THE EQUIVALENCE OF SOME BERNOULLI CONVOLUTIONS TO LEBESGUE MEASURE

by

R. Daniel Mauldin¹

Department of Mathematics University of North Texas Denton, TX 76203

and

Károly Simon²

Department of Mathematics University of Washington Box 354350 Seattle, WA 98195-4350

February 6, 1997

Abstract. Since the 1930's many authors have studied the distribution ν_{λ} of the random series $Y_{\lambda} = \sum \pm \lambda^n$ where the signs are are chosen independently with probability (1/2, 1/2) and $0 < \lambda < 1$. Solomyak (1995) proved that for almost every $\lambda \in [\frac{1}{2}, 1]$, the distribution ν_{λ} is absolutely continuous with respect to Lebesgue measure. In this paper we prove that ν_{λ} is even equivalent to Lebesgue measure for almost all $\lambda \in [\frac{1}{2}, 1]$.

¹⁹⁹¹ Mathematics Subject Classification. Primary 26A30, 28A78, 28A80

¹Research supported by NSF Grant DMS-9502952

 $^{^2\}mathrm{Research}$ partially supported by F19099 and T19104 from the OTKA Foundation

Key words and phrases: Bernoulli convolution, equivalent measures.

1. INTRODUCTION

For each $\lambda \in (0, 1)$ we define the random variable

$$Y_{\lambda} = \sum_{n=0}^{\infty} \theta_n \cdot \lambda^n$$

where θ_n are independent random variables with $Prob(\theta_n = -1) =$ $Prob(\theta_n = 1) = \frac{1}{2}$. The distribution ν_{λ} of Y_{λ} is sometimes called a symmetric infinite Bernoulli convolution. One can easily see that for $0 < \lambda < \frac{1}{2}$ the distribution ν_{λ} is supported on a Cantor set of zero Lebesgue measure. Since 1930's a lot of work has been done to characterize ν_{λ} for $\frac{1}{2} < \lambda$ (for a good survey see e.g. Peres, Solomyak (1996a)). Among these results the most interesting ones are as follows: P. Erdős (1939) proved that ν_{λ} is singular with respect to Lebesgue measure, if λ is the reciprocal of a PV number. (An algebraic integer is a PV number provided all of its conjugates are less than one in modulus.) On the other hand, Wintner (1935) proved that ν_{λ} is absolutely continuous for $\lambda = 2^{-\frac{1}{k}}$, for each $k \ge 1$, and Garsia (1962) found some other algebric integers for which ν_{λ} is absolute continuous. Moreover, P. Erdős (1940) also proved that there exists a < 1 such that the distribution ν_{λ} is absolutely continuous with respect to Lebesgue measure for (Lebesgue) a.e. $\lambda \in (a, 1)$. Then P. Erdős asked:

Is this statement true with $a = \frac{1}{2}$?

This exciting problem remained open for more than fifty years. Then Solomyak (1995) gave a positive answer to this Erdős problem (see also Peres, Solomyak (1996a)) for a shorter proof). Namely,

Theorem 1 (Solomyak).

$$\nu_{\lambda} \ll m \text{ for Lebesgue a.e. } \lambda \in (\frac{1}{2}, 1),$$

where m is Lebesgue measure.

Answering a problem of the first author, asked on the Conference on Fractals and Stochastics (1994, Finsterbergen), we prove that that ν_{λ} is even equivalent to Lebesgue measure for a.e. $\lambda \in [\frac{1}{2}, 1]$. Using Solomyak's theorem it is enough to prove that Lebesgue measure is either absolutely continuous or singular with respect to ν_{λ} for each λ . Actually we prove this statement for a more general family of measures. Furthermore, Peres, Solomyak (1996b) proved that if the probabilities of choosing the signs + and - in Y_{λ} are (p, 1-p) where $p \in [1/3, 2/3]$, then $\nu_{\lambda} \ll m$ holds for a.e. $\lambda \in [p^p(1-p)^{1-p}, 1]$. Using this, it follows from our result that even in this non-symmetric case the distributions are not only absolutely continuous but equivalent to Lebesgue measure for a.e. $\lambda \in [p^p(1-p)^{1-p}, 1]$. (For smaller λ the distributions are singular.)

We thank Yuval Peres for some useful conservations.

2. NOTATION

For an arbitrary $\lambda \in (\frac{1}{2}, 1)$ we define the 'projection' $\Pi_{\lambda} : \{-1, 1\}^{\mathbf{N}} \to [\frac{-1}{1-\lambda}, \frac{1}{1-\lambda}]$ by $\Pi_{\lambda}(\mathbf{i}) = \sum_{k=0}^{\infty} i_k \lambda^k$. Let μ be any Borel probability measure on $\{-1, 1\}^{\mathbf{N}}$ for which

(1)
$$\mu(B) > 0 \Longrightarrow \mu\{(i,B)\} > 0$$

holds for all $B \subset \{-1,1\}^{\mathbf{N}}$ and $i \in \{-1,1\}$, where $(i,B) := \{(i,\mathbf{j}) \in \{-1,1\}^{\mathbf{N}} : \mathbf{j} \in B\}$. For example μ may be any Bernoulli measure on $\{-1,1\}^{\mathbf{N}}$ with probabilities $(p, 1-p), 0 . The 'push down measure' of <math>\mu$ is $\alpha_{\lambda,\mu}(B) := \mu(\Pi_{\lambda}^{-1}(B))$. We denote the interval $[\frac{-1}{1-\lambda}, \frac{1}{1-\lambda}]$ by I. Further, we define $S_i : I \to I, S_i(x) := \lambda x + i$ for (i = -1, 1). The iterates of S_i are

$$S_{i_1\dots i_n}(x) := S_{i_1} \circ \dots \circ S_{i_n}(x).$$

The image of I by $S_{i_1...i_n}$ is called $I_{i_1...i_n}$. The inverse of $S_{i_1...i_n}$ is defined **only** on $I_{i_1...i_n}$. So $S_{i_1...i_n}^{-1}(A) := S_{i_1...i_n}^{-1}(A \cap I_{i_1...i_n})$. Then $S_i^{-1}(x) = \frac{1}{\lambda}x - \frac{i}{\lambda}$ for $x \in I_i$, (i = -1, 1). We denote the Lebesgue measure of a set A by m(A).

3. The Theorem and its consequences

Theorem 2. Either $m \ll \alpha_{\lambda,\mu}$ or $m \perp \alpha_{\lambda,\mu}$.

If μ is the Bernoulli measure with probabilities $(\frac{1}{2}, \frac{1}{2})$ then $\nu_{\lambda} = \alpha_{\lambda,\mu}$. Using Solomyak Theorem we obtain that

Consequence 1. For almost all $\lambda \in (\frac{1}{2}, 1)$, ν_{λ} is equivalent to Lebesgue measure.

Clearly, any Bernoulli measure μ with probabilities (p, 1-p), satisfies (1) (if $p \neq 0$). Thus,

Consequence 2. Let η_{λ} be the distribution of the random series $Z_{\lambda} = \sum \pm \lambda^n$ where the signs are are chosen independently with probabilities (p, 1-p) and $0 < \lambda < 1$. Then either $m \ll \eta_{\lambda}$ or $m \perp \eta_{\lambda}$.

Let η_{λ} be as above. Then η_{λ} is singular for all $\lambda < p^{p}(1-p)^{1-p}$ (see Peres, Solomyak (1996b) Theorem 2 (a)). Also Peres, Solomyak (1996b, Corollary 1.4) proved that for $p \in [1/3, 2/3]$ and for a.e. $\lambda \in$ $[p^p(1-p)^{1-p},1], \eta_\lambda \ll m$. Thus, using our previous consequence we obtain that

Consequence 3. Let η_{λ} be the distribution of the random series $Z_{\lambda} =$ $\sum \pm \lambda^n$ where the signs are are chosen independently with probabilities (p, 1 - p). Then for each $p \in [1/3, 2/3]$ and for almost every $\lambda \in$ $[p^p(1-p)^{1-p}, 1]$, the distribution η_{λ} is equivalent to Lebesgue measure.

4. Lemmas and proofs

To prove Theorem 2 we need two lemmas.

Lemma 1. Let $A \subset I$. $\alpha_{\lambda,\mu}(A) = 0 \Longrightarrow \alpha_{\lambda,\mu}(S_i^{-1}(A)) = 0$, (i=-1,1).

PROOF

First observe that

(2)
$$\Pi_{\lambda}^{-1}(A) = \left\{ \left(-1, \Pi_{\lambda}^{-1}(S_{-1}^{-1}(A)) \right) \right\} \bigcup \left\{ \left(1, \Pi_{\lambda}^{-1}(S_{1}^{-1}(A)) \right) \right\}.$$

This is so, since for i = -1, 1 $\mathbf{j} \in \Pi_{\lambda}^{-1}(S_i^{-1}(A)) \iff \sum_{k=0}^{\infty} j_k \lambda^k \in S_i^{-1}(A) \iff \sum_{k=0}^{\infty} j_k \lambda^k \in \frac{1}{\lambda} A - \frac{i}{\lambda}$ $\iff i + \sum_{k=0}^{\infty} j_k \lambda^{k+1} \in A \iff (i, \mathbf{j}) \in \Pi_{\lambda}^{-1}(A).$ To get a contradiction we assume that there exists a set A such that

 $\alpha_{\lambda,\mu}(A) = 0$ and $\alpha_{\lambda,\mu}(S_i^{-1}(A)) = \mu\left(\prod_{\lambda}^{-1}(S_i^{-1}(A))\right) > 0$ holds for an $i \in \{-1, 1\}.$

Then from (1), it follows that $\mu\left(\left(i, \prod_{\lambda}^{-1}(S_i^{-1}(A))\right)\right) > 0$. Using (2), we find that $\mu(\Pi_{\lambda}^{-1}(A)) = \alpha_{\lambda,\mu}(A) > 0$. This contradiction proves our Lemma.

Let $C \subset I$ be an arbitrary fixed Borel set. Let $C_0 := C$ and

$$C_{-(k+1)} := \left(S_{-1}^{-1}(C_{-k}) \cup S_{1}^{-1}(C_{-k})\right)$$

Then the 'backward orbit' of C in I is:

(3)
$$\Lambda_{-} := \bigcup_{k \ge 0} C_{-k}$$

Lemma 2. For any $C \subset I$, the set Λ_{-} defined above is either a set of zero measure or a full measure subset of I with respect to Lebesque measure.

PROOF Let $\overline{\Lambda}_{-} := I \setminus \Lambda_{-}$. Obviously, it is enough to prove the statement of Lemma 2 for the set $\overline{\Lambda}_{-}$ instead of Λ_{-} . Observe that

(4)
$$x \in \overline{\Lambda}_{-} \Longrightarrow S_{i}(x) \in \overline{\Lambda}_{-}$$

holds, since $S_i(x) \notin \overline{\Lambda}_- \Longrightarrow \exists k \ge 0$ such that $S_i(x) \in C_{-k} \cap I_i$. Then $x = S_i^{-1}(S_i(x)) \in C_{-(k+1)} \subset \Lambda_-$. Iterate (4) to obtain

(5)
$$S_{i_1...i_n}\left(\overline{\Lambda}_{-}\right)\subset\overline{\Lambda}_{-},$$

for each $n \in \mathbf{N}$ and $(i_1, \ldots, i_n) \in \{-1, 1\}^n$. Suppose that $m(\overline{\Lambda}_-) > 0$. Then $d := \frac{m(\overline{\Lambda}_-)}{|I|}$ is positive. Using (5) we obtain that $m(\overline{\Lambda}_- \cap I_{i_1...i_n}) \ge m(S_{i_1...i_n}(\overline{\Lambda}_-)) = \lambda^n \cdot d \cdot |I|$. Thus

(6)
$$\frac{m\left(\overline{\Lambda}_{-}\cap I_{i_{1}\ldots i_{n}}\right)}{|I_{i_{1}\ldots i_{n}}|} \geq d,$$

holds for each $i_1 \ldots i_n$.

On the other hand, let $J \subset I$ be an arbitrary interval. Then we can find n and $i_1 \ldots i_n$ such that $I_{i_1 \ldots i_n} \subset J$ and

(7)
$$\frac{|I_{i_1\dots i_n}|}{|J|} \ge \frac{\lambda}{3}.$$

Now, from (6) and (7) together, it follows that

$$\frac{m\left(\overline{\Lambda}_{-}\cap J\right)}{|J|} \ge d \cdot \frac{\lambda}{3}.$$

That is Λ_{-} has no density point. Thus $\overline{\Lambda}_{-}$ is a full measure subset of I. This completes the proof of Lemma 2.

PROOF OF THE THEOREM 2 Suppose that $m \not\ll \alpha_{\lambda,\mu}$. Then there is a set $C \subset I$ such that m(C) > 0 and $\alpha_{\lambda,\mu}(C) = 0$. Define Λ_- by (3). Then $m(\Lambda_-) > 0$ thus it follows from Lemma 2 that Λ_- is a full measure subset of I with respect to Lebesgue measure. On the other hand, Lemma 1 implies that $\alpha_{\lambda,\mu}(\Lambda_-) = 0$. So $m \perp \alpha_{\lambda,\mu}$. This completes the proof of the Theorem 2.

References

- P.Erdős (1939). On a family of symmetric Bernoulli convolutions, Amer. J. Math. 61, 974-975.
- [2] P.Erdős (1940). On the smoothness properties of Bernoulli convolutions, Amer. J. Math. 62, 180-186.
- [3] A.M. Garsia (1962). Arithmetic properties of Bernolli convolutions, Trans. Amer. Math. Soc. 102, 409–432.
- [4] Y. Peres and B. Solomyak (1996a). Absolute continuity of Bernoulli convolutions, Math. research letters 3:2, 231–239.
- [5] Y. Peres and B. Solomyak (1996b). Self-similar measures and intersections of Cantor sets, *Preprint*.
- [6] B. Solomyak (1995). On the random series $\sum \pm \lambda^i$ (an Erdős problem), Annals of Math. 142, 611-625.

 [7] A. Wintner (1935). On convergent Poisson convolutions, Amer. J. Math. 57, 827–838.

R. Daniel Mauldin: Department of Mathematics P.O.Box 5116 North Texas State University Denton, TX 76203-5116, email:mauldin@dynamics.math.unt.edu

Károly Simon current address: Department of Mathematics University of Washington Box 354350 Seattle WA 98195-4350, email: simon@math.washington.edu