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ABSTRACT. We consider a regular infinite hyperbolic iterated function satisfying a prop-

erty which guarantees that the associated Frobenius-Perron operator £ is almost periodic.

For such a system there is a unique invariant probablility measure p supported on J, the

limit set of the system and which is equivalent to the conformal measure m of the system.

In this note we will demonstrate two properties of dy/dm. Firstly, we show that there is a

unique positive continuous function on X, p such that £p = p and [ pdm = 1. This func-
>0

tion is the density of u with respect to m. Secondly, we show that {£(1x)}52, converges
uniformly to p on X.
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§1. Introduction. In [MU] we have provided a framework to study infinite (hyperbolic)
conformal iterated function systems. We shall first recall this notion and some of its basic
properties. Let I be a countable index set with at least two elements and let S = {¢; :
X — X : ¢ € I} be a collection of injective contractions from X into X for which there
exists 0 < s < 1 such that p(¢;(x), ¢i(y)) < sp(x,y) for every ¢ € I and for every pair of
points x,y € X. Thus, the system S is uniformly contractive. Any such collection § of
contractions is called an iterated function system. We are particularly interested in the
properties of the limit set defined by such a system. We can define this set as the image
of the coding space under a coding map as follows. Let I* =, -, I", the space of finite
words, and for w € I™, n > 1, let ¢, = P, 0P, 0 -0¢,, . Ifw e I*UI>® and n > 1 does
not exceed the length of w, we denote by w|,, the word wiws . ..w,. Since given w € I,
the diameters of the compact sets ¢, (X), n > 1, converge to zero and since they form a
descending family, the set

() ¢wl, (X)

is a singleton and therefore, denoting its only element by 7(w), defines the coding map
7 : 1% — X. The main object of our interest is the limit set

J=a(I*)= |J [ éuu(X),

wel>® n=1

and various natural measures and functions associated with it. Observe that J satisfies the
natural invariance equality, J = (J;c; #i(J). Notice that if I is finite, then J is compact
and this property in general fails for infinite systems.

We consider a regular infinite hyperbolic iterated function system satisfying a property
which guarantees that the associated Frobenius-Perron operator is almost periodic. For
such a system there is a unique invariant probablility measure p1 supported on J, the limit
set of the system and which is equivalent to the conformal measure m of the system. In
[MU] we showed that the density p of p with respect to m is the unique positive continuous
function on J such that £Lp = p and [ pdm = 1. In this note we will demonstrate two
further properties of this density. Firstly, we show that p has a unique extension to a
positive continuous function on X such that Lp = p and [ pdm = 1. We also denote
this extension by p. Let £ be the Perron-Frobenius operator associated with this system.
Secondly, we show that {£(1x)}52, converges uniformly to p on X.

n=1

§2. Preliminaries. By a hyperbolic iterated function system we will mean the following.
Let X be a compact connected subset of a Euclidean space R?. There is a countable family
of conformal maps ¢, : X — X, n € I, satisfying the following conditions

(C1) (Open Set Condition) ¢, (Int(X)) N ¢m(Int(X)) = 0 for all m # n.
(C2) (Uniformly Contracting)ds < 1 Vi € I, ||¢4]] < s.

(C3) (Uniform Extension) There is an open connected set V' O X such that each ¢;, 1 € T
extends to a C'T¢ diffeomorphism on V which is conformal on V and maps V into
itself.



(C4) (Bounded Distortion Property) 3K > 1V¥n > 1Vw = (w1, ...,wy,) € I" Yo,y € V, then

|90 ()]
|64 ()]

(C5) (Cone Condition) There exist a,l > 0 such that for every * € X C R? there exists
an open cone Con(z,a,l) C Int(X) with vertex x, central angle of Lebesgue measure
a, and altitude /.
Throughout the entire paper we will make two additional assumptions. The first
assumption is that the system is regular.

< K.

(C6) (Regularity) There is a number § > 0 and a d-conformal probability measure m for
the system. This means m(.J) = 1 and for every Borel set A C X and every i € I,

m(i(A)) = /A 611° dm

and
m(¢i(X) N ¢;(X)) =0,
for every pair ¢,5 € I, 1 # j.

It is shown in [MU] that there is only one conformal measure for the system, that
d = dimpy(J) and m is the unique probability measure which is fixed by £*, the dual of
the Perron-Frobenius operator £ = L5 where

Ls(F)(x) = D 164() f(i(x).
el
We note that this positive operator preserves the space of continuous functions C'(X). It is

also shown in Theorem 3.8 of [MU] that there exists a unique invariant probability measure
i supported on J equivalent with m. Invariant means for every measurable set A,

u(| @A) = p(4).

The Radon-Nikodym derivative p = du/dm is bounded away from zero and infinity and p is
a fixed point of the operator £ when considered as an operator on the bounded measurable
functions on J. Also, p is unique on J up to sets of m measure zero. However, we do not
know whether this function p is continuous without some additional assumption.

Our second additional assumption can be considered as a strengthening of (BDP):

(C7) There are two constants L > 1 and a > 0 such that

[oi(w)| =163 ()] < L&y — |,
for every ¢ € I and every pair of points z,y € V.

In Lemma A.6 of [MU] it is shown that assumption (C7) guarantees us that the operator £
is almost periodic: for every continuous function f : X — C, the family {£L"(f): X — C:
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n > 1} is equicontinuous. Actually for the results given here we could replace assumption
(C7) by the assumption that the operator £ is almost periodic.

63. Results.

Lemma 1. There exists at most one continuous function p : X — [0, 00) such that Lp = p
and [ pdm = 1.

Proof. Suppose that there are two such functions p; and p2. By Theorem 3.8 from [MU1]
p1l5 = p2|7 and denote this common restriction by p. Fix now € > 0 and consider n > 0
so small that for each 1 = 1,2, |p;(y) — pi(z)| < eif 2,y € X and |y — 2| < n. Take an
arbitrary n > 1 so large that Ds™ < . Finally fix an arbitrary z € X and consider an
w € I, Then diam(¢, (X)) < Ds™ <n. Choose x € JN ¢(X). Then

p2(00(2)) = p1(Dw(2))] < [p2(u(2)) — p(2)] + p(z) — p1(Pu(2))] < €+ €= 26

Hence, using (2.15) from [MU], we get

1p2(2) — p1(2)| = [L"p2(2) = L7 p1(2)] = [L™(p2 — p1)(2)]
<Y pa(du(2) = pr(du(2)] - [¢L(2))°

|w|=n
< ) 2e[JoL)l° < 2K
|w|=n

Therefore, letting € — 0 we conclude that ps(z) = p1(z) and we are done. B

We want to examine the behaviour of the sequence {L"(1x)}52,. We first note the
following fact.

Proposition 2. Suppose the system satisfies conditions (C1)-(C7). Then the sequence
%2?2—01 L7(1x) converges uniformly on X to a continuous function p. Also, Lp = p and

[ pdm = 1.

Proof. Since the sequence {£"(1x)}22, is uniformly bounded between K% and K°

and 1s equicontinuous, the sequence % j:_ol L7(1x) has the same properties. Let p be an
accumulation point of this sequence of averages. Then obviously, p is continous and Lp = p
and [ pdm = 1. By Lemma 1, the sequence of averages can have only one accumulation

point. So, it converges. B

Problem We do not know whether Proposition 2 remains true if we only assume (C1)-

(C6).

oo

We now turn to the convergence of the sequence {L£™"(1x)}52,. An elementary ap-

proach would be to simply show the the limsup and the liminf of this sequence agree on
X. This leads to the next proposition which is probably well known. Its proof is short and
elementary, so we have decided to present it.
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Proposition 3. If {g, : Y +— R},>: is an equicontinuous family of uniformly bounded
functions defined on a compact metric space (Y, d), then the functions g, g : ¥ = R defined
respectively as limsup,,_, . gn(y) and limsup,,_, . gn(y) are continuous.

Proof. We will only prove continuity of the function g. The proof for g is analogous. So,
consider for every n > 1 the function

Sn = Sup{gnvgn—l-lv .- }

For every y € Y the sequence {s,(y)} is non-increasing and since

sup sup{|gn(2)[} 1= T
n>1zeY

is finite, {s,(y)} is bounded from below by —T. Thus the limit

m s,(y) =J(y)

1
n+— 00

limsup gn(y) =

n— 00

exists and lies between —T and T'. In order to complete the proof it is therefore enough to
prove equicontinuity of the family {s,},>1. To do this, fix € > 0 and take > 0 so small
that if d(y,x) < 6, then |gn(y) — gn(x)| < €/2 for all n > 1. Fix such two x and y, k > 1,
and choose m > k such that 0 < s (y) — gm(y) < €/2. Then

sk(e) = sk(y) 2 gm(x) — sk(y) = gm(x) —gm(y) —€/2 = —e

or equivalently si(y)—sk(x) < e. Similarly si(x)—si(y) < € and therefore |si(y)—sg(z)] <
€. The proof is complete. B

Let
p = limsup £"(1).
[ de el
Combining Proposition 3, Lemma A.6 and Lemma 2.2 from [MU] we conclude that the
function p : X — [0,00) is continuous. Also, L(p) > p. This means that p|.J is a fixed
point of L£|J. However, it is not clear that this function is fixed on X. But, using now
Lemma A.4, Lemma A.6 and Lemma 2.2 from [MU] from we conclude that the function

Poo = 1UmL"p
is continuous and satisfies the equation £p_, = p_. Since by (2.15) from [MU], 1 <p__ <
K9, after dividing the function p__ by its integral with respect to the conformal measure

m and invoking Lemma 1 we get another argument for the following.

Theorem 4. There exists a unique continuous function p : X +— [0, 00) such that Lp = p
and [ pdm = 1.



We now want to show that £"(1) converges uniformly to p on X. The argument follows
one given in [DU]. We recall that since the operator £ is almost periodic on E = C(X),
considered as the space of complex valued continuous functions on X provided with the
uniform norm, we have the following decomposition

E = E, P E..

where Eq = {f : ||L"(f)|| = 0} and E, is the closed span of {f : L(f) = A\f for somel|\| =
1}, [L]. We also need that following fact which is not proved here , but the proof follows
the argument given in [MU] for Theorem 3.8 with minor modifications. A detailed proof

may be found in [HMU].

Lemma 5. For each positive integer r, ¢” is ergodic with resect to p* the lift of the
measure i to the symbol space.

Lemma 6. E, = {cp: c € C}.

Proof. Suppose L(¢) = A\ with |A\| = 1}. Since £ is a positive operator on the Banach
lattice, C'(X), it follows from Lemma 18, Theorem 4.9 and Exercise 2 in [S](p. 326/327)
that the spectrum of £ meets the unit circle in a cyclic compact group. Therefore, the
group is finite and there is some positive integer r such that A\” = 1. Thus, £L7(¢)) = ¢ and
L7(Rey) = Rep L7(Imyp) = Imap. Let us suppose Rerp # 0. Fix M € R so large that
Rep + Mp > 0. But, by lemma 5, 0" is ergodic with respect to p. This means pdm is the
only invariant measure for o¢” equivalent to m. Therefore, there is a constant ¢ such that
Rey + Mp = ¢cp. So, Reyp = (¢ — M)p and [ Reipdm = ¢ — M. Repeating this argument
for Imy, we have ¢» = ([ ¢»dm)p. This implies F, consists of the scalar multiples of p. B
Theorem 7. The sequence {L™(1x)}52, converges uniformly to p on X.

Proof. Let 1 = 1x. By the decomposition theorem and lemma 4, 1 = 1, + g =
cp + (1 — cp). But, note that if f € Ey, then [ fdm = 0 since the operator £ preserves
integration with respect to m. But, this means ¢ = 1. Therefore, 1 = p + (1 —p). So,
1£"(1) = pl| = [I£"(1 = p)|| = 0. W

References

[DU] M. Denker, M. Urbarfiski, Ergodic theory of equilibrium states for rational maps,
Nonlinearity 4 (1991), 103-134.

[HMU] P. Hanus, R. D. Mauldin, M. Urbanski, Multifractal analysis of equilibrium states

in conformal iterated functions systems, in preparation.

[L] V. Ljubich, Entropy properties of rational endomorphisms of the Riemann sphere,
Ergod. Th. Dynam. Sys. 5 (1983), 27-43.



[MU] R. D. Mauldin, M. Urbanski, Dimensions and measures in infinite iterated function

systems, Proc. London Math. Soc. (3) 73 (1996) 105-154.

[S] H. Schaefer, Banach lattices and positive operators. (1974), Springer, New York.



