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Since the 1930’s many authors have studied the dis-
tribution v, of the random series Y, = > +A" where the signs are
are chosen independently with probability (1/2,1/2) and 0 < A < 1.
Solomyak (1995) proved that for almost every A € [%, 1], the distribu-
tion v, is absolutely continuous with respect to Lebesgue measure. In
this paper we prove that v, is even equivalent to Lebesgue measure for



1. INTRODUCTION

For each A € (0,1) we define the random variable

S
n=0

where 6, are independent random variables with Prob(6, = —1) =
1

Prob(f, = 1) = 5. The distribution v, of Y} is sometimes called a
symmetric infinite Bernoulli convolution. One can easily see that for
0 <A< % the distribution v, is supported on a Cantor set of zero
Lebesgue measure. Since 1930’s a lot of work has been done to charac-
terize vy for 1 < A (for a good survey see e.g. Peres, Solomyak (1996a)).
Among these results the most interesting ones are as follows: P. Erdds
(1939) proved that vy is singular with respect to Lebesgue measure,
if A\ is the reciprocal of a PV number. (An algebraic integer is a PV
number provided all of its conjugates are less than one in modulus.)

On the other hand, Wintner (1935) proved that v, is absolutely con-
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tinuous for A = 2 ¥, for each k > 1, and Garsia (1962) found some
other algebric integers for which v, is absolute continuous. Moreover,
P. Erdés (1940) also proved that there exists a < 1 such that the dis-
tribution v, is absolutely continuous with respect to Lebesgue measure
for (Lebesgue) a.e. A € (a,1). Then P. Erdds asked:

Is this statement true with a = %?

This exciting problem remained open for more than fifty years. Then
Solomyak (1995) gave a positive answer to this Erdés problem (see also
Peres, Solomyak (1996a)) for a shorter proof). Namely,

Theorem 1 (Solomyak).

1
vy < m for Lebesgue a.e. \ € (5, 1),

where m is Lebesque measure.

Answering a problem of the first author, asked on the Conference
on Fractals and Stochastics (1994, Finsterbergen), we prove that that
vy is even equivalent to Lebesgue measure for a.e. A € [,1]. Using
Solomyak’s theorem it is enough to prove that Lebesgue measure is
either absolutely continuous or singular with respect to v, for each .
Actually we prove this statement for a more general family of measures.
Furthermore, Peres, Solomyak (1996b) proved that if the probabilities
of choosing the signs + and — in Y), are (p,1 — p) where p € [1/3,2/3],
then vy < m holds for a.e. X\ € [p?(1 — p)'~?,1]. Using this, it follows
from our result that even in this non-symmetric case the distributions



3

are not only absolutely continuous but equivalent to Lebesgue measure
for a.e. A € [pP(1 — p)"P,1]. (For smaller A\ the distributions are
singular.)

We thank Yuval Peres for some useful conservations.

2. NOTATION
For an arbitrary A € (3, 1) we define the ‘projection’ I : {—1, l}N —
[=%, =] by T () = Y-, ikA®. Let p be any Borel probability mea-
sure on {—1, 1}N for which
(1) w(B) > 0= p{(i,B)} >0

holds for all B € {—1,1}N and i € {~1,1}, where (i, B) := {(i,j) €
{-1, l}N : j € B}. For example p may be any Bernoulli measure
on {—l,l}N with probabilities (p,1 — p), 0 < p < 1. The ‘push
down measure’ of p is ay ,(B) = p (H_I(B)). We denote the interval
[, 1= by I. Further, we define S; : T — I, Si(x) := Az + i for
(1 =—1,1). The iterates of S; are

Sz'l...in (a:) = Sz'l ©0...0 Sin (x)

The image of I by S, .. in is called [;, . ; . The inverse of S;, ;. is defined
only on [;, ;.. So S;', (A) := SulZ (AN ;). Then S;7'(z) =
sx — % for x € I;, (i = —1,1). We denote the Lebesgue measure of a

set A by m(A).
3. THE THEOREM AND ITS CONSEQUENCES

Theorem 2. Either m < ay,, or m L ay,.

If v is the Bernoulli measure with probabilities (3, 3) then vy = ay .
Using Solomyak Theorem we obtain that

Consequence 1. For almost all A € (%, 1), vy is equivalent to Lebesgue
measure.

Clearly, any Bernoulli measure p with probabilities (p, 1 —p), satisfies
(1) (if p#0). Thus,

Consequence 2. Let ny be the distribution of the random series Z\ =
> A" where the signs are are chosen independently with probabilities
(p,1—p) and 0 < A < 1. Then either m < ny or m L n,.

Let 7, be as above. Then ny is singular for all A < p?(1 — p)!™?
(see Peres, Solomyak (1996b) Theorem 2 (a)). Also Peres, Solomyak
(1996b, Corollary 1.4) proved that for p € [1/3,2/3] and for a.e. A €
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[pP(1 — p)77, 1], nx < m. Thus, using our previous consequence we
obtain that

Consequence 3. Let ny be the distribution of the random series Z\ =
> EA" where the signs are are chosen independently with probabilities
(p,1 — p). Then for each p € [1/3,2/3] and for almost every \ €
[pP(1 — p)'=P, 1], the distribution ny is equivalent to Lebesgue measure.

4. LEMMAS AND PROOFS
To prove Theorem 2 we need two lemmas.
Lemma 1. Let A C I. ay,(A) = 0= a,,(S; '(4)) =0, (i=-1,1).

PROOF
First observe that

(2) (A = { (LI ST ) UL I ST A)) )
This is so, since for s = —1,1

JETLN(STH(A) <= S i\ € STH(A) = S\ e LA
=i+ Y kAt e A = (i,j) € TI'(A).

To get a contradiction we assume that there exists a set A such that
aru(A) = 0 and ay,(S;'(A)) = p(II;'(S;1(4))) > 0 holds for an
ie{-1,1}.

Then from (1), it follows that p ((i,11,*(S; ' (A)))) > 0. Using (2),
we find that p(I15'(A)) = ax,(A) > 0. This contradiction proves our
Lemma. ®

Let C' C I be an arbitrary fixed Borel set. Let Cy := C and

Copn) = (ST (Ck) USTH(Cx))
Then the ‘backward orbit’ of C in [ is:

(3) A= U C_k.

k>0

Lemma 2. For any C C I, the set A_ defined above is either a set
of zero measure or a full measure subset of I with respect to Lebesgue
measure.

PROOF Let A_ := T\ A_. Obviously, it is enough to prove the
statement of Lemma 2 for the set A_ instead of A_. Observe that

(4) €N = Si(x) e A_
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holds, since S;(z) € A = Fk > 0 such that S;(x) € C_,NI;. Then
z = S5;7"(Si(x)) € C_(r11) C A_. Iterate (4) to obtain

(5) Siin (A2) C AL,

for each n € N and (i1, ... ,i,) € {—1,1}". Suppose that m(A_) > 0.

Then d := m(ljl\li) is positive. Using (5) we obtain that m (K, N [il...z’n) >

m(Ss,..a. (A_)) = A" - d - |I|. Thus
m (AN i,
©) LB

holds for each 7; ...1,.
On the other hand, let J C I be an arbitrary interval. Then we can
find n and ¢ ..., such that I;, ; C J and

1 oin|

Liy.in] o A
7 = > -
(7) 7] — 3
Now, from (6) and (7) together, it follows that
A
mAag) 2
P/

That is A_ has no density point. Thus A_ is a full measure subset of
I. This completes the proof of Lemma 2. B

PROOF OF THE THEOREM 2 Suppose that m & a, . Then
there is a set C' C I such that m(C) > 0 and «,,(C) = 0. Define
A_ by (3). Then m(A_) > 0 thus it follows from Lemma 2 that A_ is
a full measure subset of I with respect to Lebesgue measure. On the
other hand, Lemma 1 implies that a, ,(A_) = 0. So m L «,,. This
completes the proof of the Theorem 2. B
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