moT = Mg 00 okt < 1 _o-t

Now, since for every n > 2,

#I(1,n) _ #1(1, 205 )

nt — (2[log2 n])t ’
we get
— #I(1,n c — #I(1,n
lim,, o glt ) < o < hmn_mo%.

This contradiction finishes the proof. B

Page 13

#1(1n)

nt

< d. Then there exists ¢ < d such that for

< ¢. So, for every k > S,
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We now provide the reader with several definitions of objects and properties associated
with infinite subsets of N which are intended to measure the ”size” of those sets.

We first define the lower density dimension of a set I C N. Given t > 0, let

. #I(k,1 2kl
o,(I) :lnf{ﬁ 1k <l and A(k—H)ﬂI#(b} > 0,

where given t > 0, A(t) = NN [t — 1,¢ + 1]. Notice that

inf {t to,(I) < oo} = sup {t o,(I) > 0.}

This common value will be called the lower density dimension of I and will be denoted by
oD(I).

Similarly, we define pD(I), the upper density dimension of a set I C N, as follows. For
each t > 0,n € N, set

@t(I):sup{%:k<l,k,l€[}zsup{%:k<l}.

Notice that
inf {t : 0,(I) < oo} =sup{t:9,(I) > 0.}

This common value will be called the upper density dimension of I and will be denoted
by 2D(I). Clearly oD(I) <2D(I), and if these two numbers are equal, the common value
will be denoted by oD(I).

A subset I C N is said to have the strong arithmetic density 0 if for every ¢ > 0,

lim Snll)

n—00 ’I’Lt

= 0.

We say that two subsets of N are strongly equivalent if their symmetric difference is finite.

Suppose that I C N. A subset A C I is said to be a cluster of I if and only if AN
[min(A),sup(A)] = A. By the length of A we mean the number sup(A) — min(A).

A subset A C I is said to be a punctured cluster of I if and only if there is z ¢ A with
min(A) < x < sup(A) such that [min(A),sup(A)]\{z} = A. Notice such an z is determined
uniquely and by the lower length of A we mean the number min{z — min(A), sup(A4) — z}.

The following lemma, whose straightforward proof is left to the reader, provides some
elementary properties of the notions introduced above.
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Lemma 3.3. Suppose that I,I' CN. Then

(a) 0 < oD(I) <oD(I) < 1.
b) If I' is strongly equivalent with I, then oD(I") = oD(I) and 9D(I") = 2D(I).
¢) If I contains arbitrarily long clusters, then oD(I) = 1.
d) If N\ I contains arbitrarily long punctured clusters, then oD(I) = 0.

) If p is a polynomial of degree d > 1, then the set I, = {[p(n)] : n € N} has

density dimension 1/d.

(f) If I is equivalent with a subset of a geometric sequence, then it has arithmetic
density dimension and oD(I) = 0.

(g) If I is an infinite subset of N with upper density dimension zero, then I has strong
density zero. If in turn I has strong density zero, then it is of lower density dimension
zero.

(
(
(
(e

Let us relate the density dimensions of I to the finiteness parameter of the continued
fraction system with index set I.

Lemma 3.4. If I CN, then oD(I) < 20(I) <oD(I).

Proof. Since I is infinite there exists an infinite subset F' of I such that [n/2,2n| N
[m/2,2m] = 0, for all distinct elements m and n in F. Since §; > 0, in order to prove
the first inequality we may assume that oD(I) > 0. Fix then any 0 < s < pD(I). By

the definition of the lower density dimension there exists a constant M > 0 such that

#I(k,l) > M(l —k)®, for all k <[ with A(,f_’fl) NI # (. We then make the estimates

P1(s/2) < Z S_Z Z —11 Z— —#[( n2n)

nel neF k—Bn

1 1 /4 \° M2s
>M—S"—(2n) = 1 = .
5 D <3"> T
ner neF

Hence, s/2 < 6(I) and the first inequality is proven. In order to prove the second inequality
fix ¢ > oD(I) and then auxilarily 9D(I) < s < t. By the definition of the upper density
dimension there exists a constant 0 < M < oo such that #I(k,l) < M(l—k)® for all k < .
Then

2n+1
1 1 ~
t/2 Z Z —1[ )xzﬁ#[(2n72n+l)§M2ﬁ2n5222(s t)n<OO.
n>0k= Zn n>0 "0 =0

Hence, t/2 > 0(I) and we are done. W

We end this section with some basic results concerning sets of density zero.
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Theorem 3.5. Let I = {ny < ny < ng < ...} be an infinite subset of N. The following
four statements are equivalent.
(1) I has strong arithmetic density zero.

2) For eacht >0, >

nEI < .

k—o00 ?’li;

(
k
(3) For each t >0, lim — =0.
(4) The continued fraction system S = {¢p}oer is absolutely reqular.
Proof. For each t > 0, we have by summation by parts,

n

1 1
(3.1) > 1s(k) Zsk [ﬁ - (k+1)t] + (n+1)tSn([).

k=1

So, Yop i (k) < t3 0, %—’; + (n+1)tS Assume I has strong density zero. Then
Sn

(I) < 00, limy, o i_|_({t) = 0, and for all k, S,;C(tI) < ]k\it//;

that > p_, lj(k)k—lt < tMyj2 > p_q 77 and consequently Y ;=7 < oo. Now, assume
statement (2) holds. Then from (3.1), i —STE?) < oo. This in

turn implies that that for each ¢ > 0, lim,, % = 0. Hence (1) and (2) are equivalent.
Now, given n > ny take k such that ny < n < ngy;. Then

. It now follows

M, = SUPy,>1

B Sn(I) < k+1.

t — t — t
nk+1 n n;,

Thus (3) and (1) are equivalent. Since condition (2) means that 8y = 0, the equivalence of
(2) and (4) is established by Theorem 2.3 The proof is finished. W

One can use the summation by parts formula to obtain another characterization of the
finiteness parameter of a continued fraction system:

Theorem 3.6. Let I C N. Then the finiteness parameter #; of the continued fraction
system with index set I satisfies:

=inf{t: l1m S— < oo}
—o0 nt

The following example completes the part (g) of Lemma 3.3.

Example 3.7. Consider I = {2" +i:n > 0,0 < i < n — 1}. Then I has positive upper
density dimension equal to one and also has strong density zero.

64. Hausdorff measures and dimensions.
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We begin this section with the following general theorem linking arithmetical properties of
the set I and geometrical properties of the corresponding limit set.

Theorem 4.1. For a reqular continued fraction system with index set I, the following
conditions are equivalent:

(a) H(J;) = 0.

(b) For some v >1, sup{m( (qﬁ;](L )r)) ciel, r> ’ydiam(api(X))} = 00.
(c) For each v>1, sup{m( (QS;,(L ) el r> fydiam(goi(X))} = 00.

(d) (1 — k) Z n2h

Proof. First, let us assume statement (a) holds and fix v > 1. Since statement (2) of
Theorem 2.4 is false, the ratios m(B(z,r))/r" with z € ¢;(X) and r > ydiam(¢(X)) can
be made arbitrarily large. Thus, (a) = (b). Clearly,(c) = (b).

Next, let us assume 7o > 1 is such that the supremum in statement (b) is co. Let
L > 0. We will show that condition (3’) of Theorem 2.4 fails with v = 9 + 1. First,
note that if j € I and r > ydiam(p;(X)), then m(B(¢;(X),r))/r" < (fydiam((ﬁj(X))_h.
Let F C I be finite. Let T = max {y"L, (ydiamyp;(X))™":j € F}. Choose i € I and
ro > yodiam(p;(X)) such that m(B(¢i(X),r0)) > (T + 1)rk. Thus, i € I\ F. Let z €
vi(X) and r = (1 4+ 1/v9)ro. Then r > ~ydiamep;(X) and B(z,r) D B(p;(X), o). So,
m(B(x,r)) > Lr". Thus, by Theorem 2.4, H"(J;) = 0. So, (b) = (a).

Now, assume statement (d) holds We show that statement (b) holds with v = 1.

kl 1
Choose k < [ such that (l(—) A Z Igh) > T > 0, where a positive lower bound on T

will be specified later. Choose i E I such that the distance from 1/i to 1/2(1/k + 1/1) is
minimum and let » = max {|1/(i+ 1) — 1/(l + 1)|,|1/k — 1/i|]}. So, r < 1/k — 1/l and

m(B(pi(X),r))
ok

hkl

l
—h
> (K th2h > KT,

l
Let us note that the quantities (kD" Z Zh) with r < diam(¢;(X)) = 1/i(i+1), where
n

(1 — k) =
r is chosen as above have a umform upper bound To see this note that in this setting &k =1
. (kDM 1 26
and [ < i(i+1)/(i—1).S AL Z n2h is bounded above by I—F D)

(kD)"
(I = k)"

If [ < 2k, then < (kD)™ and using the bounds on I, we get the quantity uniformly
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kL) (i+1)\"
bounded above. If 2k < [, then (l( )k;)h < <Z(Z +1)> , and again the quantity is uni-
J— /l, J—

formly bounded above. Therefore, we also have r > diam(¢;(X)), for T sufficiently large.
Thus, (d) = (b).

Finally, let us assume statement (c) holds and take v = 1. Let m/(B(¢;(X),r))/r" >
T, with r > diam(¢;(X)). Choose k < [ such that [1/(l —1),1/k+ 1] C B(¢i;(X),r) and
1/k,1/1 ¢ B(¢i(X),r). Then 1/k — 1/ < 4r and

l

kD) Z 17(n) > (4_h)m(B(¢¢(X),r))-

r
n==k

From this, we see (¢) = (d). B

Corollary 4.2. If I C N generates a regular continued fraction system and if

I(1
ITANELCLO N
n
then H"(Jr) = 0.
Proof. For every k > 1 we have
2k 2k
(k - 2k)" — oy ) 17(n) S ohph #1(k, 2k) 2—h#[(k72k)
2k k‘ h — nzh n2h (2k)2h kh )

n==k

Thus an immediate application of Theorem 4.1 and Lemma 3.2 finishes the proof. B
As an immediate consequence of this result we get the following.

Corollary 4.3. Let I be a base for a reqular continued fraction system and let h be the
dimension of the system. If for somet > h, limsup,,_, #IT(II;") > 0, then H"(J) = 0.

Proposition 4.4. If I is a base for a continued fraction system and H"(Jr) > 0, then
h > 26.
Proof. Since the Hausdorff measure is a conformal measure, the system is regular. By

Corollary 4.2, M = sup,, W < 00. Suppose by way of contradiction that h < 26.
Thus € > 0 and there exists 0 < ¢ < # such that h < 2t. Then we can write

1 #I[2m, 2n+1)
- Z n2t Z Z k2t > Z 92tn
nel n=0geINn[2n,2n+1)
Z #I[2n 2 Jr1)2(h 20)n < 2" M

“o—(i—h) <~
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Hence, 11 (t) is finite which contradicts the definition of # and finishes the proof. B

Since by Theorem 4.7 of [MU], h < 1 if I # N, as an immediate consequence of this
proposition, we get the following

Corollary 4.5. If I # N is a base for a continued fraction system and H"(J;) > 0, then
0 < 1/2. In particular, if I is the set of all prime numbers, then H"(Jr) = 0.

Proof. Since p, < nlogn, it easily follows that if T is the set primes, then 0; = 1/2,
11(1/2) = oo and the system is strongly regular. l

Let us also note the following, in a sense stronger, consequence of Proposition 4.4.

Corollary 4.6. Let the infinite set I be the base for a continued fraction system. If
H"# (Jg) > 0, for every cofinite subsystem F of I, then I has strong density 0.

Proof. Since the Hausdorff measure is a conformal measure, the system is regular. Suppose
that I does not have strong density 0. Therefore by Theorem 2.3 and Theorem 3.5, 6(I) > 0.
Thus, applying Theorem 1.5 and Lemma 3.19 of [MU] we see that there is a cofinite
subsystem F' of I such that hp < 20(F'). This contradicts Proposition 4.4 and finishes the
proof. B

Lemma 4.7. Suppose I C N, I # N and I contains arbitrarily long blocks, then 3" (J;) =
0.

Proof. By way of contradiction, suppose H"(J;) > 0. By Theorem 4.1.7 of [MU], the
system is regular. If I has a block from k to [, then

()" =~ 1i(n) (kD" 1 (R (—k) K -~
(l—k)hnZ:% n2h _(l—k‘)h;nz’lz L = (P =R

If additionally [ < 2k, then (¥)"(I — k)'=" > 27"(I — k)*~". Since h < 1 and since I has
arbitrarily long blocks (I — k — oc) with the property that [ < 2k, we complete the proof
by invoking Theorem 4.1. W

Lemma 4.8. If I CN and h = dimyu(Jr) > oD(I), then H"(Jr) > 0.

Proof. Since h > pD(I), there exists a constant M > 0 such that #I(k,1) < M (I — k)"
for all 0 < k < I. Thus, it follows from Lemma 3.1 that

l
(kD) 3 17(h)
su < 0.
k<l§p2k (I = k)l &= n2h
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If [ > 2k > 0, then (ﬁ’,g;’h = I — kb and therefore, for I > 2k

17(h)
n2h
k n=k

< b i 17(h)

n2h

MN

kl :
k)P Z n2h =

n

i #(IN[27k, 27F1K])

= S — 2]k 2h
H#(I N[k 2J+1k]) M X (27k)h
~ Lk Z 252h < kh Z 22jh
=0
=1 M
=M 2—h == 1— 2—h < 00.
=0

By Lemma 3.4, h > gD(I) > 20 > 6 and, therefore, by Theorem 1.2, I induces a regular
system. Thus, an application of Theorem 4.1 finishes the proof. l

Corollary 4.9 If I is strongly equivalent to {a™ : n € N}, for some a € N;a > 2, then
g‘fh(J[) > 0.

Remark. As it follows from the proof of Lemma 4.8, it suffices to require the existence of
a constant M > 0 such that #I(k,1) < M (I — k)" for all 0 < k < [ which is weaker than
the assumption h = dimy(Jr) > oD (I).

Remark. Since there exist absolutely regular systems I with arbitrarily long blocks, it is
possible to have H"(J;) = 0 for an absolutely regular system.

Theorem 4.10. If 9D(I) < 1, then the strong equivalence class of I contains an element
F with H"* (Jg) > 0. More precisely, there exists a number q > 1 such that if F is strongly
equivalent with I and F D T U[1,q|, then H"* (Jg) > 0.

Proof. In view of Theorem 1.1 there exists ¢ > 1 such that dimyg(Jp) > 2D(I) provided
F D [1,q]. So, we finish the proof applying Lemma 4.8. B

Remarks. Notice that combining Theorem 4.10 and Lemma 3.3(e) and (f) gives rise to
a method of producing a large class of sets I with "7 (J;) > 0. We also note that the
property of being cofinitely regular is invariant under strong equivalency whereas regularity
is not.

Lemma 4.11. Let I C N, k > €?, and | > k. The function gy, defined by t

t
1 . . .
(l(ﬁl]z)t Zn k ;L(;Z) 1S NoON-increasing.
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Proof. One simply calculates

, ki)t ki L 17(n)(1—lnn
dha) = gy () —2) 3o M),

n2t
n==k

If £ > €2, then ln(%) —2>0and 1—1Inn <0 for all n > k& > e2. Thus, 9%, (t) < 0 and
we are done.

One may generalize Proposition 4.4:

Lemma 4.12. Let I C N. If (,(ﬁ%s Z; " I;LSZ) < M < oo, for some s > 0, then s > 20.
Proof. Fix t > s/2. Then

00 2n+1 2n+11
2n(s—t) 1(J 2n(s—t) |
0=3 3 ity <3 et 3o Ml <oy et e
n=0 j=2" j=2mn
< 275M
_71_28_2t<oo.

Thus, ¢t > 0 and letting t N\, s/2, we get s/2> 6. K

Theorem 4.13. If I C N and "1 (J;) > 0, then H"=(Jg) > 0, for every system E D I
such that E\ I is finite.

Proof. As hg > hy, it follows from Theorems 4.1 and 4.11 that SUPg>1 ke Yook 1’2%) <

oo. Since Y, 5 :”;—,(f;) = D>k 112%), for k large enough, supj>, k—he donsk 2@—,(:;) < oo.
Also, the system E is regular, since every system containing a regular system as a cofinite
subset, is regular. Invoking Theorem 4.1 again, we get H"2(Jg) > 0. B

65. Packing measures and dimensions.

We begin this section by giving some necessary and sufficient conditions for the packing
measure to be finite for regular systems. Since the packing measure is more complex than
Hausdorff measure, we must analyze separately those index sets I which are cofinite and
those which are not. It is in the proof of Theorem 5.1 that the use of the harmonic mean
of k and I, H(k,l), in connection with packing measure becomes essential.

Theorem 5.1. For a regular continued fraction system with index set I, the following
three conditions are equivalent:

(a) Ph(J) < 0

(b)

l 00
: (k)" 3 17(n) inf K1Y 17(n)
2]}[115 m ’I’I,2h >0 and %Iglfl; k W > 0.
AL NT£0 n==k n=Fk
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(c)For some kg, ny,

k)" > 14(n)
: . h 1
k0<k1,£l-‘1f-‘n0<l ( h Z nzh > 0 and %gf];;k Z n2h > 0
A(,f—jcrll)m;éw -

n=~k
Proof. Clearly, (b) = (c). Suppose (c¢) holds for some given kg, ng. Since the quantities in
the first infimum in (b) are uniformly bounded away from 0 if [ — k < ng, we need consider
only the quantities where k < ko and [ > k + ng. If the infimum of these quantities is
0, then there is some fixed k < kg and an infinite sequence of I’s such that the quantities
converge to 0. But, the limit of this sequence of quantities is k* x (¢1(h) — 2221 IT’LQ,Z))
which is positive. Thus, (c) = (b).
Now, suppose that condition (a) is satisfied. We will show that the first inequality
n (c) holds with ky = 6 and ng large enough (we will indicate that ny < 49 suffices).
C0n81der k+49 <[, k > 6 and such that A(Ef_ll) NI # (. Let i € I be the point closest to
2kl/(k+1). Then k < i <l and there exists = € (z+1’ )NJr. Set r = min{l/k—=z,x—1/1}.
It can be shown under these conditions that the inequalities 1/(i + 1) — 1/1 > 1/i(i + 1)
and 1/k—1/i > 1/i(i+1) hold. It now follows that r > diam(y;(X)). Also <z—-7r<

z+r< % and therefore

’ l+1

1 1 1 1
B($,T)QJ[C|:—,—]QJ[: U [ }QJ[
[+1"k JelhanI j+177

It also follows from the conditions on k£ and [ that the following inequalities hold
1/k—=1/1 <4(1/k—1/i) and 1/k—1/1 < 4(1/i+1—1/l). From this we get 1/k— 1/l < 4r.
Since condition (2') of Theorem 2.5 with v = 1 holds, we find there is a positive number L
such that

—h7n(B($7T»
)P < n2h 24— 2L

So, the first infimum in (c) is positive To see that the second infimum is positive, note

that for each Kk, w = kM Zn i ITILQZ). Consider two cases. First, suppose that
there exists 2 < j € I such that j — 1 ¢ I. If the infimum is zero, then the assumptions
of Theorem 2.6 are satisfied with Z = {0}, i(0) = j, and R(0) = {1/k : k > 4}. Hence,

Ph(Jr) = oo and we have a contradiction. Otherwise, I = Nor I = N\ {1}. Then 0 = 1/2

and for all kK > 2
17(n) 1 _ -
h I _ 1.h o Lh.1=2h _ 11-h
k E 2n =k E —nzhﬁkk =k"

kl_h’

Since limyg_, o = 00, our infimum is also positive in this case.

Finally, suppose that condition (b) is satisfied. We will show condition (2) of Theorem
2.5 holds. Let M > 0 be the first infimum appearing in (b). Fix v > 1 which will be
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specified later on. Consider ¢ € I and v/i(i +1) < r < 1/i. Set k = [1/(7 + )]+ 1
and | = [1/(} —r)] — 1. Then H% +r<2< 4 l% which equivalently means that
H(k—-1,141) <i< H(k,l+ 2), where H(a,b) = 2ab/a+b, the harmonic mean of a and
b. Since H(k — 1,0+ 1) < H(k,l +1) < H(k,1 +2) and H(k,l +2) < H(k,l +1) +1 <
H(k — 1,1+ 1) + 2, there exists (a,b) € {(k — 1,1 +1),(k,l + 1),(k,l + 2)} such that
|H (a,b) —i| <1 which means that i € A(a,b)NI. Moreover, r < 3 (15 — H%) <4(i-4).

Choose = € JN (1/i+1,1/%) so close to 1/i that B(z,7) D Ué;;[l/j +1,1/4]. We get

m(B(z,r)) (ab) (=2 15(n)
b > 4" (b — a)h ~ n2h )
L (@b (= 15(n) 1 1 1 1
= (b—a)h 7; n2h (k—1)2h (k)2 (I+1)%h (z+2)2h>
p @) (L)) s (ab)"
oo (& e ) R D
Now,
(ab)" (ab)" a b M
b= (h—1% = —apfa—12 = a=1) G—apat = 8

provided that k and [—k are large enough (depending only on M) and then m(B(z,r))/r" >
4="M /2. But k will be as large as we wish by taking 4 sufficiently large and since [ — k >
ri? > %> /2,1 —k will be as large as we wish choosing v large enough. Applying now
Theorem 2.5(2) we finish the case when r < 1/i. In case r > 1/i, set k= [1/(3 +7)]+1 as
before. Then 1/i + r > 1/k and therefore taking = € J N (1/(i + 1),1/4) sufficiently close
to 1/i, we get B(x,r)NJ D (0,1/(k+1))NJ =U,>p41[1/(n+1),1/n]NJ. Thus

m(B(a,r) _ K" & Li(n)
T'h 2 T'h ngﬂ;—l nZh, :

(B0 | gy 3 1I<n>:K_h<k—1>"(kH)h $ L)

n2h E+1 n2h
n=k+1 n=k+1

Taking ¢ large enough, we get & > 2 and 'Z—jri > 1/3. Since the second infimum in (b) is
positive, the proof is completed. B

Lemma 5.2. If P*(J) < oo, then h < 26.
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Proof. Let A > 0 be the first infimum appearing in Theorem 5.1(b). If [ € I is large

enough and k = [2[/3], then 2kk4(r22ll) — 1| < 1. So,

h2l

é k)t ( Z _ #I(21/3,21)  #I(21/3,2l)
2 I<;+21 h n2h = [2h B Ih ‘

Since [ is infinite, there exists an infinite sequence F' C I such that [21/3,21]N[2s/3,2s] = ()
for all distinct elements [ and s of F'. Hence,

1 (h)2) = Zh_zz— 21/321>-Z2h

el IEF n=21/3 leF lEF

Thus, h/2 < 6 and we are done. B
Combining this lemma and Proposition 4.4 we get the following
Proposition 5.3. If H"(J) > 0 and P"(J) < oo, then h = 26.

The proof of the following consequence of Lemma 5.2 is similar to the proof of Theorem
4.9.

Theorem 5.4. Let I C N induce a regular continued fraction system and suppose 6 < 1/2.
Then there ezists a number ¢ > 1 such that if F' is strongly equivalent with I and F D [1, ¢,
then Phr (Jp) =

Proof. In view of Theorem 1.1, there exists ¢ > 1 such that dimyg(Jr) > 207 if F D [1,q].
Now applying Lemma 5.2 along with the fact that strongly equivalent sets have the same
finiteness parameter, ), finishes the proof. B

We shall now prove the following.

Lemma 5.5. If N\ I contains punctured clusters of arbitrarily large lower lengths, then
Pr(Jr) =

Proof. By assumption, I contains an infinite sequence of triples (a,n,b) and a < n < b,
INla,b] = {n} such that min(b—n,n —a) — oo. For each such triple, let r = inf{s:3/4 <
s <1l,a < |[sn],[rn/2r —1] < b—1}, let k = [rn] and | = [rn/2r — 1]. Then k£ — oo and
[ — k — oo. Also, if n is large enough, then A(zﬁll) NI #0,and [k, 1] NI is a singleton
contained in A(Z%). Therefore,

k+1
khlh : Ehih (k1N (k1)
M Z = X —
ki k)l £ n2h k-)h< Kl ) (1= k)r(kl)h
- 4h, th, b lh

SRR T e
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Since max{k,l—k} > /2 and since both numbers k and (I —k) diverge to oo, it follows from
this estimate that My, ; — 0 over such pairs of £ and [. Thus an application of Theorem 5.1
finishes the proof. l

Corollary 5.6. Let I be the set of prime numbers. Then P"(J;) =

Proof. It is known that the primes have arbitrarily large two sided gaps (see [E],[M]). The
corollary follows.

Theorem 5.7. Let I C N be a proper infinite subset of N. If #1(k,1) = (I — k)" for all

k <1 with A(,?_’ill) NI # 0, then the first infimum in Theorem 5.1(b) is positive.

Proof. Consider k£ < [ such that A(,?_’ill) N1 # (). Suppose first that [ < 2k. Then

!
kl 2" 1 _ (I—k)"
)i Z n2h = k.)h#l(k’l)ﬁ 2 = 1.

If [ > 2k, then we can find j such that [k, 1] D [j,2j] and A(245) N A(F435) # 0. Since the

points of A(,?ill) are of order k£ and % = %j, we see that the numbers £ and j are of the
same order. Hence
l ! 2
(k)" 1i(n) _ hnx— i(n) e 11(n)
e R LT D RS g
n=~k n==k n=j
h AN h :h :—2h B\"
= K H#I(5,25) 5 = kT = =
J J
= 1.

This implies the first infimum in Theorem 5.1(b) is finite. W

Lemma 5.8. If liminf,_,, 2= on > 1 — then the second infimum in Theorem 5.1(b) is

positive and 0 = 1/2 .
Proof. It is straightforward to check that 1(1/2) = oco. By summation by parts and the
fact that h > 1/2, we have

2 17(n) =\ 2hS,  Si_
h I h n k—1
k Z n2h >k [Z n2h+1  g2h

§E7

n=~k n=~k
Now, there exists ¢ > 1 — ﬁ such for all sufficiently large k,
17(n) = 1 Sk
h I h k—1
3 |3 - %
n=k n=k

2h S 2h
> L1-h _ Mk-1 S 1.1-h B )
g {%—10 P R T L
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Since 52%-c —1 > 0, this implies the second infimum in Theorem 5.1(b) is positive. W

Corollary 5.9. If I C N has bounded gaps, in particular, if I contains an infinite arith-
metic progression, then P"(J) < oco.

Proof. If I has gaps bounded by d, then the lower arithmetic density of T is > 1/d. Also,
we have #I(k,l) = 1(I — k) for k and | — k large enough. So, by Theorems 5.7 and 5.8,
both infima in Theorem 5.1(c) are positive and P"(J) < co. B

Remark. There are subsets I with bounded gaps and which do not contain an infinite
arithmetic progression.

We shall now formulate a sufficient condition for the first infimum in Theorem 5.1(c) to be
positive.

Proposition 5.10. Let I = {a, : n > 1} be a subsequence of positive integers such
that if a,, — 1 ¢ I, then I N [an,00) D [an,2a,]. Then with h = 1 the first infimum in
Theorem 5.1(c) is positive.

Proof. Let us fix k,l € IN such that A(,?—_’ill)ﬂl # () and [—k > 10. Choose ¢ € A(,f—ffl)ﬂ[ #

() and then fix a cluster of the form [a, 2a] containing c. Let us explore several cases:
Case 1: [k,l] C [a,2a]. Then

l
Kl 1/(n) _ Kl I—k k_1
> = - > —,
l—k%% n2 “l—k 12 172

Case 2: [a,2a] C [k,!]. Since a < ¢ < 2k, we get

4 2a

ki 1r(n) _ Kl 1 kK a 1 Kk 1k _ 1
> - = > —— > —,
l—knz:;C n? _l—knz:;nz_l—k%ﬂ 4(l—k)a = 4a — 8
Case 3: k ¢ [a,2a] and [ € [a, 2a]. SinceceA(z—ﬁ) we getl—czl(;;,f)—l. Since also
2k > c>a >1/2, we get
! !
ki 1r(n) _ Kkl 1 _ Kkl l—a
> —_ > —
l_kr;c n? _l—k‘;nz_l—k‘ [?
k(- ¢) k(L — k) k k k
> — = —
W -k TI0-k0+k) -k I+k I(i—Fk)
1 1
> 2
-5 10
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Case 4: k € [a,2a] and [ ¢ [a, 2a]. Since L > 25—&237 we get

4 2a

kl 17(n) _ 2k(c+1) 1 _ 2k(c+1) 2a—k
> _— > .
l—knz::k n? _c+1—knz::kn2_c+1—k 4a?
2a2(2a — k) _ 1 2a—k >1 c—k
T da2(c+1—k) 2c+1—k  2c+1—k

> —.
— 4

The proof is finished. W

Remark. By Lemma 4.11, the infimum considered in Proposition 5.10 is positive for all
0<h<l1.

We shall now construct two examples showing that in general the two inequalities in The-
orem 5.1(c) are mutually independent.

Example 5.11. Here we construct an example of a regular system showing that the second
infimum in Theorem 5.1(c) may happen to be zero although the first one is positive. It goes
as follows. Fix 1/2 < s < 1. We will define by induction an infinite sequence {a,, : n > 1}
such that for Iy = |J,,~[an, 2a,], the second infimum, taken with this s, in Theorem 5.1(c)
fails to be positive. Indeed, set a; = 1 and suppose that a,, is already defined. The first
restriction on a1 is that a,+1 > 2a,. Then

Since 1 — 2s < 0, we can find a,41 > 2a, so large that

3521—25 1o 1
25 1 ‘el S T

(5.1)

The construction of I is finished. The first infimum in Theorem 5.1(c) is positive by
Proposition 5.10 and the second one is zero by (5.1). We now define the set I adding
to I; an initial segment of the form [1,2p] so long that dimg(J;) > max{s,fr}. Then
I induces a regular system (see Theorem 1.2), I continuous to satisfy the assumptions of
Proposition 5.10 and the second infimum in Theorem 5.1(c) is zero by (5.1), Lemma 4.11
and since IN[2p+1,00) =11 N[2p+1,00). W

Example 5.12. We shall now describe a regular system for which the first infimum in
Theorem 5.1(c) is zero but the second one is positive. Indeed, let I =], ([4",2-4"]U{3-
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2”}) Then the complement of I contains arbitrarily long punctured clusters and therefore
the first infimum in Theorem 5.1(c) is zero by Theorem 5.5. In order to check that the
second infimum is positive, given k > 1, consider n > 0 such that 4" < k < 4"+, Then

2 4n+1
N 3 Lo g, L 1
j=k J - j=4n+1 72 4.4z 16

Since 07 = 1/2 and v1(1/2) = oo, the system generated by I is cofinitely regular. We are
done. H

Example 5.13. Consider I =, -, ([4",2-4"]U{3-2"}). Then I has positive arithmetic

density, unbounded gaps and P"(.J;) < co. This is so, since the assumptions of Proposi-
tion 5.10 are satisfied and since the second infimum in Theorem 5.1(c) is positive which
we check in exactly the same way as in Example 5.12. Notice that the sets I considered
here and in Example 5.12 differ only by a rather thin set {3 - 27} but the limit sets they
generate have substantially different geometrical properties.

Theorem 5.14. If P"(J;) < oo, then limsup,, ., 5—2 > 0.
Proof. By summation by parts,

1 1 Sy Sk—1
Z n2h ZS <n2h (n+ 1)2h> + (I+1)2  (k)2h

n==k

If lim sup,,_, n—;; = 0, then, for each k

1 1 Sk— S, Sk—
h h k-1 n Sk-1
k Z _k [ZS <n2h_ n+1)2h> T g2k ] =sup 5 — =5

n=k n2k nt

But, the right-hand side converges to 0 as £k — co. Thus, the second infimum in Theorem
5.1(b) is not positive and we have a contradiction. H

Corollary 5.15. If I is the base for an absolutely regular system, then P*(Jr) =

Question. Does 0 < P"(Jr) < oo imply liminf,_, 5—2 > 07

Lemma 5.16. Let I C N. If for some s > 0, we have k* Zn i 17;9:) > L > 0, for all
k>1, then s < 26.

Proof. For all £ > 1,

>

n>k

1
n>k

Therefore, 11 (s5/2) = 3220, 1) — 5 S0, 0 > 5/2. B

n=1 ns
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Theorem 5.17. If I C N and P (J;) < oo, then P"E(Jg) < oo, for every cofinite reqular
subsystem E of I.

Proof. Let ko be such that E N [kg,00) = I N [kg,00). Using Lemma 4.11 we see that
condition (c¢) of Theorem 5.1 is satisfied for the system with base E. Thus, P (Jg) < oo.
|

We finish this section with its most constructive theorem whose proof shows how to produce
sets of arithmetic density zero, but whose limit sets have finite packing measure.

Theorem 5.18. There exist infinite sets I C IN such that the induced continued fraction
systems are strongly regular, H"(Jr) = 0, P"(J;) < oo, and both numbers 0; and hy are
arbitrarily close to zero.

Proof. Fix an integer p > 4 and 3 < a < p— 1. We will show that if the integer w is large
enough, then the systems generated by the sets of the form

I=1I(p,a,w)= U [n? 4+ n?]

n>w

satisfy the requirements of our theorem. We shall show first that the system generated by
the set of entries I = I(p, o, w) is strongly regular and 07, o ) = 1+O‘ . Indeed, this follows
from the following computation

nP+4+n®

1 1
Z Z ZTptn :Zant—a

n>w j=npP n>w n>w

Let, as usual, h denote the Hausdorff dimension of J;, the limit set generated by the
set I(p,,w). By Lemma 4.7, H"(J;) = 0. In order to prove that P"(J;) < oo, we
shall demonstrate that the assumptions of Theorem 5.1(c) are satisfied. Indeed, in order
to verify that the second infimum in Theorem 5.1(c) is positive it suffices to check that

liminfy_ oo My, > 0, where M}, = kP? D onsk Z"p+" 2" 'We do it as follows.

j=np

nP4+n®
M, = kph § : Z j—2h - kph § :n—thna — kph, Z na—th
n>k j=nP n>k n>k
[e%e} kph
— kph $a—2ph dr = [$a—2ph+1]lc;o-
k a—2ph+1

Notice now that since h > 07 = ;’ we have a—2ph+1 < 0, and therefore M}, =< k> Ph+1,
Hence

a.l liminf My > 0& o> ph+ 1.

k—o0
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In order to check that the first condition of Theorem 5.1(c) is satisfied, set

()" <~ on
n=~k

We want to show that My ; with A(,?_’ill) N I(p,w,a) # 0 are bounded away from zero.

Let n be the only integer with (n — 1)? < k < nP, and let m be the only integer with
mP <[ < (m+ 1)P. We shall consider several cases:

Case 1. m > n + 2. Then we may estimate the number My ; from below as follows.

h ml]+]

) Lt R
My > h Z Z s2h = l(— )k')h Z j2ph.7
]j=n

j=n s=jP

h m—1 h m—1
s —2 h (kl) a—2ph
l— i Z P k)h/n x* P dx

T - k) a—2ph+1 ((m — 1)o2phtl _ po=2phly

§ ((m + 1§:m)(n — 1)p)h ((m — 1)a—2phtl _ po=2phtly
(rm)™” b py  Lta—zen

= = o (=D =)

for some z, where n? < x < (m — 1)P. We continue the above estimates as follows.

i s,

Since 1 + a — 2ph — p < 0, we get

l1+a—2ph—p

My = (nm)P"m » (mP — pP)L=h
- pPh (mP — np)l—hm—“"‘_z”’;”zh‘p
Thus, if
a.2 1+a—2ph+p*h—p>0,

then the quantities My ; with m > n 4 2 are bounded away from zero.
Case 2a. We now assume that (n —1)? <k <nP and (n+ 1)+ (n+1)* <1 < (n+ 2)P.

Then
kL\" (n+ 1)« n2ph n
My, >~ - .
k,l — <l — k) n2ph — (l _ k‘)h anh
n< n< _n

) (= k)" i ((n+2)P = (n— l)p)h ~ -1k’

«
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So, if
a.3 a—(p—1)h <0,

then M}, ; is bounded away from 0.

Case 2b. (n—1)P <k <nPand (n+1)? <l < (n+ 1)’ + (n+ 1)®. We shall show that

in this case if n is large enough, then A(2%)N T = (. And indeed, for this intersection to

K+l
be empty it suffices to know that

2kl 2kl
R | S | + 1)P.
n n <k ] and ol < (n )

But the harmonic mean i—ffl takes on its minimum if £ and [ are minimal and it takes on

its maximum if £ and [ are maximal. Thus our task reduces to check that
p P InP 1)P 1)
2(n1)?(n + 1) ! and n?((n+ 1) + (n+ 1)*)

p a< _
S )P+ (1) WP+ (n+ 1P+ (n+ 1)

< (n+1)P.

provided n is large enough. This can be verified by a straightforward computation.
Case 3. (n—1)? <k <nP and n? <[ < (n+ 1)P. We shall consider three subcases.
Case 3a. n? +n® <[ < (n+ 1)P. Then

[P KO\" O G
e N e (S T

«

_on C n _n
C=F" " (n+1)p = (n—1p)" =D
:na—(p—l)h,.
So, again if &« — (p — 1)h > 0, then we are done.
Case 3b. n? <[ <nP+n* and (n —1)? + (n — 1) < k. Then
ko\" 1 [ —nP
My [ ) = (—nP+1)s .
’“”—(l—k> i (L= ) =
But since A(,?—_’ill) NI # (), we conclude that ;f—ffl >nP—1. So,l—nP >1[1—q— 1. But since
l—,?—_’ill > (I —k)/3, we get
Li—-k)—1
My, =3 — =< (1—k)" =1

Case 3c. n? <l <nP+n%and (n—1)? <k < (n—1)?+ (n—1)* Then for all n large
enough
2nP(n —1)6p > (n? + (n — 1)?) ((n = 1)? + (n — 1)* + 1)
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or
2nP(n — 1)P

m>(n—l)p+(n—l)a+l.

So,

2kl _ 2mP(n—1)P
> — 1P+ (n-1)"+1
s g s s Ml Gl

and consequently A(Zi’l) > nP. But then

BO\" 1 I—q\"_ /1\"
My ;=< —— (=)= [ —2 > | = I — k) >=1.
and we are done in this case.

Case 4. (n—1)? < k <[ < nP. In order for A(,?ﬁllﬂl #£0, (n—1) <k < (n—1)P+(n—1)~
Case 4a. | < (n—1)? + (n — 1)®. Then

My, = (1 ' L(l—l<:)>(l—k)1—h>1
MEENI—k) e - =

and we are done.
Case 4b. (n — 1)? + (n — 1)* < [. Let ¢ = 2. We then get

P
KoO\" 1 ) .
My, = <l—k> -((n_l)p+(n_1)a)2h((n—1) +(n—1)%—k)

(mn—1)P+(n—-1)*—k qg—k
= R SRy

Now, ¢ —k > (I — k)/3, so My, = (I — k)}=" > 1 and we have finished this last case.

Since a« > pf + 1 and h — 0 as w — oo, if w is large enough a > ph + 1. The proof is
completed. H

§6. Dimension relations.

In this section, we give some examples of strongly regular systems with dimg(J) < dimp(.J)
and some examples with equality of these two dimensions.

Theorem 6.1. Let I, = {n? : p > 1}. If p > 2, then dimp(J;)) = hr, > 1/p, H"(Jr,) >0
and P"(Jp,) =
Proof. Since N\ I, has punctured clusters of arbitrarily long lower lengths, P"(J;,) = oo,

follows from Lemma 5.5. We will show that h > 1/p by showing that P(1/p) > 0. Since it is
easy to calculate that dimp(0(0,1,)) =1/(p+1), it would then follow from Theorem 2.11
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that the box and Hausdorff dimensions of .J;, are equal. First, we estimate 9,41(t) from

below as follows:
)= DI = Y = 2 D
weln bel

we]’n+1 we[n+1

1 1 1
=2 (an_l/qn)zt] s W)Zm

weln In berl berl

gn+ 1 an+Qn 1

Therefore, by induction we have

(g8 (o)

bel
. 1 0o 1 2/p
So, if ) yer @roe > 1, then P(t) > 0. It can be checked that )~ , (kp—H> > 1, for all
p > 2. Finally, since gD(I) = 1/p, it follows from Lemma 4.8 that H"(J; ) > 0. ®

Theorem 6.2. For every p > 2, there exists ¢ > 1 such that ifl > q and I; = {n? : n >},
then dzmH(Jl) < dz_mB(Jl) < MB(JZ) = d’me(Jl)

Proof. First notice that for every | > 1, 0, = 1/2p and I; is a regular subset of N.
According to Theorem 1.5, lim;_, o dimu(J;) = 6; = 1/2p and since 1/2p < 1/(p+1), there
exists ¢ > 1 so large that dimy(J;) < dimg(J;) for all I > g. The last two equality signs in
Theorem 6.2 are consequences of Theorem 3.1 in [MU] and Theorem 2.11. B

Remark. Notice that in contrast to the case p > 2, for p = 1 and every system strongly
equivalent with Iy, we have dimu(J;) = dimgp(J;) = dimp(J;). This follows from Corol-
lary 5.9 and Theorem 3.1 in [MU].

Theorem 6.3. If S = {¢; : i € I} is a conformal iterated function system and the index
set I is infinite, then for every 0 < t < 0 there exists a set Iy C I such that dimu(Jr,) = t.
Proof. Without loosing generality we may assume that I = N. First we shall show that
for every set E C N such that N\ F' is infinite and for every € > 0 there exists k € N\ F
such that dimu(Jpugry) < dimu(Jg) + e. Indeed, let h = dimyp(Jg). By Theorem 1.2,
Pg(h+¢) < 0 and by the definition of pressure there exists 0 < a < 1 and jo > 1 such that
Ve j(h+e) <al,if j > jo. But, for every k € N\ E, we have

VEu{k}n(h+€) <Z< >¢E,J(h+€)||¢ ||(n ) (h+e) g (n—j)(h+e)

Jo

n . .
<2 <j>¢E,j(h +e) K= D0F) | || (000 Fe) g (a4 (K[| |[) )"
§=0

< jo sup {p,;(h + )y K" 0F) g | (0=I00HE) 4 (a 4 (K| |) ).
0<j<
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Since ||¢}|| is sufficiently small for & sufficiently large, we have ¢¥gyg},n(h +¢) < 1 for all
n large enough. This implies Pgyy(h +¢€) < 0 and consequently dimu(Jrugy) < b +e.
The claim is proved.

Passing to the actual proof, fix 0 < ¢t < fy. We shall build the set I; by constructing
inductively an increasing sequence I,, of finite subsets of I satisfying dimg(J;,) < t for
all n > 1. We then will show that setting I; = |J,,~, In we have dimu(Jr,) = t. Indeed,
let I; = {1} and suppose that I,, is constructed and dimg(Jr,) < t. By the claim proved
above there exists k& > max{I,} such that dimu(Jr,uqy) < t. Let k,41 be such minimal
k and let I,,11 = I,, U {kp41}. The inductive construction is finished. Let I = (J,~; In.
This set is infinite. By Theorem 1.2 dimg(Jr,) < t. If the set N\ I; were finite, then
because of Theorem 1.3 dimy(J;,) > 0N > t, and we would have a contradiction. Thus,
N\ I; is infinite. If dimg(Jr,) = t, we are done. Otherwise, due to our claim we can
find an element ¢ € N\ I; such that k, 1 > ¢ > k, and dimu(J;,uqq) <t . But then
dimu(Jr,u(qy) < dimu(Jr,ugqy) < t which contradicts the choice of k11 and finishes the
proof of our theorem. H

In general Theorem 6.3 fails to be true for ¢ > 6. Indeed, below we provide an example.

Example 6.4. Consider a system of similarity maps on the interval [0,1] given by two
generators ¢ and ¢ with contraction coefficients 1/4 and the maps ¢,, with with contraction
coefficients ¢, where ¢ is so small that the sets ¢([0,1]), ¥([0,1]), and ¢,([0,1]), n > 1
are mutually disjoint. Then dimp(Jipy) = 1/2 but the Hausdorff dimension of any
subsystem missing either ¢ or ¢ is bounded from above by the solution to the equation
(1/4)t +ct/(1 —ct) = 0. But ¢t = t(c), the solution to this equation converges to 0 if ¢ — 0.
Therefore if ¢ is taken so small that ¢t = t(c) < 1/4, we have a gap of Hausdorff dimension
between t(c) and 1/4.

Example 6.5. We give an example of an irregular continued fraction system. First notice
that if I C N is an index set, we may obtain upper bounds on the the functions v, (t) by a
similar method to that given in Example 6.1 for obtaining lower bounds. Thus, using the
Bounded Distortion Property with K = 4 and using the facts that b < b+ ¢gn—1/q, < b+1
and b+ 1 < 2b, we have

1 " —(n—1)t 1 "
(zﬁ) > g(t) > 40 (zb—) |
bel bel

From this we have

1 1
log (Z ﬁ) > Pr(t) > —tlog4 + log (Z ﬁ) .

bel bel
In particular, if p > 1/2 and we set I = {[n(logn)?] : n > no}, then >, _; + < 1, provided
ng is large enough and Y-, ., 7= = 00, if s < 1. Thus, P;(1/2) < 0 and Py(t) = oo if t < 1/2.
So, this system is irregular.
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§7. Some Problems.

1. Ts there a nontrivial subset T of N such that 0 < H"(J;) and P*(J;) < oo? If
there is such an I, we know that 0 < limsupn%oo% < 0.

2. Is there a Hausdorff gauge function g of the form g(t) = t"L(t), where L is a
slowly varying function such that 0 < H"(Jr) or P*(Jr) < oo, where I is the set of prime
numbers? Since some detailed information is known about the distribution of the two sided
gaps in the primes one can at least determine a class of g for which these measures are
either 0 or oo.

3. By Theorem 6.3 we know that for every 0 < t < 1/2 there exists a continued
fraction system whose limit set has dimension t. We conjecture that this remains true for
all t € (0,1].
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