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ABSTRACT. In this paper we apply some results about general conformal iterated function
systems to A, the residual set of a standard Apollonian packing or a curvilinear Sierpinski
gasket. Within this context, it is straight forward to show that h, the Hausdorff dimension
of A is greater than 1 and the packing dimension and the upper and lower box counting
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Sullivan’s result that 0 < 3"(A4) < oo and P*(A) = oo.
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§1. Introduction: Setting and Notation

The purpose of this note is to demonstrate how the theory of infinite systems of
conformal maps can be applied to obtain some results about the dimension and measure
of the A, the residual set of a standard Apollonian packing or, equivalently a curvilinear
Sierpinski gasket. First, let us describe the setting.

Let X = B(0,1) and let f = % Then f(z;) = aj, where z; = e for

j=0,1,2and ap = 1,a1 = (2 — v3)(1/2+ V/3i/2) and ay = (2 — V3)(1/2 — V/3i/2). Let
Ri(z) = ¢"5 z and Ry(z) = R%(2). Let f1 = f, fo = Rio f, and f3 = Ry o f. Let

A= m U fO'(X)7

n |g-|:n

where o = (s1, $2,...,5n) € {0,1,2}™ and f, = fs, o---0 fs . The set X and some of its
images are indicated in figure 1.

FIGURE 1 GOES HERE

Then A is the limit set generated by the finite iterated function system {f;}2_, and
A satisfies the self-conformal set equation:

A= ﬂ U fO'(A)

n |o|=n

Now A is also the residual set generated from the Apollonian packing or the osculatory
packing of the curvilinear equilateral triangle, T' with vertices zg, 21, 2z2. This is clear since
[i(T) C T, and U, f;(T) consists of T with the inscribed circle removed, in general, U; f4; (T),
is the curvilinear triangle f,(7") with the inscribed circle removed and A can be expressed
as

The set T and some of its images are indicated in figure 2.
FIGURES 2a AND 2b GO HERE. ONE ABOVE THE OTHER

One of the problems in analyzing the geometric properties of A has been the fact
that although the finite system of conformal maps f; satisfies the open set condition, the
maps are not contractive but only nonexpansive since there is a neutral fixed point and
also the system does not satisfy the bounded distortion property. Thus, we cannot apply
the theory that has been developed for self conformal sets generated by finitely many
uniformly contracting conformal maps satisfying bounded distortion. In fact, the residual
set A cannot be generated be any finite family of uniformly contractive conformal maps
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which satisfy the open set condition and bounded distortion. The reason is that if this
were the case, then both the Hausdorff and packing measure of A in its dimension would
be positive and finite [MU1]. This would conflict with Sullivan’s result that although the
Hausdorff measure of A is positive and finite, the packing measure is infinite [S]. Our goal
in this paper is to show how this result and some others can be obtained by modifying the
system. Specifically, we will show that by deleting a countable set from A, we obtain a set
which is the limit set generated by an infinite family of uniformly contracting conformal
maps and this family satisfies the required conditions for analysis of an infinite iterated
function system. It is within this context that we show 0 < 3"(A) < oo and P"(A) = oo
where h = dimg(A) = dimp(A). We note that the packing measure we use is not the
“packing” measure as defined in Sullivan’s paper but the now standard packing measure
defined by Taylor and Tricot [TT],[M]. We show h is also the upper and lower box counting
dimension of A. It is shown in [MU3]| that the conformal measure for the modified infinite
system is also conformal for the original system. However, the equivalent invariant measure
for the modified system is not invariant for the original system, but as indicated here can be
adjusted to give an invariant measure for the original one. Finally, we note that McMullen
has given an algorithm for computing h [Mc].

Let us describe the family of maps forming the infinite conformal iterated function
system. Let I = {(n,j):j,n € Nand 1 <n <6}. Let ¢1; = floRi0f, ¢p2j = f/oRyo f,
¢3,j = RiofioRiof, paj= RiofIoRyof, ¢5; = RaofloRyof, and ¢ ; = Ryo fIoRyo f.

This system satisfies all the requirements to be an infinite conformal iterated func-
tion system as described in [MU1, MU2]. The bounded distortion property is satisfied by
the Koebe distortion lemma. Figure 3 indicates some of the images of X under this family.
The limit set generated by this family of maps is J = A\ C, where C is the countable set
of cusp points of A.

FIGURE 3 GOES HERE

§2. Results

First, we need to estimate the size of the derivatives of the maps in our family. Let
g(z) = 1/z — 1. Then g7 '(2) = 1+ 1/z and h(z) = go fog~'(2) = z — 1/V/3. Thus,
n Y n _ (\/§—n)z+n : n\/ _ 3
h*(z) = z —n/V/3 and f*(z) = Coinryse From this we have (fM(2) = rEee———e
From these formulas the following lemma can be proven.

Lemma 2.1. There is a constant QQ > 1 such that for all (n,j) € I,

Q5% < 41l < Q15>
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Let
Pa(t) = > oLl

welm™

and .
P(t) = lim —logtn(t).

Thus, P is the topological pressure function for this system. From lemma 2.1, we
have that ¢;(1/2) = oo and if ¢ > 1/2, then 11 (t) < co. Therefore, this system is strongly
regular as described in [MU2|. This implies there is some h > 1/2 such that P(h) = 0.
We will prove that h is the Hausdorff and packing dimension of J and that there is an
h-conformal probability measure, m, supported on A for this system [MU1].

Our first result is a simple proof of the following well-known result, see [F|, pp. 125-131.

Theorem 2.2. 1 < dimg(A) < 2.

Proof. Let us note that H'(A) > 0, since A is a continuum. We give a topological
argument that the Hausdorff dimension must be greater than 1. Let us assume to the
contrary that the dimension is 1. From the results of [MU1] we know that H'(A) <
oo. However, in order for a continuum to have finite H' measure with respect to some
compatible metric, the continuum must have uncountably many local separating points. In
fact, in order for this to be so every nondegenerate subcontinuum must contain uncountably
many local separating points [EH]. However, A has only countably many local separating
points-those points which are cusp points at some level. This contradiction allows us to
conclude that 1 < dimg(A).

To see that dimp(A) < 2, note that Ao (Int(X)\U; nerdin(X)) > 0. So, by theorem
4.5 of [MU1], h < 2. The proof is finished. B

Remark. The local separating point argument also allows us to conclude that A
does not have o-finite ! measure [M]. This topological argument does not give us any
means of estimating how much greater than 1 the dimension of A is whereas the arguments
of Hirst and Boyd as presented in Falconer’s book [F] do.

Our next aim is to show that the Hausdorff, upper and lower box counting, and
packing dimensions of A are equal. We begin with the following lemma.

Lemma 2.3. If z is in the open segment joining 0 and 1, then dimp(O(2)) < 1, where
O(z) ={pin(z) 11 <6,n > 1}.

Proof. Of course, it suffices to show that dimp({f"(z) :n > 1} < 1. Put

V31— 2)
(1—2)n+V3

n
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Since the sequence r, decreases to 0, given r sufficiently small there exists exacly one
n = n(r) such that

1 Tn+1§T§7"n

Let Ns(Z) denote the minimal number of balls of radius s needed to cover the set Z. Notice
that 7, = 1 — f¥(2). and therefore all the points f¥(z), k > n + 1, are covered by the ball
B(f"*'(z),rn41). Hence N,.(O(z)) < N, (O(2)) < n+ 2. Thus, by (1)

log N,.(O(z)) < log(n+2) log(n + 2) 1

“logr ~ —logra  log(n(1— )+ v/3) — log(v3(1 - 2))

if n — oo or equivalently, if » — 0. Thus dimp(O(z)) < 1 and the proof is completed. B
Invoking now Theorem 2.0 and Theorem 2.11 from [MU2|, we get the following.

Theorem 2.4. The Hausdorff, upper and lower box counting, and packing dimensions of
A are equal.

Let us fix some notation. Also, let a; = ¢1 ;(21),b; = ¢1,;(20), and ¢; = ¢ j(22). So
aj,b;,c; are the vertices of the triangle ¢, ;(T') arranged such that a;,b; € T and ¢; ¢ T'.

Lemma 2.5 There is a constant C' > 1 such that if k and n are positive integers with
k+1<n,z€ ¢ (X)), andy € 1 n(X), then C(3 — £) > [z —y| > C7H(3 — 2).

n

Proof. Let y’(z’) be the point of intersection of the real axis and the line, Ly, (Ly) through
y(z) and 1 + /3i. Let 0 be the angle between the lines L; and L. Let a(a’) be the angle
between Lo and the line through y and z(the real axis). By the law of sines, we have

2=yl [L+iV3—y| |2 —y| [1+ivV3—y]

sin 6 sin av " sinf sin o

Thus,

11 +4v3 —y| sina/
|1+i\/§—y’| sina

Clearly, |1 +4iv3 —y| < |1 +iv3 — 3| < 2|1 +4v/3 — y| and « and o/ are bounded
away from 0. For each n > 0, let u,, be the center of the circle f™(B(0,2 — v/3)) Also,
note that for each p > 1, the line through 1+ iv/3 and a,(b,) which is tangent to the disk
¢1 »(X) meets the real axis at u,. Thus, there is some M > 1 such that M~ (u,—1 —ug) <
12" — | < M (upn — ug—1).

Let vo = v/3—2 and v; = f(vo) = 2— /3. Then for each n > 0,u,, = (f"(vo)+ £+ (vo))/2.
From this it follows that there is a constant D > 1 such that if k and n are positive integers
with k 4+ 1 <n, then D™'(¢ — L) < up — u, < D( — +). The lemma now follows. W

n

|z —y| = 12" — |
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Let H > 0 be such that if k and n are positive integers with k£ < n, then

n

> o < HIGE = ()

Theorem 2.6. 0 < H"(J) < cc.

Proof. That H"(.J) < oo follows immediately from Lemma 4.2 of [MU1]. Let F' = {(i,n) €
I:n=1,2}. We shall show if L and v > 1 are large enough, then for all (i,n) € I \ F, for
all 7 > ydiame; ,,(X), and for all y € ¢; ,(X) we have:

(2.1) m(B(y,r)) < Lr".

It then follows from lemma 4.11 of [MU1] or theorem 2.4 of [MU2]) that 0 < 3" (.J).
We note that we only need to prove that (2.1) holds for sufficiently small r. Since our system
is symmetric with respect to rotations by the angles 27/3 and 47 /3, and with respect to
reflections about the real axis and the lines passing through the origin and the point
e’ or the point e%, it suffices to consider the sets ¢1 ,(X). Choose v such that if r >
vdiames ,,(X), thenr > 1/n? and r > maz{|ly—=z|: y € ¢p1.n(X),2 € d1.m(X), |m—n| = 1}.
Now, fix n > 3, y € ¢1,,(X), and a radius r > ydiam(¢; (X)) > 1/n?. Let k < n be the
least positive integer such that ¢ ,(X) N B(y,r) # 0 and choose z € ¢1 ,(X) N B(y,r).

By lemma 2.5, we have

1 1
r>lz—y|l>C 1(E_ﬁ)

Hence + < Cr + 1. By m_B(y,r), we denote the measure of the union of all the
sets ¢1,;(X) that intersect B(y,r) and for which j < n. With this notation, we have

m_B(y,r) < Z ]éh < H[(%)Z’L—l — (l)Zh—l]

n
k

< H|(Or+ Pt = (Y,

We shall consider now two cases.
Case 1. r > 1/n. We make the estimate:

m_(B(y,r)) < H(Cr+ 1)~ < H(C + 1) 1h,

Since h — 1 > 0, the right hand side is less than r” for » small enough which is all
we need.
Case 2. 7 < 1/n. Then, recalling that r > 1/n? and using the Mean Value theorem, there
exists 6, % <f< % +Cr < %(C’+ 1) such that
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m_(B(y,r)) < H(2h —1)0*"2Cr = H(2h — 1)(6*)"~*Cr

< H(2h — 1)(%)"‘1(0 +1)2720r < CH(2h — 1)(C + 1)2h=2p",

n

Now, consider myB(y,r), the measure of the union of all the sets ¢ ;(X) that
intersect B(y,r) and for which j > n. First, suppose r > 1/Cn. We make the estimate:

H(l)2h_1 S HOZh_l'f'h_lT'h.
n

IN

1
m4B(y,r) < ZjTh

j=n

Again, for r sufficiently small, m B(y,r) < r". Finally, suppose r < 1/Cn. Then 1 ¢
B(y,r). Let k be the greatest integer such that ¢q x(X) N B(y,r) # 0. By lemma 2.5,
r>ly—z>C7 (L~ 1). Hence, + > 1 — Cr. We can now make the estimate:

k
Liop_
mB(y,r) Z ot (),

Using the fact that » > 1/n? and the Mean Value Theorem, there is some z with 1 —Cr <
% <z< % such that

1

my B(y,r)< H(2h—1)2?""2Cr < CH(2h—1)(=)*""%r < CH(2h—1)r""'r =CH(2h—1)r"
n

The proof is finished. W

Theorem 2.7. P"(J) = oc.
Proof. We will show that

o (B )

r—0 ,,«h

It then follows from lemma 4.12 of [MU1] that P"(.J) = co.
Let r < v/3—1 and let n be the smallest positive integer such that ¢1 ,,(X)NB(1,r) #
(). We have the inequalities:

= 0.

m(B(1,7))

<1
rh = ph

m(é1,k(X Z (f2,6(X

1 2Qh 1
— n2h—1 .

f;
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By lemma 2.5 and the fact that r > |z — 1| > &, we have

B(1, 20"
m(B(L.r) 29

HC2h_17"2h_1 S 2QhHCZh_1Th_1.

Since h > 1, the limit in question is zero and P"(A4) = co. A

Let Y denote the set of those x for which 7=1(z) is a singleton, where 7 is the natural
projection from the shift space {fi, f2, f3}°° onto the limit set. Write 7~!(z) = fl'w, where
n > 0 and wy # f1 and set n(z) = n. For every integer n > 0, set B,, = {z : n(z) = n}
and D,, = {z : n(x) > n}. Let p denote the invariant probability measure for the modified
system. Two proofs are given for the existence of the measure p in [MU1], theorem 3.8
and lemma A.1. Then we have the following theorem which is proved in [MU3]J.

Theorem 2.8. The conformal measure m for the modified infinite system, {¢; n} is also a
conformal measure for the original system {f1, f2, f3}. The measure given by the formula

v(E) =Y u(fu(E)N Dy)

k=0 |w|=k
defines a o-finite measure equivalent with m and invariant under the original system gen-
erated by the maps f1, fa, f3. Moreover, one can check that the measure v s finite.

Let us comment some more on the system {fi, f2, f3}. This system is an example
of a general theory developed in [MU3]. First, let Py(t) be the pressure function for the
original system{ f;}3_,. Thus,

1
Py(t) = lim —logo n(t),

n—oo N

where

wo,n(t) = Z ||fcf)||t

we{1,2,3}"

Let g : @ — IR be defined by g(w) = tlog|f., (m(c(w)))|. As shown in [MU3], a
second expression for Py(t) is given by

Py(t) = lim sup €S9,

nroeo |7|=n {welr]}

As is well known, see [W], a third expression for Py(T') is given by
Py(t) = sup {hl,(a) + /g(w)dy(w) : v is invariant under a} :

From these two equivalent ways of expressing Py, we have Py(0) = log 3, the function
P, is continuous, nonincreasing, convex and Lipschitz continuous. Also, dimg(A) = min{t :
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Py(t) < 0}. Thus, Py(t) > 0, if 0 < ¢t < h. If we take K to be point mass at the infinite
sequence of 1’s, then « is invariant and h, (o) + [ g(w)dk(w) = 0. Thus, Py(t) = 0if t > h,
whereas P(t) < 0, if t > h.

We would like to indicate how some other features of the Apollonian packing can
be obtained from this viewpoint. We begin with a theorem of D. Boyd [Bo|, another proof
of which was given by Tricot [T]. For some recent related work see [R].

Theorem 2.9 Let {B,}52, be the disks that are removed from T to obtain the residual set
A. Then dimy(A) =b=inf{e: ) -, diam(By)°¢ < oc}.

Indication of the Proof. Notice the balls removed from T consist of B = B(0,2 —
V3) together with all the balls, f,(B). If t<h, then Y02, 37 o) 5 5yn(diamfy,(B))" >

Ser- (diamdy (B)) > 2K (2V3)) " Syer 00117 2 2K (@~VE) ™ 3202, Yere 011
where I* consists of all finite words in the alphabet I. But, for large n,> ;. |6 [|" >
enP(®)/2 This implies "o | diam(B,)! = oo and h < b.

On the other hand, if e > h, then Py(e) = 0 and there is an e-conformal mea-
sure m., a probability measure supported on A. This is proven in [MU3]. It turns out
that m, is supported on U2, Ujy|=pn fw(1). Let G be an open ball such B C G and
G is a subset of the interior of X. So, 0 < m.(G). Since G is bounded away from the
unit circle, the family of maps f,, have bounded distortion with some distortion con-
stant K. We have m.(f.(G)) = [, |fL|°dm. > K °||f |lgme(G), where || - || is the
uniform norm over G. Thus, > cc; 53y (diamfu(B))® < 3 103y (diam[fu(G))® <
diam(G)® Y eq1.0.3y- 11011G < diam(G) K mZHG) Y, eq1.2.53- Me(fu(G)). But the sets
fu(G) being disjoint, >~ | diam(B,)¢ < co and b < h. R

A general theory of families of conformal maps such as the family {f;}?_; which
generate the Apollonian packing are in [MU3].

Let us compare the conformal measure, mg, for the standard Sierpinski gasket and
the conformal measure for the curvilinear gasket. The standard gasket, G, is the limit set
determined by three similarity maps Sy, S3,S3 with the same reduction ratio, 1/3. The
Hausdorff dimension is d = log 3/ log2. We also have that 0 < H4(G) < P4(G) < co. The
conformal measure and equivalent invariant measure are equal. The conformal measure can
also be realized of course as the uniform distribution on G. In other words, mg = 7o ™1,
where 7 is the natural projection map from the coding space Q@ = {1,2,3}" and 7 is
the uniform measure on the coding space or infinite product measure determined by the
probability vector (1/3,1/3,1/3). Thus, each set of the form S, (G) has measure 1/3™ where
n = |o|. Now, the corresponding image v of 7 on the curvilinear gasket has been used to
obtain a lower bound on the dimension of the residual set, see [F]. What one has of course
is that dimg(vy) < dimg(A) and dimg(vy) = h./xr, where h, is the entropy of 7 and
Xr = — [olog|f., (7(0(w))|dT(w). Since the coding map is finite-to-one, h, = h, = log3.
It is natural to ask whether, as is the case with the standard gasket, « is the invariant
measure, or y equivalent to the conformal measure m or even if dimg(y) = dimg(A). We
give a partial answer in the next theorem.
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Theorem 2.10 Let p = (p1, p2, p3) be a probability vector, let T be the corresponding infinite
product measure on = {1,2,3}" and let v be image measure on A induced by the coding
map 7 : 2 — A. Then v # .

Proof. Let w be the infinite sequence of 1’s. Then y(f,,,(T)) = p{. Also, v(fun(T)) has
a bigger order than m(f,,(7T")). As we have shown earlier, this last quantity is of the same
order as n'~2". Thus, v puts too little mass near the cusp points in comparison with v. B

In fact we believe the next conjecture should have a proof following the approach
given by Ledrappier [Lel],[Le2].
COnjecture 2.11 Let v be an invariant ergodic measure on €2 and let v be the image

measure on A. Then dimg(y) < dimg(A) unless v = v, the unique invariant measure
equivalent to the conformal measure m.

Remark. In [F], p. 130, it is mentioned that dimg(A) > log3/log A, where log A
is the Lyapunov exponent of the uniform distribution on €2. The truth of the conjecture
would allow us to conclude that dimg(A) > log3/log A.
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