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x
� Introduction� Setting and Notation

Let I be a nonempty subset of N � the set of all positive integers such that I �� N �
Let JI be the set of all irrational numbers z whose standard continued fraction has the
form

z �
�

b� �
�

b��
�

b��
�

���

where each partial denominator bi is an element of I� We concern ourselves here with the
geometric measure theoretic properties of the set J � JI � In particular� we are interested
in the Hausdor�� packing� and box dimension of J and corresponding measures� It is easy
to see �comp� �MU�� Section �
 that J is the limit set of the conformal iterated function
system generated by the maps �b�x
 � ���b� x
� b � I� Our investigations of J are based
on this representation� We call the family S � f�b � b � Ig a continued fraction system
and I the base for the continued fraction system�

The paper is organized as follows� Later in this section we recall from �MU� some
major features of general conformal iterated function systems� In section �� we present
some new results for general conformal iterated function systems� In particular� we intro�
duce the absolutely regular systems which naturally occur among the continued fraction
systems� For regular systems� we obtain some useful necessary and su�cient conditions for
the Hausdor� measure of the limit set J to be positive and also necessary and su�cient
conditions for the packing measure to be �nite where the dimension parameter for both of
these is the Hausdor� dimension of the limit set J � We also give a simple and useful char�
acterization of the packing dimension of the limit set in terms of the Hausdor� dimension
of J and the box counting dimension of the set of �rst iterates of a point in the limit set� J �
In section �� we apply these results to continued fraction systems� It turns out that when
these characterizations are applied to a continued fraction system� these results have direct
interpretations in terms of some arithmetic density properties of the set I� So� in section
�� we discuss some of these density notions� Some of these notions do not seem to have
been discussed before� Again� in section �� we give the relationship between these density
properties and Hausdor� measure and dimension� In section 	� we give the corresponding
properties for packing measure and dimension� In section �� we examine some particular
continued fraction systems� The results of this paper include a detailed analysis of those
continued fraction systems when the index set I is an arithmetic progression� the set of
powers of a given integer� the set of all integers raised to a given exponent� and the set of
prime numbers� Finally� we end the paper with some problems which remain unsolved�

Many papers have been written on estimating or determining the Hausdor� dimen�
sion of particular sets of continued fractions� The most detailed work has concerned the
case where the index set I is �nite� We mention here the papers of T�J� Cusick �Cu�� I�J�
Good �Go�� and D� Hensley �He�� However� none of these papers have dealt with the �ner
geometry of these sets� e�g�� whether the Hausdor� measure in the dimension is positive or
�nite� but have mainly concentrated on other interesting aspects of these �nite systems�
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Also� none of these papers have dealt with the corresponding properties of the packing
measure� It is after all a relatively new concept introduced independently by D� Sulli�
van and C� Tricot in the ���
�s� We shall be using several theorems concerning packing
measures as presented in Mattila�s book �Ma�� If the index set I is �nite� then both the
Hausdor� and packing measures are positive and �nite and each is up to a multiplicative
constant the conformal measure corresponding to the system� Here we concentrate on new
phenomena which occur when the index set I is in�nite� In this paper� we demonstrate
that there are many continued fraction systems where the Hausdor� measure is trivial but
the packing measure is� geometrically speaking� the correct measure or conversely� We also
provide examples for which none of these measures is nontrivial�

We now recall the setting and some of the results developed in �MU� which will be used
in this paper� Let X be a nonempty compact subset of a Euclidean space Rd � Let I be
a countable index set with at least two elements and let S � f�i � X � X � i � Ig be
a collection of injective contractions from X into X for which there exists 
 � s � � such
that ���i�x
� �i�y

 � s��x� y
 for every i � I and for every pair of points x� y � X� Thus�
the system S is uniformly contractive� Any such collection S of contractions is called an
iterated function system� We are particularly interested in the properties of the limit set
de�ned by such a system� We can de�ne this set as the image of the coding space under a
coding map as follows� Let I� �

S
n�� I

n� the space of �nite words� and for � � In� n � ��
let �� � ��� � ��� � � � � � ��n � If � � I� 	 I� and n � � does not exceed the length of ��
we denote by �jn the word ���� � � � �n� Since given � � I�� the diameters of the compact
sets ��jn�X
� n � �� converge to zero and since they form a descending family� the set

��
n��

��jn�X


is a singleton and therefore� denoting its only element by 	��
� de�nes the coding map
	 � I� � X� The main object of our interest will be the limit set

J � 	�I�
 �
�

��I�

��
n��

��jn�X
�

Observe that J satis�es the natural invariance equality� J �
S
i�I �i�J
� Notice that if I

is �nite� then J is compact� However� our main interest centers on systems S which are
in�nite� Some of the essential properties of J depend upon an object which appears only
when I is in�nite� Let X�

� the �asymptotic boundary�� be the set of limit points of
all sequences �i�X
� i � I �� where I � ranges over all in�nite subsets of I� The geometric
behavior of the system at X�

 directly a�ects the geometric properties of the limit set
J � For an in�nite continued fraction system the only element of X�

 is 
�

An iterated function system S � f�i � X � X � i � Ig� is said to satisfy the Open Set
Condition �abbreviated �OSC

 if there exists a nonempty open set U � X �in the topology
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of X
 such that �i�U
 � U for every i � I and �i�U
 � �j�U
 � 
 for every pair i� j � I�
i �� j�

An iterated function system S satisfying OSC� is said to be conformal �c�i�f�s�
 if the
following conditions are satis�ed�
�a
 X is a compact connected subset of a Euclidean space Rd and U � IntRd�X
�

�b
 There exist 
� l � 
 such that for every x � �X � R
d there exists an open

cone Con�x� ux� 
� l
 � Int�X
 with vertex x� direction vector ux� central angle
of Lebesgue measure 
� and altitude l�

�c
 There exists an open connected set X � V � R
d such that all maps �i� i � I� extend

to C��� di�eomorphisms on V and are conformal on V �
�d
 Bounded Distortion Property�BDP
� There exists K � � such that j����y
j �

Kj����x
j for every � � I� and every pair of points x� y � V � where j����x
j means
the norm of the derivative�

Each continued fraction system S � f�b�x
 � ���b � x
 � b � Ig satis�es properties �a
 �
�c
� We take X � �
� ��� For V � we take an open interval such that X � V � ������ 	��
�
To check the bounded distortion property� we note that if � � �b�� ���� bn
� then ����x
 �
���
n��qn � xqn��


�� Thus� j����y
j � �j�
�
��x
j� for every pair of points x� y � X� So� we

may take the distortion constant K as close to � as we like by adjusting the open interval
V� There is one small point about these continued fraction systems� If � � I� then the
system is not uniformly contractive� since ����

 � ��� However� this is not a real problem�
since the system of second level maps� f�b�b� � b�� b� � Ig� has the same limit set and is
uniformly contractive�

As was demonstrated in �MU�� conformal iterated function systems naturally break into
two main classes� irregular and regular� This dichotomy can be determined from either
the existence of a zero of a natural pressure function or� equivalently� the existence of a
conformal measure� The topological pressure function� P is de�ned as follows� For every
integer n � � de�ne


n�t
 �
X
��In

jj���jj
t�

and

P �t
 � lim
n��

�

n
log
n�t
�

For a conformal system S� we sometimes set 
S � 
� � 
� The �niteness parameter� �S�
of the system S is de�ned by infft � 
�t
 �
g � �S � In �MU�� it was shown that the topo�
logical pressure function P �t
 is non�increasing on �
�

� strictly decreasing� continuous
and convex on ���

 and P �d
 � 
� Of course� P �

 � 
 if and only if I is in�nite� In
�MU� �see Theorem ���	
 we have proved the following characterization of the Hausdor�
dimension of the limit set J � which will be denoted by dimH�J
 � hS �

Theorem 
�
� dimH �J
 � supfdimH�JF 
 � F � I is �niteg � infft � P �t
 � 
g� If
P �t
 � 
� then t � dimH �J
�
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We called the system S regular provided that there is some t such that P�t
 � 
� It follows
from �MU� that t is unique� Also� the system is regular if and only if there is a t�conformal
measure� A Borel probability measure m is said to be t�conformal provided m�J
 � � and
for every Borel set A � X and every i � I

m��i�A

 �

Z
A

j��ij
t dm

and
m��i�X
 � �j�X

 � 
�

for every pair i� j � I� i �� j�

A system S � f�igi�I is said to be strongly regular if 
 � P �t
 �
 for some t � 
� As an
immediate application of Theorem ��� we get the following

Theorem 
��� A conformal system S is strongly regular if and only if h � ��

In �MU� we called a a system S � f�igi�I hereditarily regular or co�nitely regular provided
every nonempty subsystem S� � f�igi�I� � where I � is a co�nite subset of I� is regular� A
�nite system is co�nitely regular and for an in�nite system� we showed in �MU� that whether
a system is co�nitely regular can be also determined from the pressure function�

Theorem 
�	� An in�nite system S is co�nitely or hereditarily regular if and only if
P ��
 �
� 
��
 �
� ft � P �t
 �
g � ���

� ft � 
�t
 �
g � ���

�

Theorem 
��� Every co�nitely regular system is strongly regular�

We also need another characterization of the �niteness parameter �� Theorem ���� of �MU��

Theorem 
�
� �S � inffdimH�JS�
 � S
�is a co�nite subsystem of Sg�

�� Results for general conformal systems�

First� let us introduce another subclass of the regular conformal systems�

De�nition� A system S � f�igi�I is said to be absolutely regular if and only if every
nonempty subsystem of S is regular�

The following two statements are obvious�

Theorem ��
� A system S is absolutely regular if and only if every non�empty subsystem
of S is co�nitely regular�

Corollary ���� Every absolutely regular system is co�nitely regular�
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Like co�nitely regular systems� whether an in�nite conformal system is absolutely regular
can also be completely determined by the behavior of the pressure function�

Theorem ��	� Let S � f�igi�I be in�nite� The following conditions are equivalent�
��
 S is absolutely regular�
��
 �S � 
�

Proof� ��
 � ��
� Assume ��
� Then for every in�nite subsystem S�� �S� � 
� and since�

S��

 �
� S

� is regular� Thus� S is absolutely regular�
��
 � ��
� Suppose � � �S � 
� Since S is in�nite� we may assume that I �

N � f�� �� �� � � �g� De�ne inductively In� an increasing sequence of �nite subsets of I� as
follows� Set I� � 
 and suppose that In has been determined� Let Mn � max In� Since


����� ��n

 � 
� there exists a �nite subset �n of �Mn � ��

 such that k�
�
ik
����n �

���n�� for all i � �n and �
n �

X
i��n

k��ik
������n� � �n��� Then by setting In�� � In	�n�

we �nish the recursion for the sequence fIngn��� Set F �
�
n��

In� By construction� F is

in�nite� Since
X
i��n

k��ik
� � ���n��

X
i��n

k��ik
������n� � ��n� we conclude that


F ��
 �
X
n��

X
i��n

k��ik
� �

X
n��

��n � � �
�

Also for every 
 � t � � there exists k such that t � ���� ��k
� Thus�


F �t
 �
X
n�k

X
i��n

k��ik
t �

X
n�k

X
i��n

k��ik
������n� �

X
n�k

�n �
�

Hence� �F � � and 
F ��F 
 � � � 
� Therefore� the subsystem generated by F is not
co�nitely regular and the system S is not absolutely regular�

For a regular conformal system with P �h
 � 
� we know that Hh�J
 � 
� where Hh�J

denotes the Hausdor� h�dimensional measure� It is possible for the measure to be zero� In
Lemma ���� of �MU� we gave a su�cient condition for Hh�J
 � 
� In the next theorem
we extend this result� by giving some necessary and su�cient conditions for the Hausdor�
measure to be positive�

Theorem ���� Let S � f�igi�I be regular� Then the following statements are equivalent�
��
 Hh�J
 � 
�

���
 �
 � L � 
 �� � � such that for all i � I and for all r � �diam�i�X
� there
is some x � �i�X
 such that�

m�B�x� r

 � Lrh�

��
 �
 � L � 
 �� � � and there exists a �nite set F such that for all i � I n F
and for all r � �diam�i�X
� there is some x � �i�X
 such that�

m�B�x� r

 � Lrh�
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���
 �
 � L � 
 �� � � there exists a �nite set F such that for all i � I n F and
for all r � �diam�i�X
� there is some x � �i�X
 such that�

m�B�x� r

 � Lrh�

��
 �
 � L � 
 �� � � and there exists a �nite set F such that for all i � I n F
and for all r � �diam�i�X
� for all x � �i�X
 �

m�B�x� r

 � Lrh�

���
 �
 � L � 
 �� � � there exists a �nite set F such that for all i � I n F and
for all r � �diam�i�X
� for all x � �i�X
 �

m�B�x� r

 � Lrh�

Proof� Obviously ���
 � ��
 � ��
 � ���
 and ���
 � ���
 � ��
 � ���
� It is straight�
forward to show that ���
 � ��
� Lemma ���� of �MU� shows that ���
 � ��
� In order to
show that ��
 implies ���
 suppose that ���
 fails� Then for every L � ��disth�X� �V 
 there
exists j � I such that m�B�x� r

 � Lrh for some x � �j�X
 and some r � diam��j�X

�
Let J� be the image under 	 of all words of I

� such that each element of I occurs in�n�
itely often� Consider z � J�� z � 	��
 � I� such that �n�� � j for some n � �� Then
there exists zn � �j�X
 such that z � ��jn�zn
� Since r � ��L

��h � dist�X� �V 
� all the
geometric consequences of the bounded distortion property listed in Section � of �MU� are
applicable to the ball B�x� r
� In particular� we get j��jn�zn
� ��jn�x
j � Djj���jn jjr and

B
�
��jn�x
� jj�

�
�jn
jjr
�
� ��jn�B�x� r

� Therefore� B�z� �D � �
jj�

�
�jn
jjr
�
� ��jn�B�x� r

�

By conformality and �BDP
� this implies that

m
�
B�z� �D � �
jj���jn jjr

��
� K�hjj���jnjj

hm�B�x� r

 � K�hLjj���jnjj
hrh

�
�
�D � �
jj���jn jjr

�h L

Kh�D � �
h
�

Using Theorem �����
 of �MU�� we get Hh�J�
 � C�L� for some constant C independent
of L� Now� letting L � 
 we conclude that Hh�J�
 � 
� By Theorem ��� and Corollary
���� of �MU�� m�J n J�
 � 
� This in turn� in view of Lemma ��� of �MU�� shows that
Hh�J n J�
 � 
� Thus� Hh�J
 � 
 and therefore ��
� ���
� The proof is �nished�

Similarly� we have some necessary and su�cient conditions for the packing measure to be
�nite� We denote the h�dimensional packing measure by Ph� For its de�nition and other
informations about packing measures and dimensions the reader may look at the book �Ma�
by P� Mattila for example�

Theorem ��
� Let S � f�igi�I be regular� Then the following statements are equivalent
��
 Ph�J
 �
�



Mauldin and Urba�nski Page 	

���
�L � 
�� � 
�� � � such that for all i � I and for all r with �diam�i�X
 �
r � � there is some x � �i�X
 such that

m�B�x� r

 � Lrh�

��
 �L � 
�� � 
�� � � and there exists a �nite set F such that for all i � I n F
and for all r with �diam�i�X
 � r � � there is some x � �i�X
 such that

m�B�x� r

 � Lrh�

���
 �L � 
�� � 
�� � � there exists a �nite set F such that for all i � I n F and
for all r with �diam�i�X
 � r � � there is some x � �i�X
 such that

m�B�x� r

 � Lrh�

��
 �L � 
�� � 
�� � � and there exists a �nite set F such that for all i � I n F
and for all x � �i�X
 and for all r with �diam�i�X
 � r � �

m�B�x� r

 � Lrh�

���
 �L � 
�� � 
�� � � there exists a �nite set F such that for all i � I n F and
for all x � �i�X
 and for all r with �diam�i�X
 � r � �

m�B�x� r

 � Lrh�

Proof� It is straightforward to show that ��
 � ���
� Lemma ���
 of �MU� shows that
���
� ��
� Clearly� ���
� ��
� ��
 and ����
� ���
� ��
� Finally� by way of contradic�
tion� let us assume ��
 holds and ���
 fails� Fix L � 
� � � 
� Then there are � � �� i � I
and �diam�i�X
 � r � � such that for some x � �i�X
� we have

m�B�x� r

 � Lrh�

Since the system is regular� there is a Borel subset B of J with m�B
 � � and such that
each point z of B has a unique code� �� and 	��n��

 is in the ball B�x� r��
 for in�nitely
many n�s� For such a point z and integer n � �� we have

m���jn�B�	��
n��

� r��


 � k���jnk

hm��B�	��n��

� r��
 � k���jnk
hLrh�

But� by the bounded distortion property of the system�

��jn�B�	��
n��

� r��

 � B�z� k���jnkK

��r��
�

So� m�B�z� k���jnkr��K

 � �k���jnkr��K

h��K
hL� Using Theorem �����
 of �MU�� we

get Ph�J
 � Ph�J � B
 � ��K
�hL��� Now� letting L � 
 we get Ph�J
 � 
� This
contradiction �nishes the proof�
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We close this section with a stronger form of Lemma ���	 of �MU�� This improved version
will be directly applied to continued fraction systems in Section 	� For completeness� and
to avoid confusion� we have included a proof since part of the hypothesis was unfortunately
left out of the statement of Lemma ���	�

Theorem ���� Let f�i � i � Ig be a regular conformal iterated function system� Suppose
that there exists a subset 
 �� Z � X�

 such that for every z � Z there exist i�z
 � I and
a set R�z
 � �
� dist�X� �V 

 such that

�a� �i�z��B�z� supR�z

 � J
 � �i�z��B�z� supR�z


 � J �
�b� �i�z��B�z� supR�z

 � X�

�c� inffm�B�z�r��
rh

� z � Z� r � R�z
g � 
�

Then Ph�J
 �
�

Proof� First notice that since �i�z� is one�to�one� �i�z��F �J
 � �i�z��F 
�J� for all z � Z
and all F � B�z� supR�z

� Let J� � 	���
� where �� � � is the set of all sequences
containing each �nite word in�nitely often� Of course� J� has full measure� Fix � � 

and take z � Z and r � R�z
 such that m�B�z� r

 � �rh� Fix x � 	��
� � � ��� Then
there exists q � � such that ��q���X

 � B�z� r��
 and �q � i�z
� Now� x � ��jq �	��

q�

�

where � is the shift transformation on the coding space� IN � So� using �BDP��
 of �MU��
we get

m�B�x�K��jj���jq jjr��

 � m���jq �B�	��
q�
� r��

 � m���jq �B�z� r

�

Using the facts that ��q �B�z� r

 � X� and condition �a
 holds� we have

m���jq�B�z� r


 � m���jq�����q �B�z� r


 �

Z
��q �B�z�r��	J

jj���jq��jj
h dm

�

Z
��q �B�z�r�	J�

jj���jq���x
jj
h dm�x


�

Z
B�z�r�	J

jj���jq�����q �y

jj
hjj���jq�y
jj

h dm�y


�

Z
B�z�r��	J

jj���jq jj
h dm � jj���jq jj

hm�B�z� r

 � jj���jq jj
h�rh

� ��K
���jj���jq jjr

h���K
h�

Since we may require q to be as large as we wish and since r � 
 is bounded from above�
the numbers ��K
��jj��jq jjr converge to zero and we �nish the proof applying Theorem
�����
 of �MU��

Recall that the Hausdor� dimension of a probability measure m is de�ned by dimH �m
 �
minfdimH �E
 � m�E
 � �g� In Theorem ���� of �MU� we have shown that the Haus�
dor� dimension of the conformal measure of every regular system for which the series
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P
i�I � log�jj�

�
i
jj
jj�

�
ijj
h converges is equal to the Hausdor� dimension of the limit set� In

the proof of Corollary ���	 of �MU� we have demonstrated that this class of systems com�
prises all the strongly regular systems� Here we shall prove a complementary result for the
packing dimension of the conformal measure m� dimP �m
 � minfdimP �E
 � m�E
 � �g�

Theorem ���� If S is a regular system andthe series
P

i�I � log�jj�
�
i
jj
jj�

�
ijj
h converges �

then dimP �m
 � dimH �J
 � dimH�m
�

Proof� We shall �rst show that

����
 lim
n��

log�jj���jn jj


log�jj���jn�� jj

� ��

for almost every � � I�� Indeed� applying Birkho��s ergodic theorem similarly as it has
been done in the beginning of the proof of Theorem ���� of �MU�� we conclude that for
almost every � � I� thelimit

lim
n��

�

n
log
�
m���jn�J



�
exists and is independent of �� Since for all � � I� and all n � �� K�hjj���jn jj

h �

m���jn�J

 � jj���jn jj
h� formula ����
 is therefore proved� Denote the set of points satisfying

����
 by Z� Fix � � 
� Consider � � Z� For n� su�ciently large� we have log�jj���jn jj
 �

����
 log�jj���jn��jj
 for all n � n� or equivalently jj���jn jj�jj�
�
�jn��

jj � jj���jn�� jj
� � For every

r � 
� let n be the least number satisfying B�	��
� r
 � ��jn�X
� Then m�B�	��
� r

 �

K�hjj���jn jj
h and r � Djj���jn�� jj� where D is given by �BDP��
 of �MU�� If r is small

enough� then n � n� and therefore

m�B�	��
� r

 � K�hjj���jn�� jj
h �

jj���jnjj
h

jj���jn��jj
h
� �DK
�hD�h�rh�h��

Thus� dimP �	�Z

 � h � h� and since m�Z
 � �� we conclude that dimP �m
 � h� Since
dimP �m
 � dimH�m
� the proof is �nished�

Finally� we close this section by characterizing the packing dimension of the limit
set J of a conformal iterated function system� As recalled in Theorem ���� we showed in
�MU� that the Hausdor� dimension of J is given by dimH�J
 � infft � P �t
 � 
g� It turns
out the packing dimension is determined by the box counting dimension of the �level one�
portion of the orbits of points of J and the Hausdor� dimension of J � For x � X�n � N �
set Ln�x
 � f���x
 � � � Ing� We recall that Nr�E
 is the minimum number of balls of
radius � r needed to cover a set E� We also make some notation� If F � X and R � I�� we
denote the set

S
��R ���F 
 by O�F�R
� If R � In� n � �� we write O�F� n
 for simplicity�
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In the sequel� we will need the following fact concerning conformal systems� Namely�
from �BDP��
 of �MU�� there is some number D � � such that

diam����V 

 � Djj���jj�

for all �nite words ��

Lemma ���� Let f�i � i � Ig be a conformal iterated function system� Then dimP�J
 �
M � supfdimH�J
� dimB�Ln�x

 � x � J� n � Ng�

Proof� Recall from Theorem ��� of �MU� that dimP�J
 � dimB�J
� Fix t � M� Since
P �t
 � 
� there is some Q such that if q � Q� then 
q�t
 � �

�t and if j�j � Q� then jj���jj �
���� Fix q � Q and x � J � Choose A such that for all D � r � 
� Nr�Lq�x

 � Ar�t� Now�
choose B such that if � � r � D� then Nr�J
 � Br�t and such that B � �tA�����t
q�t

�

We will show by induction that for each n � N � if ��n � r � D� then Nr�J
 � Br�t�
This inequality holds for �� Suppose it holds for n and ���n� �
 � r � ��n� Let Cn�� �
f� � Iq � diam����J

 � ����n � �
g� Since J �

�
	��Cn�����J


�
	
�
	��IqnCn�����J


�
�

we have

Nr�J
 � N���n����J
 � N���n���

�
� �
��Cn��

���J


�
A� X

��IqnCn��

N���n�������J

�

For � � Iq n Cn��� we have N���n�������J

 � N����n���jj���jj�
�J
 � N�����n���jj���jj�

�J
�
Since jj���jj � ��� � ����
�n�n��
� we have ��n � �����n��
jj�

�
�jj
� Since �����n��

 �

diam����J

 � Djj���jj� we have �����n� �
jj�
�
�jj
 � D� So� by the induction hypothesis�

N���n�������J

 � B ���n� �
jj���jj

t � Next� we claim that N���n����

S
��Cn��

���J

 �

N�����n�����Lq�x

� To see this� let B�yj� �����n � �


 be a collection of balls of radius
�����n � �

 covering Lq�x
� Suppose z � ���J
� where � � Cn��� Then jz � ���x
j �
diam����J

 � �����n � �

� For some j� j���x
 � yj j � �����n � �

� So� the balls
B�yj� ���n� �

 cover

S
��Cn��

���J
� Our claim follows from this� Since n� � � ��r�

Nr�t
 � A�t�n� �
t �
X
j�j�q

B�t�n� �
tjj���jj
t � �t �A� B
q�t
� r

�t � Br�t�

This completes the induction argument� It now follows that dimB�J
 � t� From this
we have� dimP�J
 �M�

Our goal is to show that we can replace the supremum in Lemma ��� with a simple maxi�
mum� We use two propositions to accomplish this�

Proposition ���� If S is a c�i�f�s�� then for all x� y � X� and all n � �

dimB�O�x� n

 � dimB�O�y� n

�
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Proof� First notice that it su�ces to prove this equality for n � � since for every n � �
the collection of maps f�� � � � Ing forms a conformal iterated function system again�
With this setting notice that

����
 �M ���r � 
�z � Rd  fi � I � B�z� r
��i�X
 �� 
 and diam��i�X

 � r��g �M�

To see this �cf�� proof of Lemma ����� �MU�
 denote the set of such i�s by E and consider
i � E with this property and �x y � B�z� r
 � �i�X
� We repeat here a crucial geometric
condition from the de�nition of a conformal system� The �cone condition� ����

 of �MU�
states� there exists 
 � � � 
 such that for all x � X and for all � � I�

����
 ���Int�X

 � Con
�
���x
� ��D

��jj���jj
�
� Con

�
���x
� ��D

��diam����X


�
�

where Con
�
���x
� ��D

��jj���jj
�
and Con

�
���x
� ��D

��diam�X

�
denote some cones with

vertices at ���x
� angles �� and altitudes D
��jj���jj and D

��diam�X
 respectively� Thus�
there exists a constant P � 
 such that

�
�
�i�X
 � B�z� �r

 � �

�
�i�X
 � Con

�
�i�x
� ��minfr�D

��diam��i�X

g
�

� �
�
Con

�
�i�x
� �� ��D

�
��r

 � Pr��

where x � X is such that �i�x
 � B�z� r
� Since all the sets �i�Int�X

 � B�z� �r

� i � E�

are mutually disjoint�  E � ��B�z��r��
Pr� � �dVd

P � So� it su�ces to take M � �dVd
P � In

order to prove the proposition� it is enough to show that dimB�O�x� �

 � dimB�O�y� �

�
Towards this goal� take 
 � r � diam�X
 and let Ir � fi � I � diam��i�X

 � r��g� Then
Nr�O�y� Ir

 � Nr���O�x� Ir

� Clearly� Nr�O�z� I n Ir

 �  �I n Ir
� for all z � X� On the
other hand by ����
� Nr�O�z� I n Ir

 �  �I n Ir
�M � Hence�

Nr�O�y� �

 � Nr���O�x� Ir

 �Nr�O�y� I n Ir



� Nr���O�x� I

 �MNr�O�z� I n Ir

 � �� �M
Nr���O�x� �

�

Therefore�

lim
r��

logNr�O�y� �



log r
� lim

r��

logNr�O�x� �



log r
�

The proof is �nished�

Lemma ��
�� If S is a c�i�f�s�� then for all x � X and for all n � ��

dimB�O�x� n

 � dimB�O�x� �

�

Proof� By Proposition ���� we may assume that x � Int�X
� so B�x� �
 � Int�X
 for
some � � 
� First� we shall show that �S � dimB�O�x� �

� To see this� �x t � t � s �
dimB�O�x� �

� Then �x � � 
 and consider the set

I��
 � fi � I � K���� � jj��i�x
jj � �K����g�
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Since the balls B��i�x
� �
 with i � I��
 are disjoint� N��O�x� �

 �  I��
� Since for all
� � 
 small enough ��t � ��sN��O�x� �

� we get for all k large enough� say k � k� the
following

X
k�k�

X
i�I���k�

jj��ijj
t �

X
k�k�

�tKt��t��kt I���k
 � �tKt��t
X
k�k�

��ktN��k�O�x� �



� ��K���
t
X
k�k�

��ks � ��K���
t
�

�� ��s
�
�

Since limi�IN jj��ijj � 
� the set I n
S
k�k�

I���k
 is �nite� and therefore t � �S � Letting

t� dimB�O�x� �

� we get �S � dimB�O�x� �

�

Now� �x t � dimB�O�x� �

 again� We shall show by induction that for all n � � there
exists 
 � An �
 such that

Nr�O�x� n

 � Anr
�t�

for all 
 � r � �D� Indeed� the existence of A� is immediate as t � dimB�O�x� �

� Suppose
that 
 � An �
 exists� To prove the existence of An��� set I� � f� � In � diam����X

 �
r��g� Then Nr�O�x� I� � I

 � Nr���O�x� I�

 � Nr���O�x� n

 � �

tAnr
�t� If � � In n I��

then Nr�O�x� f�g � I

 � Nr�jj���jj
�O�x� �

 � A�jj���jj

tr�t� where the second inequality
sign holds since r�jj���jj � �diam����X

�jj�

�
�jj � �D� Thus� since t � �S�

Nr�O�x� n� �

 � �
tAnr

�t �A�r
�t

X
��InnI�

jj���jj
t � �tAnr

�t �A�
n�t
r
�t

� ��tAn � A�
n�t

r
�t�

The proof is completed by setting An�� � �
tAn � A�
n�t
�

As a corollary of Lemma ��� and Propositions ��� and ���
� we have a simple means
of obtaining the packing dimension of the limit set�

Theorem ��

� Let f�i � i � Ig be a conformal iterated function system� Then dimP�J
 �
maxfdimH�J
� dimB�L��x

 � x � Jg � maxfdimH�J
� dimB�L��x�

g� where x� is any
given point in X�

x	� Arithmetic relations�

In this section we collect some basic arithmetic de�nitions and relations� We begin with
the following notation� If I is a subset of N and � � p � q � 
 are two real numbers� then
by  I�p� q
 we denote the number of elements of the intersection I � �p� q�� If p � �� we
frequently use the notation Sq�I
 for  I�p� q
�
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Lemma 	�
� If I � N and 
 � k � l � �k� then for all s � 


�kl
s

�l � k
s

lX
n�k

�I�n


n�s
�
 I�k� l


�l � k
s
�

where the comparability constant depends only on s�

Proof� The proof follows immediately from the following computation�

�kl
s

�l� k
s

lX
n�k

�I�n


n�s
�

l�s

�l� k
s

lX
n�k

�I�n


n�s

�
l�s

�l� k
s
�

l�s
 �I � �k� n�
 �

 �I�k� n


�l� k
s
�

Lemma 	��� For each I � IN and for each 
 � t � �

lim
n��

 I�n��� n


nt
� ��� ��t
 lim

n��

 I��� n


nt
�

Proof� We may assume that limn��
	I���n�

nt
� 
� Let d � �� � ��t
limn��

	I���n�
nt

�

Suppose on the contrary that lim
k��

 I��k� �k��


�kt
� d� Then there exists c � d such that for

every k � � large enough� say k � S� we have
 I��k� �k��


�kt
� c� So� for every k � S�

 I��S� �k��


�kt
�

kX
j�S

 I��j� �j��
 � ��j�k�t

�jt
�

kX
j�S

c��j�k�t � c
�

�� ��t
�

Thus�

limk��
 I��� �k��


�kt
� limk��

 I��S� �k��


�kt
�

c

�� ��t
�

Now� since for every n � ��

 I��� n


nt
�
 I��� �
log� n���


��
log� n�
t
�

we get

limn��
 I��� n


nt
�

c

�� ��t
� limn��

 I��� n


nt
�

This contradiction �nishes the proof�
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We now provide the reader with several de�nitions of objects and properties associated
with in�nite subsets of N which are intended to measure the �size� of those sets�

We �rst de�ne the lower density dimension of a set I � N � Given t � 
� let

�
t
�I
 � inf

	
 I�k� l


�l � k
t
� k � l and A�

�kl

k � l

 � I �� 




� 
�

where given t � 
� A�t
 � N � �t� �� t� ��� Notice that

inf
n
t � �

t
�I
 �


o
� sup

n
t � �

t
�I
 � 
�

o
This common value will be called the lower density dimension of I and will be denoted by
�D�I
�

Similarly� we de�ne �D�I
� the upper density dimension of a set I � N � as follows� For
each t � 
� n � N � set

�t�I
 � sup

	
 I�k� l


�l � k
t
� k � l� k� l � I



� sup

	
 I�k� l


�l� k
t
� k � l



�

Notice that
inf ft � �t�I
 �
g � sup ft � �t�I
 � 
�g

This common value will be called the upper density dimension of I and will be denoted
by �D�I
� Clearly �D�I
 � �D�I
� and if these two numbers are equal� the common value
will be denoted by �D�I
�

A subset I � N is said to have the strong arithmetic density 
 if for every t � 
�

lim
n��

Sn�I


nt
� 
�

We say that two subsets of N are strongly equivalent if their symmetric di�erence is �nite�

Suppose that I � N � A subset A � I is said to be a cluster of I if and only if A �
�min�A
� sup�A
� � A� By the length of A we mean the number sup�A
�min�A
�

A subset A � I is said to be a punctured cluster of I if and only if there is x �� A with
min�A
 � x � sup�A
 such that �min�A
� sup�A
�nfxg � A� Notice such an x is determined
uniquely and by the lower length of A we mean the number minfx�min�A
� sup�A
� xg�

The following lemma� whose straightforward proof is left to the reader� provides some
elementary properties of the notions introduced above�
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Lemma 	�	� Suppose that I� I � � N� Then
�a
 
 � �D�I
 � �D�I
 � ��

�b
 If I � is strongly equivalent with I� then �D�I �
 � �D�I
 and �D�I �
 � �D�I
�

�c
 If I contains arbitrarily long clusters� then �D�I
 � ��
�d
 If N n I contains arbitrarily long punctured clusters� then �D�I
 � 
�

�e
 If p is a polynomial of degree d � �� then the set Ip � f�p�n
� � n � Ng has
density dimension ��d�

�f
 If I is equivalent with a subset of a geometric sequence� then it has arithmetic
density dimension and �D�I
 � 
�

�g
 If I is an in�nite subset of N with upper density dimension zero� then I has strong
density zero� If in turn I has strong density zero� then it is of lower density dimension
zero�

Let us relate the density dimensions of I to the �niteness parameter of the continued
fraction system with index set I�

Lemma 	��� If I � N� then �D�I
 � ���I
 � �D�I
�

Proof� Since I is in�nite there exists an in�nite subset F of I such that �n��� �n� �
�m��� �m� � 
� for all distinct elements m and n in F � Since �I � 
� in order to prove
the �rst inequality we may assume that �D�I
 � 
� Fix then any 
 � s � �D�I
� By
the de�nition of the lower density dimension there exists a constant M � 
 such that
 I�k� l
 �M�l� k
s� for all k � l with A� �kl

k�l 
 � I �� 
� We then make the estimates


��s��
 �
X
n�I

�

ns
�
X
n�F

�nX
k� �

�n

�

ks
�I�k
 �

X
n�F

�

�s
�
�

ns
 I�

�

�
n� �n


�M
�

�s

X
n�F

�

ns

�
�

�
n

�s
�
M�s

�s

X
n�F

� �
�

Hence� s�� � ��I
 and the �rst inequality is proven� In order to prove the second inequality
�x t � �D�I
 and then auxilarily �D�I
 � s � t� By the de�nition of the upper density
dimension there exists a constant 
 � M �
 such that  I�k� l
 �M�l� k
s for all k � l�
Then


��t��
 �
X
n��

�n��X
k��n

�

kt
�I�k
 �

X
n��

�

�nt
 I��n� �n��
 �M

X
n��

�

�nt
�ns �

X
n��

��s�t�n �
�

Hence� t�� � ��I
 and we are done�

We end this section with some basic results concerning sets of density zero�
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Theorem 	�
� Let I � fn� � n� � n� � � � �g be an in�nite subset of N� The following
four statements are equivalent�

��
 I has strong arithmetic density zero�

��
 For each t � 
�
P

n�I

�

nt
�
�

��
 For each t � 
� lim
k��

k

ntk
� 
�

��
 The continued fraction system S � f�bgb�I is absolutely regular�

Proof� For each t � 
� we have by summation by parts�

����

nX

k��

�I�k

�

kt
�

nX
k��

Sk�I




�

kt
�

�

�k � �
t

�
�

�

�n� �
t
Sn�I
�

So�
Pn

k�� �I�k

�
kt � t

Pn
k��

�
k
Sk
kt �

�
�n���tSn� Assume I has strong density zero� Then

Mt � supn��
Sn�I�
nt � 
� limn��

Sn�I�
n��t � 
� and for all k�

Sk�I�
kt �

Mt��

kt��
� It now follows

that
Pn

k�� �I�k

�
kt � tMt��

Pn
k��

�
k��t��

and consequently
P

n�I
�
nt � 
� Now� assume

statement ��
 holds� Then from ����
� it follows that for each t � 
� limS�n�
nt � 
� This in

turn implies that that for each t � 
� limn��
S�n�
nt � 
� Hence ��
 and ��
 are equivalent�

Now� given n � n� take k such that nk � n � nk��� Then

k

ntk��
�
Sn�I


nt
�
k � �

ntk
�

Thus ��
 and ��
 are equivalent� Since condition ��
 means that �I � 
� the equivalence of
��
 and ��
 is established by Theorem ��� The proof is �nished�

One can use the summation by parts formula to obtain another characterization of the
�niteness parameter of a continued fraction system�

Theorem 	��� Let I � N � Then the �niteness parameter �I of the continued fraction
system with index set I satis�es�

�I � infft � lim
n��

Sn
nt

�
g�

The following example completes the part �g
 of Lemma ����

Example 	��� Consider I � f�n � i � n � 
� 
 � i � n � �g� Then I has positive upper
density dimension equal to one and also has strong density zero�

x�� Hausdor� measures and dimensions�
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We begin this section with the following general theorem linking arithmetical properties of
the set I and geometrical properties of the corresponding limit set�

Theorem ��
� For a regular continued fraction system with index set I� the following
conditions are equivalent�

�a
 Hh�JI
 � 
�

�b
 For some � � �� sup

�
m�B

�
�i�X
� r



rh
� i � I� r � �diam��i�X



�
�
�

�c
 For each � � �� sup

�
m�B

�
�i�X
� r



rh
� i � I� r � �diam��i�X



�
�
�

�d
 sup
k	l

�kl
h

�l � k
h

lX
n�k

�I�n


n�h
�
�

Proof� First� let us assume statement �a
 holds and �x � � �� Since statement ��
 of
Theorem ��� is false� the ratios m�B�x� r

�rh with x � �i�X
 and r � �diam���X

 can
be made arbitrarily large� Thus� �a
� �b
� Clearly��c
� �b
�

Next� let us assume �� � � is such that the supremum in statement �b
 is 
� Let
L � 
� We will show that condition ���
 of Theorem ��� fails with � � �� � �� First�

note that if j � I and r � �diam��j�X

� then m�B��j�X
� r

�r
h � ��diam��j�X



�h�
Let F � I be �nite� Let T � max

�
�hL� ��diam�j�X



�h � j � F
�
� Choose i � I and

r� � ��diam��i�X

 such that m�B��i�X
� r�

 � �T � �
rh� � Thus� i � I n F � Let x �
�i�X
 and r � �� � ����
r�� Then r � �diam�i�X
 and B�x� r
 � B��i�X
� r�
� So�
m�B�x� r

 � Lrh� Thus� by Theorem ���� Hh�JI
 � 
� So� �b
� �a
�

Now� assume statement �d
 holds� We show that statement �b
 holds with � � ��

Choose k � l such that
�kl
h

�l � k
h

lX
n�k

�I�n


n�h
� T � 
� where a positive lower bound on T

will be speci�ed later� Choose i � I such that the distance from ��i to ������k � ��l
 is
minimum and let r � maxfj���i� �
� ���l� �
j� j��k� ��ijg� So� r � ��k � ��l and

m�B��i�X
� r



rh
� �K�h


�kl
h

�l� k
h

lX
n�k

�I�n


n�h
� K�hT�

Let us note that the quantities
�kl
h

�l� k
h

lX
n�k

�I�n


n�h
with r � diam��i�X

 � ��i�i��
� where

r is chosen as above have a uniform upper bound� To see this note that in this setting k � i

and l � i�i � �
��i � �
� So�
�kl
h

�l � k
h

lX
n�k

�I�n


n�h
is bounded above by

�kl
h

�l� k
h
�

i�h
�i

�i� �

�

If l � �k� then
�kl
h

�l� k
h
� �kl
h and using the bounds on l� we get the quantity uniformly
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bounded above� If �k � l� then
�kl
h

�l� k
h
�

�
i�i� �


i� �

�h
� and again the quantity is uni�

formly bounded above� Therefore� we also have r � diam��i�X

� for T su�ciently large�
Thus� �d
� �b
�

Finally� let us assume statement �c
 holds and take � � �� Let m�B��i�X
� r

�r
h �

T� with r � diam��i�X

� Choose k � l such that ����l � �
� ��k � �� � B��i�X
� r
 and
��k� ��l �� B��i�X
� r
� Then ��k � ��l � �r and

�kl
h

�l � k
h

lX
n�k

�I�n


n�h
� ���h


m�B��i�X
� r



rh
�

From this� we see �c
� �d
�

Corollary ���� If I � N generates a regular continued fraction system and if

limn��
 I��� n


nh
�
�

then Hh�JI
 � 
�

Proof� For every k � � we have

�k � �k
h

��k � k
h

�kX
n�k

�I�n


n�h
� �hkh

�kX
n�k

�I�n


n�h
� �hkh

 I�k� �k


��k
�h
� ��h

 I�k� �k


kh
�

Thus an immediate application of Theorem ��� and Lemma ��� �nishes the proof�

As an immediate consequence of this result we get the following�

Corollary ��	� Let I be a base for a regular continued fraction system and let h be the

dimension of the system� If for some t � h� lim supn��
	I���n�

nt � 
� then Hh�J
 � 
�

Proposition ���� If I is a base for a continued fraction system and Hh�JI
 � 
� then
h � ���

Proof� Since the Hausdor� measure is a conformal measure� the system is regular� By

Corollary ���� M � supn
	I���n�

nh
� 
� Suppose by way of contradiction that h � ���

Thus � � 
 and there exists 
 � t � � such that h � �t� Then we can write


��t
 �
X
n�I

�

n�t
�

�X
n��

X
k�I	
�n��n���

�

k�t
�

�X
n��

 I��n� �n��


��tn

�
�X
n��

 I��n� �n��


�nh
��h��t�n �

�hM

�� ����t�h�
�
�
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Hence� 
��t
 is �nite which contradicts the de�nition of � and �nishes the proof�

Since by Theorem ��� of �MU�� h � � if I �� N � as an immediate consequence of this
proposition� we get the following

Corollary ��
� If I �� N is a base for a continued fraction system and Hh�JI
 � 
� then
� � ���� In particular� if I is the set of all prime numbers� then Hh�JI
 � 
�

Proof� Since pn � nlogn� it easily follows that if I is the set primes� then �I � ����

I����
 �
 and the system is strongly regular�

Let us also note the following� in a sense stronger� consequence of Proposition ����

Corollary ���� Let the in�nite set I be the base for a continued fraction system� If
H
hF �JF 
 � 
� for every co�nite subsystem F of I� then I has strong density 	�

Proof� Since the Hausdor� measure is a conformal measure� the system is regular� Suppose
that I does not have strong density 
� Therefore by Theorem ��� and Theorem ��	� ��I
 � 
�
Thus� applying Theorem ��	 and Lemma ���� of �MU� we see that there is a co�nite
subsystem F of I such that hF � ���F 
� This contradicts Proposition ��� and �nishes the
proof�

Lemma ���� Suppose I � N� I �� N and I contains arbitrarily long blocks� then Hh�JI
 �

�

Proof� By way of contradiction� suppose Hh�JI
 � 
� By Theorem ����� of �MU�� the
system is regular� If I has a block from k to l� then

�kl
h

�l� k
h

lX
n�k

�I�n


n�h
�

�kl
h

�l � k
h

lX
n�k

�

n�h
�

�kl
h

�l� k
h
�l � k


l�h
� �

k

l

h�l� k
��h �

If additionally l � �k� then �k
l

h�l � k
��h � ��h�l � k
��h� Since h � � and since I has

arbitrarily long blocks �l � k �

 with the property that l � �k� we complete the proof
by invoking Theorem ����

Lemma ���� If I � N and h � dimH�JI
 � �D�I
� then Hh�JI
 � 
�

Proof� Since h � �D�I
� there exists a constant M � 
 such that  I�k� l
 � M�l � k
h

for all 
 � k � l� Thus� it follows from Lemma ��� that

sup
k	l
�k

�kl
h

�l� k
h

lX
n�k

�I�h


n�h
�
�
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If l � �k � 
� then �kl�h

�l�k�h
� khlh

lh
� kh� and therefore� for l � �k

�kl
h

�l � k
h

lX
n�k

�I�h


n�h
� kh

lX
n�k

�I�h


n�h
� kh

�X
n�k

�I�h


n�h

� kh
�X
j��

�j��k��X
n��jk

�I�h


n�h
� kh

�X
j��

 �I � ��jk� �j��k�


��jk
�h

�
�

kh

�X
j��

 �I � ��jk� �j��k�


�j�h
�
M

kh

�X
j��

��jk
h

��jh

�M
�X
j��

�

�jh
�

M

�� ��h
�
�

By Lemma ���� h � �D�I
 � �� � � and� therefore� by Theorem ���� I induces a regular
system� Thus� an application of Theorem ��� �nishes the proof�

Corollary ��� If I is strongly equivalent to fan � n � Ng� for some a � N � a � �� then
Hh�JI
 � 
�

Remark� As it follows from the proof of Lemma ���� it su�ces to require the existence of
a constant M � 
 such that  I�k� l
 � M�l � k
h for all 
 � k � l which is weaker than
the assumption h � dimH�JI
 � �D�I
�

Remark� Since there exist absolutely regular systems I with arbitrarily long blocks� it is
possible to have Hh�JI
 � 
 for an absolutely regular system�

Theorem ��
�� If �D�I
 � �� then the strong equivalence class of I contains an element
F with HhF �JF 
 � 
� More precisely� there exists a number q � � such that if F is strongly
equivalent with I and F � I 	 ��� q�� then HhF �JF 
 � 
�

Proof� In view of Theorem ��� there exists q � � such that dimH�JF 
 � �D�I
 provided
F � ��� q�� So� we �nish the proof applying Lemma ����

Remarks� Notice that combining Theorem ���
 and Lemma ����e
 and �f
 gives rise to
a method of producing a large class of sets I with HhI �JI
 � 
� We also note that the
property of being co�nitely regular is invariant under strong equivalency whereas regularity
is not�

Lemma ��

� Let I � N � k � e�� and l � k� The function gk�l de�ned by t ��
�kl�t

�l�k�t

Pl
n�k

�I�n�
n�t is non�increasing�
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Proof� One simply calculates

g�k�l�t
 �
�kl
t

�l� k
t

�
ln�

kl

l� k

� �

� lX
n�k

�I�n
��� lnn


n�t
�

If k � e�� then ln� kl
l�k

� � � 
 and �� lnn � 
 for all n � k � e�� Thus� g�k�l�t
 � 
 and

we are done�

One may generalize Proposition ����

Lemma ��
�� Let I � N � If �kl�s

�l�k�s

Pl
n�k

�I�n�
n�s

� M �
� for some s � 
� then s � ���

Proof� Fix t � s��� Then


��t
 �
�X
n��

�n��X
j��n

�I�j


j�sj��t�s�
�

�X
n��

��n�s�t�
�n��X
j��n

�I�j


j�s
� ��s

�X
n��

��n�s�t� �M��ns

�
��sM

�� �s��t
�
�

Thus� t � � and letting t� s��� we get s�� � ��

Theorem ��
	� If I � N and HhI �JI
 � 
� then H
hE �JE
 � 
� for every system E � I

such that E n I is �nite�

Proof� As hE � hI � it follows from Theorems ��� and ���� that supk�� k
�hE

P
n�k

�I�n�

n�hE
�


� Since
P

n�k
�E�n�

n�hE
�
P

n�k
�I�n�

n�hE
� for k large enough� supk�� k

�hE
P

n�k
�E�n�

n�hE
� 
�

Also� the system E is regular� since every system containing a regular system as a co�nite
subset� is regular� Invoking Theorem ��� again� we get HhE�JE
 � 
�

x
� Packing measures and dimensions�

We begin this section by giving some necessary and su�cient conditions for the packing
measure to be �nite for regular systems� Since the packing measure is more complex than
Hausdor� measure� we must analyze separately those index sets I which are co�nite and
those which are not� It is in the proof of Theorem 	�� that the use of the harmonic mean
of k and l� H�k� l
� in connection with packing measure becomes essential�

Theorem 
�
� For a regular continued fraction system with index set I� the following
three conditions are equivalent�

�a
 Ph�J
 �

�b


inf
k�l

A� �kl
k�l

��I ���

�kl
h

�l � k
h

lX
n�k

�I�n


n�h
� 
 and inf

�
k
kh

�X
n�k

�I�n


n�h
� 
�
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�c
For some k�� n��

inf
k��k�k�n��l

A� �kl
k�l

��I ���

�kl
h

�l � k
h

lX
n�k

�I�n


n�h
� 
 and inf

�
k
kh

�X
n�k

�I�n


n�h
� 
�

Proof� Clearly� �b
� �c
� Suppose �c
 holds for some given k�� n�� Since the quantities in
the �rst in�mum in �b
 are uniformly bounded away from 
 if l� k � n�� we need consider
only the quantities where k � k� and l � k � n�� If the in�mum of these quantities is

� then there is some �xed k � k� and an in�nite sequence of l�s such that the quantities

converge to 
� But� the limit of this sequence of quantities is kh � �
��h
 �
Pk

n��
�I�n�
n�h



which is positive� Thus� �c
� �b
�

Now� suppose that condition �a
 is satis�ed� We will show that the �rst inequality
in �c
 holds with k� � � and n� large enough �we will indicate that n� � �� su�ces
�
Consider k� �� � l� k � � and such that A� �klk�l 
 � I �� 
� Let i � I be the point closest to

�kl��k�l
� Then k � i � l and there exists x � � �
i�� �

�
i 
�JI � Set r � minf��k�x� x���lg�

It can be shown under these conditions that the inequalities ���i � �
 � ��l � ��i�i � �

and ��k���i � ��i�i��
 hold� It now follows that r � diam��i�X

� Also�

�
l�� � x� r �

x� r � �
k
and therefore

B�x� r
 � JI �



�

l � �
�
�

k

�
� JI �

�
j�
k�l�	I



�

j � �
�
�

j

�
� JI �

It also follows from the conditions on k and l that the following inequalities hold
��k���l � ����k���i
 and ��k���l � ����i��� ��l
� From this we get ��k� ��l � �r�
Since condition ���
 of Theorem ��	 with � � � holds� we �nd there is a positive number L
such that

�kl
h

�l � k
h

lX
n�k

�I�n


n�h
� ��h

m�B�x� r



rh
� L�

So� the �rst in�mum in �c
 is positive� To see that the second in�mum is positive� note

that for each k� m�B�����k��

��kh
� kh

Pl
n�k

�I�n�
n�h

� Consider two cases� First� suppose that

there exists � � j � I such that j � � �� I� If the in�mum is zero� then the assumptions
of Theorem ��� are satis�ed with Z � f
g� i�

 � j� and R�

 � f��k � k � �g� Hence�
Ph�JI
 �
 and we have a contradiction� Otherwise� I � N or I � N n f�g� Then � � ���
and for all k � �

kh
�X
n�k

�I�n


n�h
� kh

�X
n�k

�

n�h
� khk���h � k��h�

Since limk�� k��h �
� our in�mum is also positive in this case�

Finally� suppose that condition �b
 is satis�ed� We will show condition ��
 of Theorem
��	 holds� Let M � 
 be the �rst in�mum appearing in �b
� Fix � � � which will be
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speci�ed later on� Consider i � I and ��i�i � �
 � r � ��i� Set k � �����i � r
� � �

and l � �����i � r
� � �� Then �
l�� �

�
k � �

i �
�

k�� �
�
l�� which equivalently means that

H�k � �� l � �
 � i � H�k� l � �
� where H�a�b
 � �ab!a�b� the harmonic mean of a and
b� Since H�k � �� l � �
 � H�k� l � �
 � H�k� l � �
 and H�k� l � �
 � H�k� l � �
 � � �
H�k � �� l � �
 � �� there exists �a� b
 � f�k � �� l � �
� �k� l � �
� �k� l � �
g such that
jH�a� b
� ij � � which means that i � A�a� b
� I� Moreover� r � �

� �
�

k�� �
�
l�� 
 � ��

�
a �

�
b 
�

Choose x � J � ���i� �� ��i
 so close to ��i that B�x� r
 �
Sl��
j�k���j � �� ��j�� We get

m�B�x� r



rh
� �h

�ab
h

�b� a
h

�
l��X
n�k

�I�n


n�h

�

� �h
�ab
h

�b� a
h

�
bX

n�a

�I�n


n�h
�

�

�k � �
�h
�

�

�k
�h
�

�

�l� �
�h
�

�

�l � �
�h

�

� �h
�ab
h

�b� a
h

�
bX

n�a

�I�n


n�h

�
� ���h

�ab
h

�b� a
h�k � �
�h
�

Now�

�ab
h

�b� a
h�k � �
�h
�

�ab
h

�b� a
h�a� �
�h
� �

a

a� �

h �

bh

�b� a
hah
�
M

�
�

provided that k and l�k are large enough �depending only onM
 and thenm�B�x� r

�rh �
��hM��� But k will be as large as we wish by taking i su�ciently large and since l � k �
ri� � 


i�� i � ���� l� k will be as large as we wish choosing � large enough� Applying now

Theorem ��	��
 we �nish the case when r � ��i� In case r � ��i� set k � �����i � r
�� � as
before� Then ��i� r � ��k and therefore taking x � J � ����i� �
� ��i
 su�ciently close
to ��i� we get B�x� r
 � J � �
� ���k� �

 � J �

S
n�k������n� �
� ��n� � J � Thus

m�B�x� r



rh
�
K�h

rh

�X
n�k��

�I�n


n�h
�

Since ��r � �
�
i�r

� k � ��

m�B�x� r



rh
� K�h�k � �
h

�X
n�k��

�I�n


n�h
� K�h

�
k � �

k � �

�h
�k � �
h

�X
n�k��

�I�n


n�h
�

Taking i large enough� we get k � � and k��
k�� � ���� Since the second in�mum in �b
 is

positive� the proof is completed�

Lemma 
��� If Ph�J
 �
� then h � ���
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Proof� Let A � 
 be the �rst in�mum appearing in Theorem 	���b
� If l � I is large

enough and k � ��l���� then j�k��l�k��l � lj � �� So�

A

�
�
�k
h��l
h

�k � �l
h

�lX
n�k

�I�n


n�h
� lh

 I��l��� �l


l�h
�
 I��l��� �l


lh
�

Since I is in�nite� there exists an in�nite sequence F � I such that ��l��� �l�� ��s��� �s� � 

for all distinct elements l and s of F � Hence�


��h��
 �
X
l�I

�

lh
�
X
l�F

�lX
n��l��

�

nh
�
X
l�F

�

��l
h
 I��l��� �l
 �

A

�

X
l�F

��h �
�

Thus� h�� � � and we are done�

Combining this lemma and Proposition ��� we get the following

Proposition 
�	� If Hh�J
 � 
 and Ph�J
 �
� then h � ���

The proof of the following consequence of Lemma 	�� is similar to the proof of Theorem
����

Theorem 
��� Let I � N induce a regular continued fraction system and suppose � � ����
Then there exists a number q � � such that if F is strongly equivalent with I and F � ��� q��
then PhF �JF 
 �
�

Proof� In view of Theorem ���� there exists q � � such that dimH�JF 
 � ��I if F � ��� q��
Now applying Lemma 	�� along with the fact that strongly equivalent sets have the same
�niteness parameter� �� �nishes the proof�

We shall now prove the following�

Lemma 
�
� If N n I contains punctured clusters of arbitrarily large lower lengths� then
P
h�JI
 �
�

Proof� By assumption� I contains an in�nite sequence of triples �a� n� b
 and a � n � b�
I � �a� b� � fng such that min�b�n� n�a
�
� For each such triple� let r � inffs � ��� �
s � �� a � �sn�� �rn��r � �� � b � �g� let k � �rn� and l � �rn��r � ��� Then k � 
 and
l � k � 
� Also� if n is large enough� then A� �klk�l 
 � I �� 
� and �k� l� � I is a singleton

contained in A� �klk�l 
� Therefore�

Mk�l �
khlh

�l� k
h

lX
n�k

�I�n


n�h
�

khlh

�l � k
h

�
k � l

kl

��h
�

�k � l
�h

�l� k
h�kl
h

� �h
l�h

�l � k
h�kl
h
� �h

lh

kh�l � k
h
�
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Since maxfk� l�kg � l�� and since both numbers k and �l�k
 diverge to
� it follows from
this estimate thatMk�l � 
 over such pairs of k and l� Thus an application of Theorem 	��
�nishes the proof�

Corollary 
��� Let I be the set of prime numbers� Then Ph�JI
 �
�

Proof� It is known that the primes have arbitrarily large two sided gaps �see �E���M�
� The
corollary follows�

Theorem 
��� Let I � N be a proper in�nite subset of N� If  I�k� l
 � �l � k
h for all
k � l with A� �klk�l 
 � I �� 
� then the �rst in�mum in Theorem 
���b� is positive�

Proof� Consider k � l such that A� �kl
k�l

 � I �� 
� Suppose �rst that l � �k� Then

�kl
h

�l � k
h

lX
n�k

�I�n


n�h
�

k�h

�l � k
h
 I�k� l


�

k�h
�
�l� k
h

�l� k
h
� ��

If l � �k� then we can �nd j such that �k� l� � �j� �j� and A� �kl
k�l 
 � A�

�j�j
j��j 
 �� 
� Since the

points of A� �klk�l 
 are of order k and
�j�j
j��j �



�j� we see that the numbers k and j are of the

same order� Hence

�kl
h

�l� k
h

lX
n�k

�I�n


n�h
� kh

lX
n�k

�I�n


n�h
� kh

�jX
n�j

�I�n


n�h

� kh I�j� �j
 �
�

j�h
� khjhj��h �

�
k

j

�h
� ��

This implies the �rst in�mum in Theorem 	���b
 is �nite�

Lemma 
��� If lim infn��
Sn
n

� � � �
�h � then the second in�mum in Theorem 
���b� is

positive and � � ��� �

Proof� It is straightforward to check that 
����
 � 
� By summation by parts and the
fact that h � ���� we have

kh
�X
n�k

�I�n


n�h
� kh

�
�X
n�k

�hSn
n�h��

�
Sk��
k�h

�
�

Now� there exists c � �� �
�h such for all su�ciently large k�

kh
�X
n�k

�I�n


n�h
� ��h
ckh

�
�X
n�k

�

n�h

�
�
Sk��
kh

� k��h


�h

�h� �
c�

Sk��
k

�
� k��h



�h

�h� �
c� �

�
�
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Since �h
�h��c� � � 
� this implies the second in�mum in Theorem 	���b
 is positive�

Corollary 
��� If I � N has bounded gaps� in particular� if I contains an in�nite arith�
metic progression� then Ph�J
 �
�

Proof� If I has gaps bounded by d� then the lower arithmetic density of I is � ��d� Also�
we have  I�k� l
 � �

d �l � k
 for k and l � k large enough� So� by Theorems 	�� and 	���

both in�ma in Theorem 	���c
 are positive and Ph�J
 �
�

Remark� There are subsets I with bounded gaps and which do not contain an in�nite
arithmetic progression�

We shall now formulate a su�cient condition for the �rst in�mum in Theorem 	���c
 to be
positive�

Proposition 
�
�� Let I � fan � n � �g be a subsequence of positive integers such
that if an � � �� I� then I � �an�

 � �an� �an�� Then with h � � the �rst in�mum in
Theorem 
���c� is positive�

Proof� Let us �x k� l � IN such that A� �kl
k�l 
�I �� 
 and l�k � �
� Choose c � A� �kl

k�l 
�I ��


 and then �x a cluster of the form �a� �a� containing c� Let us explore several cases�

Case �� �k� l� � �a� �a�� Then

kl

l � k

lX
n�k

�I�n


n�
�

kl

l � k

l � k

l�
�
k

l
�
�

�
�

Case �� �a� �a� � �k� l�� Since a � c � �k� we get

kl

l � k

lX
n�k

�I�n


n�
�

kl

l � k

�aX
n�a

�

n�
�

kl

l � k

a

�a�
�
�

�

kl

�l � k
a
�
�

�

k

a
�
�

�
�

Case �� k �� �a� �a� and l � �a� �a�� Since c � A� �klk�l 
 we get l � c � l�l�k�
l�k � �� Since also

�k � c � a � l��� we get

kl

l � k

lX
n�k

�I�n


n�
�

kl

l� k

lX
n�a

�

n�
�

kl

l � k

l � a

l�

�
k�l� c


l�l� k

�

kl�l� k


l�l � k
�l � k

�

k

l�l� k

�

k

l � k
�

k

l�l� k


�
�

	
�
�

�


�
�

�

�
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Case �� k � �a� �a� and l �� �a� �a�� Since kl
l�k �

�k�c���
c���k � we get

kl

l� k

lX
n�k

�I�n


n�
�
�k�c� �


c� �� k

�aX
n�k

�

n�
�
�k�c� �


c� �� k
�
�a� k

�a�

�
�a���a� k


�a��c� �� k

�
�

�

�a� k

c� �� k
�
�

�

c� k

c� �� k

�
�

�
�

The proof is �nished�

Remark� By Lemma ����� the in�mum considered in Proposition 	��
 is positive for all

 � h � ��

We shall now construct two examples showing that in general the two inequalities in The�
orem 	���c
 are mutually independent�

Example 
�

� Here we construct an example of a regular system showing that the second
in�mum in Theorem 	���c
 may happen to be zero although the �rst one is positive� It goes
as follows� Fix ��� � s � �� We will de�ne by induction an in�nite sequence fan � n � �g
such that for I� �

S
n���an� �an�� the second in�mum� taken with this s� in Theorem 	���c


fails to be positive� Indeed� set a� � � and suppose that an is already de�ned� The �rst
restriction on an�� is that an�� � �an� Then

��an � �

s

�X
j��an��

�

j�s
� �sasn

�X
j�an��

�

j�s
� �sasn

�

�s� �
a���sn��

�
�s����s

�s� �
asna

���s
n��

Since �� �s � 
� we can �nd an�� � �an so large that

�	��

�s����s

�s� �
asna

���s
n�� �

�

n� �
�

The construction of I� is �nished� The �rst in�mum in Theorem 	���c
 is positive by
Proposition 	��
 and the second one is zero by �	��
� We now de�ne the set I adding
to I� an initial segment of the form ��� �p� so long that dimH�JI
 � maxfs� �Ig� Then
I induces a regular system �see Theorem ���
� I continuous to satisfy the assumptions of
Proposition 	��
 and the second in�mum in Theorem 	���c
 is zero by �	��
� Lemma ����
and since I � ��p� ��

 � I� � ��p� ��

�

Example 
�
�� We shall now describe a regular system for which the �rst in�mum in
Theorem 	���c
 is zero but the second one is positive� Indeed� let I �

S
n��

�
��n� � ��n�	f� �



Mauldin and Urba�nski Page �


�ng
�
� Then the complement of I contains arbitrarily long punctured clusters and therefore

the �rst in�mum in Theorem 	���c
 is zero by Theorem 	�	� In order to check that the
second in�mum is positive� given k � �� consider n � 
 such that �n � k � �n��� Then

k
�X
j�k

�I�j


j�
� �n

��
n��X
j�
n��

�

j�
� �n � �n�� �

�

� � ��n��
�
�

��
�

Since �I � ��� and 
I����
 � 
� the system generated by I is co�nitely regular� We are
done�

Example 
�
	� Consider I �
S
n��

�
��n� � � �n�	 f� � �ng

�
� Then I has positive arithmetic

density� unbounded gaps and Ph�JI
 � 
� This is so� since the assumptions of Proposi�
tion 	��
 are satis�ed and since the second in�mum in Theorem 	���c
 is positive which
we check in exactly the same way as in Example 	���� Notice that the sets I considered
here and in Example 	��� di�er only by a rather thin set f� � �ng but the limit sets they
generate have substantially di�erent geometrical properties�

Theorem 
�
�� If Ph�JI
 �
� then lim supn��
Sn
nh

� 
�

Proof� By summation by parts�

lX
n�k

�I�n


n�h
�

lX
n�k

Sn

�
�

n�h
�

�

�n� �
�h

�
�

Sl
�l � �
�h

�
Sk��
�k
�h

�

If lim supn��
Sn
nh
� 
� then� for each k

kh
�X
n�k

�I�n


n�h
� kh

�
�X
n�k

Sn

�
�

n�h
�

�

�n� �
�h

�
�
Sk��
k�h

�
� sup

n�k

Sn
nh

�
Sk��
kh

�

But� the right�hand side converges to 
 as k �
� Thus� the second in�mum in Theorem
	���b
 is not positive and we have a contradiction�

Corollary 
�

� If I is the base for an absolutely regular system� then Ph�JI
 �
�

Question� Does 
 � Ph�JI
 �
 imply lim infn��
Sn
nh

� 
"

Lemma 
�
�� Let I � N � If for some s � 
� we have ks
Pl

n�k
�I�n�
n�s � L � 
� for all

k � �� then s � ���

Proof� For all k � ��X
n�k

�I�n


ns
�
X
n�k

�I�n
k
s

n�s
� ks

X
n�k

�I�n


n�s
� L�

Therefore� 
��s��
 �
P�

n��
�I�n�
ns

�
� So� � � s���
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Theorem 
�
�� If I � N and PhI �JI
 �
� then PhE �JE
 �
� for every co�nite regular
subsystem E of I�

Proof� Let k� be such that E � �k��

 � I � �k��

� Using Lemma ���� we see that
condition �c
 of Theorem 	�� is satis�ed for the system with base E� Thus� PhE �JE
 �
�

We �nish this section with its most constructive theorem whose proof shows how to produce
sets of arithmetic density zero� but whose limit sets have �nite packing measure�

Theorem 
�
�� There exist in�nite sets I � IN such that the induced continued fraction
systems are strongly regular� Hh�JI
 � 
� P

h�JI
 � 
� and both numbers �I and hI are
arbitrarily close to zero�

Proof� Fix an integer p � � and � � 
 � p� �� We will show that if the integer w is large
enough� then the systems generated by the sets of the form

I � I�p� 
� w
 �
�
n�w

�np � n��

satisfy the requirements of our theorem� We shall show �rst that the system generated by
the set of entries I � I�p� 
� w
 is strongly regular and �I�p���w� �

���
�p � Indeed� this follows

from the following computation


��t
 �
X
n�w

np�n�X
j�np

�

j�t
�
X
n�w

�

n�pt
n� �

X
n�w

�

n�pt��

Let� as usual� h denote the Hausdor� dimension of JI � the limit set generated by the
set I�p� 
� w
� By Lemma ���� Hh�JI
 � 
� In order to prove that Ph�JI
 � 
� we
shall demonstrate that the assumptions of Theorem 	���c
 are satis�ed� Indeed� in order
to verify that the second in�mum in Theorem 	���c
 is positive it su�ces to check that

lim infk��Mk � 
� where Mk � kph
P

n�k

Pnp�n�

j�np j��h� We do it as follows�

Mk � kph
X
n�k

np�n�X
j�np

j��h � kph
X
n�k

n��phn� � kph
X
n�k

n���ph

� kph
Z �

k

x���ph dx �
kph


� �ph� �
�x���ph����k �

Notice now that since h � �I �
���
�p � we have 
��ph�� � 
� and thereforeMk � k��ph���

Hence

a�� lim inf
k��

Mk � 
� 
 � ph� ��
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In order to check that the �rst condition of Theorem 	���c
 is satis�ed� set

Mk�l �
�kl
h

�l � k
h

lX
n�k

n��h��I�p�w����n
�

We want to show that Mk�l with A� �klk�l 
 � I�p� w� 

 �� 
 are bounded away from zero�

Let n be the only integer with �n � �
p � k � np� and let m be the only integer with
mp � l � �m� �
p� We shall consider several cases�

Case 
� m � n� �� Then we may estimate the number Mk�l from below as follows�

Mk�l �
�kl
h

�l � k
h

m��X
j�n

jp�j�X
s�jp

�

s�h
�

�kl
h

�l � k
h

m��X
j�n

�

j�ph
j�

�
�kl
h

�l � k
h

m��X
j�n

j���ph �
�kl
h

�l � k
h

Z m��

n

x���ph dx

�
�kl
h

�l � k
h
�


� �ph� �

�
�m� �
���ph�� � n���ph��

�
�

�nm
ph

��m� �
p � �n� �
p
h
�
�m� �
���ph�� � n���ph��

�
�

�nm
ph

��m� �
p � �n� �
p
h
��m� �
p � np
x

�����ph
p ���

for some x� where np � x � �m� �
p� We continue the above estimates as follows�

Mk�l �
�

�
�nm
phx

�����ph�p
p �mp � np
��h�

Since � � 
� �ph� p � 
� we get

Mk�l � �nm

phm

�����ph�p
p �mp � np
��h

� nph�mp � np
��hm
�����ph�p�h�p

p �

Thus� if

a�� � � 
� �ph� p�h� p � 
�

then the quantities Mk�l with m � n� � are bounded away from zero�

Case �a� We now assume that �n� �
p � k � np and �n� �
p � �n� �
� � l � �n� �
p�
Then

Mk�l �

�
kl

l� k

�h
�n� �
�

n�ph
�

n�ph

�l� k
h
�
n�

n�ph

�
n�

�l � k
h
�

n��
�n� �
p � �n� �
p

�h � n�

n�p���h
�
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So� if

a�� 
� �p� �
h � 
�

then Mk�l is bounded away from 
�

Case �b� �n� �
p � k � np and �n� �
p � l � �n� �
p � �n� �
�� We shall show that
in this case if n is large enough� then A� �klk�l 
 � I � 
� And indeed� for this intersection to
be empty it su�ces to know that

np � n� �
�kl

k � l
� � and

�kl

k � l
� � � �n� �
p�

But the harmonic mean �kl
k�l takes on its minimum if k and l are minimal and it takes on

its maximum if k and l are maximal� Thus our task reduces to check that

np � n� �
��n�


p�n� �
p

�n� �
p � �n� �
p
� � and

�np
�
�n� �
p � �n� �
�

�
np � �n� �
p � �n� �
�

� �n� �
p�

provided n is large enough� This can be veri�ed by a straightforward computation�

Case 	� �n� �
p � k � np and np � l � �n� �
p� We shall consider three subcases�

Case 	a� np � n� � l � �n� �
p� Then

Mk�l �

�
kl

l � k

�h
� n� �

�

n�ph
�

n�ph

�l � k
h
� n� �

�

n�ph

�
n�

�l � k
h
�

n��
�n� �
p � �n� �
p

�h � n�

n�p���h

� n���p���h�

So� again if 
� �p� �
h � 
� then we are done�

Case 	b� np � l � np � n� and �n� �
p � �n� �
� � k� Then

Mk�l �

�
kl

l � k

�h
�

l�h
�l � np � �
 �

l � np

�l � k
h
�

But since A� �klk�l 
� I �� 
� we conclude that
�kl
k�l � np� �� So� l� np � l� q� �� But since

l � �kl
k�l � �l � k
��� we get

Mk�l �
�
� �l � k
� �

�l � k
h
� �l � k
��h � ��

Case 	c� np � l � np � n� and �n� �
p � k � �n� �
p � �n� �
�� Then for all n large
enough

�np�n� �
�p �
�
np � �n� �
p

��
�n� �
p � �n� �
� � �

�
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or
�np�n� �
p

np � �n� �
p
� �n� �
p � �n� �
� � ��

So�
�kl

k � l
�
�np�n� �
p

np � �n� �
p
� �n� �
p � �n� �
� � �

and consequently A
�
�kl
k�l

�
� np� But then

Mk�l �

�
kl

l � k

�h
�
�

kh
�l � q
h �

�
l � q

l � k

�h
�

�
�

�

�h
�l� k
h � ��

and we are done in this case�

Case �� �n��
p � k � l � np� In order for A� �kl
k�l�I �� 
� �n��


p � k � �n��
p��n��
��

Case �a� l � �n� �
p � �n� �
�� Then

Mk�l �

�
kl

l � k

�h
�
�

l�h
�l� k
 � �l� k
��h � ��

and we are done�

Case �b� �n� �
p � �n� �
� � l� Let q � �kl
k�l � We then get

Mk�l �

�
kl

l� k

�h
�

��
�n� �
p � �n� �
�

��h ��n� �
p � �n� �
� � k
�

�
�n� �
p � �n� �
� � k

�l � k
h
�

q � k

�l � k
h

Now� q � k � �l � k
��� so Mk�l � �l� k
��h � � and we have �nished this last case�

Since 
 � p� � � and h � � as w � 
� if w is large enough 
 � ph � �� The proof is
completed�

x�� Dimension relations�

In this section� we give some examples of strongly regular systems with dimH�J
 � dimP�J

and some examples with equality of these two dimensions�

Theorem ��
� Let Ip � fn
p � p � �g� If p � �� then dimP �JIp
 � hIp � ��p� H

h�JIp
 � 


and Ph�JIp
 �
�

Proof� Since N n Ip has punctured clusters of arbitrarily long lower lengths� Ph�JIp
 �
�
follows from Lemma 	�	� We will show that h � ��p by showing that P ���p
 � 
� Since it is
easy to calculate that dimB�O�
� Ip

 � ���p��
� it would then follow from Theorem ����
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that the box and Hausdor� dimensions of JIp are equal� First� we estimate 
n���t
 from
below as follows�


n���t
 �
X

��In��

jj���jj
t �

X
��In��

�

�qn����

�t
�
X
��In

X
b�I

�

�bqn � qn��
�t

�
X
��In

�

q�tn
�
X
b�I

�

�b� qn���qn
�t
� � 
n�t


X
b�I

�

�b� �
�t
�

Therefore� by induction we have


n�t
 �

�X
b�I

�

b�t

��X
b�I

�

�b� �
�t

�n��

�

So� if
P

b�I
�

�b����t � �� then P �t
 � 
� It can be checked that
P�

k��

�
�

kp��

���p
� �� for all

p � �� Finally� since �D�I
 � ��p� it follows from Lemma ��� that Hh�JIp
 � 
�

Theorem ���� For every p � �� there exists q � � such that if l � q and Il � fnp � n � lg�
then dimH�Jl
 � dimB�Jl
 � dimB�Jl
 � dimP�Jl
�

Proof� First notice that for every l � �� �Il � ���p and Il is a regular subset of N �
According to Theorem ��	� liml�� dimH�Jl
 � �l � ���p and since ���p � ���p��
� there
exists q � � so large that dimH�Jl
 � dimB�Jl
 for all l � q� The last two equality signs in
Theorem ��� are consequences of Theorem ��� in �MU� and Theorem �����

Remark� Notice that in contrast to the case p � �� for p � � and every system strongly
equivalent with I�� we have dimH�Jl
 � dimB�Jl
 � dimP�Jl
� This follows from Corol�
lary 	�� and Theorem ��� in �MU��

Theorem ��	� If S � f�i � i � Ig is a conformal iterated function system and the index
set I is in�nite� then for every 
 � t � � there exists a set It � I such that dimH�JIt
 � t�

Proof� Without loosing generality we may assume that I � N � First we shall show that
for every set E � N such that N n E is in�nite and for every � � 
 there exists k � N n E
such that dimH�JE�fkg
 � dimH�JE
 � �� Indeed� let h � dimH�JE
� By Theorem ����
PE�h� �
 � 
 and by the de�nition of pressure there exists 
 � a � � and j� � � such that

E�j�h� �
 � aj� if j � j�� But� for every k � N nE� we have


E�fkg�n�h� �
 �
nX
j��

�
n

j

�

E�j�h� �
jj��kjj

�n�j��h���K�n�j��h���

�

�
� j�X
j��

�
n

j

�

E�j�h� �
K�n�j��h���

�
�jj��kjj�n�j���h��� � �a� �Kjj��kjj
�h���
n

� j� sup
�
j


f
E�j�h� �
gnj�Kn�h���jj��kjj
�n�j���h��� � �a� �Kjj��kjj


�h���
n�
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Since jj��kjj is su�ciently small for k su�ciently large� we have 
E�fkg�n�h� �
 � � for all
n large enough� This implies PE�fkg�h� �
 � 
 and consequently dimH�JE�fkg
 � h� ��
The claim is proved�

Passing to the actual proof� �x 
 � t � �N� We shall build the set It by constructing
inductively an increasing sequence In of �nite subsets of I satisfying dimH�JIn
 � t for
all n � �� We then will show that setting It �

S
n�� In we have dimH�JIt
 � t� Indeed�

let I� � f�g and suppose that In is constructed and dimH�JIn
 � t� By the claim proved
above there exists k � maxfIng such that dimH�JIn�fkg
 � t� Let kn�� be such minimal
k and let In�� � In 	 fkn��g� The inductive construction is �nished� Let It �

S
n�� In�

This set is in�nite� By Theorem ��� dimH�JIt
 � t� If the set N n It were �nite� then
because of Theorem ��� dimH�JIt
 � �IN � t� and we would have a contradiction� Thus�
N n It is in�nite� If dimH�JIt
 � t� we are done� Otherwise� due to our claim we can
�nd an element q � N n It such that kn�� � q � kn and dimH�JIn�fqg
 � t � But then
dimH�JIn�fqg
 � dimH�JIt�fqg
 � t which contradicts the choice of kn�� and �nishes the
proof of our theorem�

In general Theorem ��� fails to be true for t � �� Indeed� below we provide an example�

Example ���� Consider a system of similarity maps on the interval �
��� given by two
generators � and 
 with contraction coe�cients ��� and the maps �n with with contraction
coe�cients cn� where c is so small that the sets ���
� ��
� 
��
� ��
� and �n��
� ��
� n � �
are mutually disjoint� Then dimH�Jf���g
 � ��� but the Hausdor� dimension of any
subsystem missing either � or 
 is bounded from above by the solution to the equation
����
t� ct���� ct
 � 
� But t � t�c
� the solution to this equation converges to 
 if c� 
�
Therefore if c is taken so small that t � t�c
 � ���� we have a gap of Hausdor� dimension
between t�c
 and ����

Example ��
� We give an example of an irregular continued fraction system� First notice
that if I � N is an index set� we may obtain upper bounds on the the functions 
n�t
 by a
similar method to that given in Example ��� for obtaining lower bounds� Thus� using the
Bounded Distortion Property with K � � and using the facts that b � b� qn���qn � b��
and b� � � �b� we have�X

b�I

�

b�t

�n

� 
n�t
 � �
��n���t

�X
b�I

�

b�t

�n

�

From this we have

log

�X
b�I

�

b�t

�
� PI�t
 � �t log � � log

�X
b�I

�

b�t

�
�

In particular� if p � ��� and we set I � f�n�logn
p� � n � n�g� then
P

b�I
�
b
� �� provided

n� is large enough and
P

b�I
�
bs
�
� if s � �� Thus� PI����
 � 
 and PI�t
 �
 if t � ����

So� this system is irregular�
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x�� Some Problems�

�� Is there a nontrivial subset I of N such that 
 � H
h�JI
 and P

h�JI
 � 
" If
there is such an I� we know that 
 � limsupn��

Sn
nh

�
�

�� Is there a Hausdor� gauge function g of the form g�t
 � thL�t
� where L is a
slowly varying function such that 
 � Hh�JI
 or P

h�JI
 � 
� where I is the set of prime
numbers" Since some detailed information is known about the distribution of the two sided
gaps in the primes one can at least determine a class of g for which these measures are
either 
 or 
�

�� By Theorem ��� we know that for every 
 � t � ��� there exists a continued
fraction system whose limit set has dimension t� We conjecture that this remains true for
all t � �
� ���
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