Math 4050

Review #4

- 1. If x > 0, explain why $\ln x = \int_{1}^{x} \frac{dt}{t}$.
- 2. State the definition of $\ln z = \log z$ if (a) $z \in \mathbb{R}^+$, (b) $z \in \mathbb{C}$.
- 3. State the definition of e^z if $z \in \mathbb{C}$.
- 4. How does e^{ix} simplify? Explain how this relates to the usual Taylor series expansions of e^{x} , $\cos x$ and $\sin x$.
- 5. Suppose that $z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$ and $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$. Prove that
 - $z_1 z_2 = r_1 r_2 \left[\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \right]$
 - $\frac{z_1}{z_2} = \frac{r_1}{r_2} \left[\cos(\theta_1 \theta_2) + i \sin(\theta_1 \theta_2) \right]$
 - $z_1^n = r_1^n \left[\cos(n\theta_1) + i\sin(n\theta_1)\right]$ if n is a nonnegative integer
 - $z_1^n = r_1^n \left[\cos(n\theta_1) + i \sin(n\theta_1) \right]$ if n is a negative integer
- 6. Let |a| < 1. Prove that

$$1 + a\cos\theta + a^2\cos 2\theta + a^3\cos 3\theta + \dots = \frac{1 - a\cos\theta}{1 - 2a\cos\theta + a^2},$$
$$a\sin\theta + a^2\sin 2\theta + a^3\sin 3\theta + \dots = \frac{a\sin\theta}{1 - 2a\cos\theta + a^2}.$$

- 7. Simplify $(1+i)^{2012} + (1-i)^{2012}$.
- 8. Use DeMoivre's theorem to derive identities for $\cos 4\theta$ and $\sin 4\theta$.
- 9. Find all fourth roots of $-8 + 8i\sqrt{3}$. Then find $(-8 + 8i\sqrt{3})^{1/4}$.
- 10. Find all fifth roots of -12 + 5i. Then find $(-12 + 5i)^{1/5}$.
- 11. Prove that $\frac{d^n}{dx^n} (e^x \cos x) = 2^{n/2} e^x \cos \left(x + \frac{n\pi}{4}\right)$. Hint: $e^x \cos x = \operatorname{Re}(e^x e^{ix}) = \operatorname{Re}\left(e^{(1+i)x}\right)$.
- 12. Discuss how a calculator computes e^x and $\ln x$.
- 13. Compute the following quantities using the definitions given in this class, or explain why the number does not exist.
 - $\sqrt[3]{64}$
 - $\sqrt[3]{-64}$

 \bullet $(-64)^{1/2}$

• $64^{1/3}$

• $(-64)^{1/3}$

• $\sqrt{-2-2i\sqrt{3}}$

 $\bullet \sqrt{64}$

• $\sqrt{-64}$

• $(-2-2i\sqrt{3})^{1/2}$

• $64^{1/2}$

- 14. Compute the following quantities. Avoid using a calculator until absolutely necessary.
 - \bullet $e^{i\pi/3}$

- $\log(4-4i)$.
- $(3 3i\sqrt{3})^{2i}$

• e^{2+5i}

- $\log(-5 + 12i)$
- $(3-4i)^{2+i}$

- 15. Prove that $e^{\log z} = z$.
- 16. Give an example of z so that $\log(e^z) \neq z$.
- 17. If $x, y \in \mathbb{R}$, prove that $e^{x+iy} = e^x (\cos y + i \sin y)$.
- 18. Let z = x + iy, where $x, y \in \mathbb{R}$. Simplify $|e^z|$.
- 19. If $z \in \mathbb{C}$, prove that $e^z \neq 0$, so that the range of e^z is $\mathbb{C} \setminus \{0\}$.
- 20. Prove that e^z is periodic with period $2\pi i$.
- 21. Find conditions on z, w_1 and w_2 for the following to be true, and give a counterexample when the conditions are not satisfied.
 - $z^{w_1} z^{w_2} = z^{w_1 + w_2}$
 - $(z^{w_1})^{w_2} = z^{w_1 w_2}$
 - $\bullet \ w_1^z w_2^z = (w_1 w_2)^z$
- 22. State the definition of z^w under the following conditions:
 - $z \in \mathbb{C}, w \in \mathbb{Z}^+$
 - $z \in \mathbb{C} \setminus \{0\}, w \in \mathbb{Z}$
 - $z \in \mathbb{R}, w = 1/n, n \in \mathbb{Z}^+$ (Be careful!)
 - $z > 0, w \in \mathbb{Q}$

- $z > 0, w \in \mathbb{R}$
- $z \in \mathbb{C} \setminus \{0\}, w \in \mathbb{Q}$
- $z \in \mathbb{C} \setminus \{0\}, w \in \mathbb{C}$
- 23. State three definitions of the number e, and explain why they work.
- 24. Consider $(2-2i)^z$.
 - For what values of z is $|(2-2i)^z|=1$?
 - For what values of z is $(2-2i)^z$ a positive real number?
 - For what values of z is $(2-2i)^z$ a pure imaginary number?
- 25. Let $z \in \mathbb{C} \setminus \{0\}$ and $w \in \mathbb{Q}$. Show that the two possible definitions of z^w are equivalent.
- 26. For $z \in \mathbb{C}$, define $\cos z = \frac{e^{iz} + e^{-iz}}{2}$.
 - Prove that this makes sense if $z \in \mathbb{R}$.
 - Show that the only roots of $\cos z = 0$ are $z = (k + \frac{1}{2}) \pi$, $k \in \mathbb{Z}$.
 - Find all solutions of $\cos z = 2$ in the complex plane.
- 27. For $z \in \mathbb{C}$, define $\sin z = \frac{e^{iz} e^{-iz}}{2i}$.
 - Prove that this makes sense if $z \in \mathbb{R}$.
 - Show that the only roots of $\sin z = 0$ are $z = k\pi$, $k \in \mathbb{Z}$.
 - Find all solutions of $\sin z = 2$ in the complex plane.
- 28. Prove that $\overline{e^z} = e^{\overline{z}}$.
- 29. Prove that $\overline{\sin z} = \sin \overline{z}$.
- 30. Prove that $\overline{\cos z} = \cos \overline{z}$.