
GERSTENHABER BRACKETS

FOR SKEW GROUP ALGEBRAS

IN POSITIVE CHARACTERISTIC

A.V. SHEPLER AND S. WITHERSPOON

Abstract. The deformation theory of an algebra is controlled by the Gerstenhaber
bracket, a Lie bracket on Hochschild cohomology. We develop techniques for evaluating
Gerstenhaber brackets of semidirect product algebras recording actions of finite groups
over fields of positive characteristic. The Hochschild cohomology and Gerstenhaber
bracket of these skew group algebras can be complicated when the characteristic of the
underlying field divides the group order. We show how to investigate Gerstenhaber
brackets using twisted product resolutions, which are often smaller and more conve-
nient than the cumbersome bar resolution typically used. These resolutions provide
a concrete description of the Gerstenhaber bracket suitable for exploring questions in
deformation theory. We demonstrate with the prototypical example of a graded Hecke
algebra (rational Cherednik algebra) in positive characteristic.

1. Introduction

The Hochschild cohomology space of an associative algebra is a Gerstenhaber algebra
under two binary operations, the cup product and the Gerstenhaber bracket. The
Gerstenhaber bracket is a Lie bracket controlling the deformation theory of the algebra.
Historically, it has been more difficult to compute than the cup product: The bracket
is defined in terms of the cumbersome bar resolution and notoriously resists transfer
to more convenient resolutions. In general, we lack user-friendly formulas giving the
Gerstenhaber bracket explicitly.

We consider the Hochschild cohomology of a skew group algebra (semidirect product
algebra) arising from the action of a finite group G on an algebra S. We work in the
modular setting, i.e., over a field k of positive characteristic that may divide the group
order |G|. In this setting, the Hochschild cohomology of S o G is complicated by the
potentially onerous cohomology of kG, in contrast to the characteristic zero case where
it is always trivial.

Computations of the Gerstenhaber bracket on SoG directly using the bar resolution
often yield little useful information—the bar resolution itself is too large and unwieldy.
It can be a struggle even to describe adequately the Hochschild cohomology using the bar
resolution. Thus one seeks a description of the Gerstenhaber bracket in terms of smaller
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resolutions used to compute Hochschild cohomology, a description that is concrete and
straightforward to apply in specific examples.

In this note, we consider the flexible twisted product resolution of a skew group algebra:
one chooses a convenient resolution for S and another for G and then combines them to
create a resolution of SoG. We show how to apply new techniques from [4] on Gersten-
haber brackets to twisted product resolutions for skew group algebras from [8, 9]. This
approach provides advantages over employing the often unmanageable but traditional
bar resolution. We produce an explicit description of the Gerstenhaber bracket that
should prove user-friendly and we illustrate with an example from deformation theory.
This quintessential example using a small transvection group captures the difference
between the modular and nonmodular settings, both in the theory of reflection groups
and in the theory of graded Hecke algebras (and rational Cherednik algebras, see [3]).

In Section 2, we recall the twisted product resolution from [8, 9] obtained by twisting
a resolution of S with one for G. We recall methods of [4] analyzing Gerstenhaber brack-
ets in Section 3 and show how they apply to twisted product resolutions for skew group
algebras. We illustrate these techniques by showing how to compute some Gersten-
haber brackets concretely for a small transvection group example from [8] in Section 5.
Throughout, k is a field of arbitrary characteristic and ⊗ = ⊗k.

2. Twisted product resolutions

We recall the twisted product resolution from [8, 9]. Consider a finite group G acting
on a k-algebra S by automorphisms. Let A = S oG be the corresponding skew group
algebra: As a vector space, SoG = S⊗ kG, and we abbreviate the element s⊗ g by sg
(s ∈ S, g ∈ G) when no confusion can arise. Multiplication is defined by

(sg) · (s′g′) = s(gs′) gg′ for all s, s′ ∈ S and g, g′ ∈ G .

The action of g on s′ here is denoted by gs′. We use the enveloping algebra Se = S⊗Sop
of any algebra S to express bimodule actions as left actions.

The twisted product resolution. We consider projective resolutions

(i) C : . . .→ C2 → C1 → C0 → 0 of kG as a kG-bimodule, and

(ii) D : . . .→ D2 → D1 → D0 → 0 of S as an S-bimodule.

We assume the resolution C is G-graded, with compatible group action:

(2.1) g1

(
(Ci)g2

)
g3 = (Ci)g1g2g3 for all g1, g2, g3 ∈ G and all degrees i.

We also assume D q carries a compatible action of G: Each Di is left kG-module with

(2.2) g · (s · d) = gs · (g · d) for all g ∈ G, s ∈ S, d ∈ D

and the differentials are kG-module homomorphisms. This ensures D q is compatible with
the twisting map g ⊗ s 7→ gs ⊗ g given by the group action (see [9, Definition 2.17]).
This is the setting, for example, when C q is the bar or reduced bar resolution of kG and
when D q is the Koszul resolution of a Koszul algebra S (see [9, Prop 2.20(ii)]).



GERSTENHABER BRACKETS 3

The twisted product resolution X = C⊗GD of the algebra SoG is the total complex
of the double complex C q⊗D q,

X = C ⊗G D where Xn =
⊕
i+j=n

Ci ⊗Dj

with each Xn suffused with the additional structure of a (S oG)-bimodule defined by

s′g′ · (c⊗ d) · sg = g′cg ⊗ ((g′hg)−1
s′)(g

−1
(ds)) for c ∈ Ch, d ∈ D, g, g′, h ∈ G, s, s′ ∈ S .

The differential on X is ∂n =
∑

i+j=n(∂i ⊗ 1) + (−1)i(1⊗ ∂j) as usual.
With this action, X is a resolution of A = S oG, i.e., X provides an exact sequence

of A-bimodules (see [9] or [7, §4]):

. . .→ X2 → X1 → X0 → A→ 0 .

When the A-bimodules Xn are all projective as Ae-modules, X is also a projective
resolution of A. This occurs, for example, when D is a Koszul resolution of a Koszul
algebra and C is the bar resolution of kG. (See [9, Proposition 2.20(ii)].)

3. Gerstenhaber brackets on differential graded coalgebras

In this section, we summarize some results of [4] and develop additional techniques for
computing Gerstenhaber brackets in the modular setting. Contrast with [5, 6], where
the characteristic of the underlying field was 0.

Resolutions as differential graded coalgebras. Consider a k-algebra A and a pro-
jective resolution P of A as an A-bimodule:

. . .→ P2 → P1 → P0 → 0 .

The resolution P is a differential graded coalgebra when P = ⊕iPi has a coalgebra
structure compatible with its differential ∂P . This means there is a (degree 0) chain

map ∆P : P → P ⊗A P lifting the canonical isomorphism A
∼−→ A ⊗A A, called a

diagonal map, that is required to be

coassociative, i.e., (∆P ⊗ 1)∆P = (1⊗∆P )∆P as maps P → P ⊗A P ⊗A P, and

counital, i.e., (µP ⊗ 1P )∆P = 1P = (1P ⊗ µP )∆P as maps P → P,

where µP : P0 → A is augmentation of the complex (with µP zero on Pi for i ≥ 1).
Throughout, we define µP ⊗1P : P⊗P → P as the map p⊗p′ 7→ µP (p) ·p′ (and similarly
for 1P ⊗ µP ). Recall that the differential on Pn ⊗A Pm is just ∂P ⊗ 1P + (−1)n1P ⊗ ∂P .

Homotopy from right to left. We may map the complex P ⊗A P to the complex
P using either µP ⊗ 1P or 1P ⊗ µP . When P is a differential graded coalgebra, these
mappings are chain homotopic by [4, Lemma 3.2.1]. (The hypotheses there are slightly
stronger, but the same proof works under our hypotheses here.) Thus there exists
a chain homotopy from µP ⊗ 1P to 1P ⊗ µP , i.e., a map φP : P ⊗A P → P with
Pm ⊗A Pn → Pm+n+1 satisfying

(3.1) ∂P φP + φP ∂P⊗AP = µP ⊗ 1P − 1P ⊗ µP .
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Example 3.2. The bar resolution B of the algebra A is a differential graded coalgebra.
Indeed, for Bn = A⊗A⊗n ⊗A, a diagonal map ∆B : B → B ⊗A B is defined by

(3.3) ∆B(a0 ⊗ · · · ⊗ an+1) =
n∑
j=0

(a0 ⊗ · · · ⊗ aj ⊗ 1)⊗A (1⊗ aj+1 ⊗ · · · ⊗ an+1)

for a0, . . . , an+1 in A. This map is coassociative and counital. One choice of homotopy
φB : B ⊗A B → B from µB ⊗ 1B to 1B ⊗ µB is defined by

(3.4)
φB
(
(a0 ⊗ · · · ⊗ ap−1 ⊗ ap)⊗A (a′p ⊗ ap+1 ⊗ · · · ⊗ an+1)

)
= (−1)p−1 a0 ⊗ · · · ⊗ ap−1 ⊗ apa′p ⊗ ap+1 ⊗ · · · ⊗ an+1 for all ai, a

′
p ∈ A .

Koszul resolutions of Koszul algebras are also differential graded coalgebras [1]. The
Koszul resolution P of a Koszul algebra embeds into the bar resolution, however the
above map φB does not preserve the image. Instead, a homotopy φP may be found
directly in this case; see [4, §4], [5, §3.2], or [2, §4] for some examples.

Definition of the Gerstenhaber bracket. The Gerstenhaber bracket for A is defined
on cochains on the bar resolution B of A. Identify each space of cochains HomAe(Bn, A)
with Hom k(A

⊗n, A) via the canonical isomorphism. Then the Gerstenhaber bracket

[ , ] : Hom k(A
⊗n, A)×Hom k(A

⊗m, A)→ Hom k(A
⊗(n+m−1), A)

on cochains is defined by

[f, f ′] = f ◦ f ′ − (−1)(n−1)(m−1)f ′ ◦ f
where, for ai in A, the circle product (f ◦ f ′)(a1 ⊗ · · · ⊗ an+m−1) is
n∑
i=1

(−1)(m−1)(i−1) f
(
a1 ⊗ · · · ⊗ ai−1 ⊗ f ′(ai ⊗ · · · ⊗ ai+m−1)⊗ ai+m ⊗ · · · ⊗ an+m−1

)
.

Gerstenhaber brackets on differential graded coalgebras. Although the Ger-
stenhaber bracket is defined using the bar resolution, we seek descriptions in terms of
more convenient resolutions used to compute Hochschild cohomology. Suppose P is a
projective resolution of A with a differential graded coalgebra structure. The Gersten-
haber bracket can be defined directly at the chain level on P using [4, Theorem 3.2.5];
we recall how a homotopy φP (see (3.1)) gives the bracket explicitly.

Extend any cochain f ∈ HomAe(Pn, A) to all of P by defining f ≡ 0 on Pm with
m 6= n. For f ∈ HomAe(Pn, A) and f ′ ∈ HomAe(Pm, A), define

(3.5) [f, f ′]P = f ◦P f ′ − (−1)(n−1)(m−1)f ′ ◦P f
where f ◦P f ′ (similarly f ′ ◦P f) is the composition

(3.6) f ◦P f ′ : P
∆

(2)
P−−−−→ P ⊗A P ⊗A P

1P⊗f ′⊗1P−−−−−→ P ⊗A P
φP−→ P

f−→ A.

Here, ∆
(2)
P = (1P ⊗∆P )∆P = (∆P ⊗1P )∆P and 1P ⊗ f ′⊗1P has signs attached so that

(3.7) (1P ⊗ f ′ ⊗ 1P )(x⊗ y ⊗ z) = (−1)imx⊗ f ′(y)⊗ z
for x ∈ Pi, y, z ∈ P . Then [4, Theorem 3.2.5] implies that the Gerstenhaber bracket [ , ]
of any elements in cohomology is given at the cochain level on P by the map [ , ]P on
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cocycles. (Note that [4, Theorem 3.2.5] has slightly stronger hypotheses, but the proof
indeed holds for any resolution P with the structure of a differential graded coalgebra.)

4. Twisted product resolution as a differential graded coalgebra

We show in this section that a twisted product resolution X of S o G constructed
from two differential graded coalgebras C and D is again a differential graded coalgebra.
We then give the Gerstenhaber bracket for X in terms of the maps describing the
Gerstenhaber brackets of C and D individually.

Throughout this section, we fix

• a differential graded coalgebra bimodule resolution (C,∆C , µC) of G and
• a differential graded coalgebra bimodule resolution (D,∆D, µD) of S, producing
• a twisted product resolution X = C ⊗G D of A = S oG.

We assume that C is G-graded (as in (2.1)) with ∆C , µC preserving the grading and also
that D carries a G-action (as in (2.2)) with ∆D, µD both kG-module homomorphisms.
This is the case, for example, if C is the bar (or reduced bar) resolution of kG and D is
the Koszul resolution of a Koszul algebra (see [9, Proposition 2.20(ii)]).

Twisted comultiplication. In the next lemmas, we use diagonal maps for C and D
to produce a diagonal map ∆X : X → X ⊗A X.

Lemma 4.1. Define a twisting map τ : C ⊗D → D ⊗ C by

(4.2) τi,j(c⊗ d) = (−1)ij(gd)⊗ c for all c ∈ (Ci)g and d ∈ Dj .

Then τ extends to a well-defined chain map

1⊗ τ ⊗ 1 : (C ⊗kG C)⊗ (D ⊗S D) −→ (C ⊗G D)⊗SoG (C ⊗G D) .

Proof. Consider the map

C ⊗ C ⊗D ⊗D 1⊗τ⊗1−−−−→ C ⊗D ⊗ C ⊗D −→ (C ⊗G D)⊗SoG (C ⊗G D),

where the latter map is the canonical surjection. Calculations show that the composition
of these two maps is kG-middle linear in the first two arguments and S-middle linear in
the last two arguments, and so it induces a well-defined map as claimed. A calculation
shows that it is a chain map. �

Lemma 4.3. Let X = C ⊗G D be a twisted product resolution of S oG for differential
graded coalgebras C and D resolving kG and S, respectively, as above. Then X is a
differential graded coalgebra as well with comultiplication ∆X : X → X ⊗A X given by

∆X = (1⊗ τ ⊗ 1)(∆C ⊗∆D) .
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Proof. We first check that ∆X is coassociative using the fact that ∆C and ∆D are each
coassociative. We use the G-grading on C and the compatible G-action on D:

(∆X ⊗ 1X)∆X

=
(
(1⊗ τ ⊗ 1)(∆C ⊗∆D)⊗ 1⊗ 1

)
(1⊗ τ ⊗ 1)(∆C ⊗∆D)

= (1⊗ τ ⊗ 1⊗ 1⊗ 1)(∆C ⊗∆D ⊗ 1⊗ 1)(1⊗ τ ⊗ 1)(∆C ⊗∆D)

= (1⊗ τ ⊗ 1⊗ 1⊗ 1)(1⊗ 1⊗ 1⊗ τ ⊗ 1)(1⊗ 1⊗ τ ⊗ 1⊗ 1)(∆C ⊗ 1⊗∆D ⊗ 1)(∆C ⊗∆D)

= (1⊗ τ ⊗ 1⊗ 1⊗ 1)(1⊗ 1⊗ 1⊗ τ ⊗ 1)(1⊗ 1⊗ τ ⊗ 1⊗ 1)(1⊗∆C ⊗ 1⊗∆D)(∆C ⊗∆D)

= (1⊗ 1⊗ 1⊗ τ ⊗ 1)(1⊗ τ ⊗ 1⊗ 1⊗ 1)(1⊗ 1⊗ τ ⊗ 1⊗ 1)(1⊗∆C ⊗ 1⊗∆D)(∆C ⊗∆D)

= (1⊗ 1⊗ 1⊗ τ ⊗ 1)(1⊗ 1⊗∆C ⊗∆D)(1⊗ τ ⊗ 1)(∆C ⊗∆D)

= (1X ⊗∆X)∆X .

We next verify that ∆X is counital using the fact that ∆C and ∆D are each counital.
We use the extra assumption that µC preserves the G-grading and µD is a kG-module
homomorphism as well as the definition of the S oG-bimodule structure on C ⊗G D:

(µX ⊗ 1X)∆X = (µC ⊗ µD ⊗ 1⊗ 1)(1⊗ τ ⊗ 1)(∆C ⊗∆D)

= (µC ⊗ 1⊗ µD ⊗ 1)(∆C ⊗∆D) = ((µC ⊗ 1)∆C)⊗ ((µD ⊗ 1)∆D)

= 1⊗ 1 = 1X ,

and, similarly, (1X ⊗ µX)∆X = 1X .
We now need only check that ∆X is a chain map, i.e., ∆X ∂ = (∂⊗1+1⊗∂)∆X , for ∂

the differential on X. This follows from the fact that τ,∆C ,∆D are all chain maps. �

Remark 4.4. One may check that the map 1⊗ τ ⊗ 1 of (4.2) interpolates between the
maps of the form µ⊗ 1− 1⊗ µ for the various complexes, that is,

(4.5) µX ⊗1X −1X ⊗µX = (µC ⊗1C ⊗µD⊗1D−1C ⊗µC ⊗1D⊗µD)(1C ⊗ τ−1⊗1D).

We now give a theorem describing a homotopy from µX ⊗ 1X to 1X ⊗ µX concretely
in terms of homotopies from µC ⊗ 1C to 1C ⊗ µC and from µD ⊗ 1D to 1D ⊗ µD by
adapting [2, Lemmas 3.3, 3.4, and 3.5] to our setting.

Theorem 4.6. Let X = C⊗GD as above with homotopies φC from µC⊗1C to 1C⊗µC
and φD from µD ⊗ 1D to 1D ⊗ µD. Define φX : X ⊗A X → X by

φX =
(
φC ⊗ µD ⊗ 1D + εC(1C ⊗ µC)⊗ φD

)
(1C ⊗ τ−1 ⊗ 1D)

for εC : C → C defined by c 7→ (−1)|c| for homogeneous c. Then φX is a homotopy from
µX ⊗ 1X to 1X ⊗ µX .

Proof. Let φ′X : C ⊗ C ⊗D ⊗D → C ⊗D be the map φC ⊗ µD ⊗ 1 + εC(1⊗ µC)⊗ φD
so that φX = φ′X(1⊗ τ−1 ⊗ 1). Then on (C ⊗ C)⊗ (D ⊗D),

∂X φX (1⊗ τ ⊗ 1) = ∂X φ
′
X

= (∂C ⊗ 1 + εC ⊗ ∂D)
(
φC ⊗ µD ⊗ 1 + εC(1⊗ µC)⊗ φD

)
= ∂CφC ⊗ µD ⊗ 1− φC(εC ⊗ εC)⊗ ∂D(µD ⊗ 1)

− εC∂C(1⊗ µC)⊗ φD + 1⊗ µC ⊗ ∂DφD ,(4.7)
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and, since 1⊗ τ ⊗ 1 is a chain map from (C ⊗ C)⊗ (D ⊗D) to X ⊗A X,

φX ∂X⊗X (1⊗ τ ⊗ 1) = φX (1⊗ τ ⊗ 1) ∂(C⊗C)⊗(D⊗D) = φ′X ∂(C⊗C)⊗(D⊗D)

= φ′X
(
∂C⊗C ⊗ 1D⊗D + (εC ⊗ εC)⊗ ∂D⊗D

)
= φC∂C⊗C ⊗ µD ⊗ 1 + φC(εC ⊗ εC)⊗ (µD ⊗ 1)∂D⊗D

+ εC(1⊗ µC)∂C⊗C ⊗ φD + (1⊗ µC)⊗ φD∂D⊗D.(4.8)

Here we used the fact that εCφC = −φC(εC ⊗ εC), εC(1⊗ µC)(εC ⊗ εC) = 1⊗ µC , and
∂CεC = −εC∂C . The second term of (4.7) cancels with the second term of (4.8) as µD⊗1
is a chain map; likewise, the third terms cancel as µC ⊗ 1 is a chain map. Hence

(∂X φX +φX ∂X⊗X)(1⊗ τ ⊗ 1)

= (∂φC + φC∂)⊗ µD ⊗ 1 + 1⊗ µC ⊗ (∂φD + φD∂)

= (µC ⊗ 1− 1⊗ µC)⊗ µD ⊗ 1 + 1⊗ µC ⊗ (µD ⊗ 1− 1⊗ µD)

= µC ⊗ 1⊗ µD ⊗ 1− 1⊗ µC ⊗ 1⊗ µD,

and, by equation (4.5),

∂φX + φX∂ = (µC ⊗ 1⊗ µD ⊗ 1− 1⊗ µC ⊗ 1⊗ µD)(1⊗ τ−1 ⊗ 1) = µX ⊗ 1− 1⊗ µX .

�

Gerstenhaber bracket for skew group algebras. The next theorem gives the Ger-
stenhaber bracket on a twisted product resolution X. Note that the twisting map τ in
the theorem is from Lemma 4.1, the map 1X ⊗ f ′ ⊗ 1X has signs attached as in (3.7),

and εC merely adjusts signs, c 7→ (−1)|c| for homogeneous c in C.

Theorem 4.9. Let X = C⊗GD be a twisted product resolution of SoG for differential
graded coalgebras (C,∆C , µC) and (D,∆D, µD) resolving kG and S, respectively, as
above. The Gerstenhaber bracket of elements of Hochschild cohomology represented by
cocycles f ∈ HomAe(Xn, A) and f ′ ∈ HomAe(Xm, A) is represented by the cocycle

(4.10) [f, f ′] = f ◦X f ′ − (−1)(n−1)(m−1)f ′ ◦X f ,

where f ◦X f ′ (similarly f ′ ◦X f) is the composition

(4.11) X
(1X⊗∆X)(∆X)−−−−−−−−−−−−→ X ⊗A X ⊗A X

1X⊗f ′⊗1X−−−−−−−−→ X ⊗A X
φX−−−→ X

f−−→ A

with
∆X = (1C ⊗ τ ⊗ 1D)(∆C ⊗∆D) , and

φX =
(
φC ⊗ µD ⊗ 1D + (1⊗ µC)(εC ⊗ 1)⊗ φD

)
(1⊗ τ−1 ⊗ 1) .

Proof. We combine Lemmas 4.1, Lemma 4.3, and Theorem 4.6 with (3.6) and (3.5). �

Example 4.12. In case S = S(V ) ∼= k[x1, . . . , xn], the symmetric algebra on a finite
dimensional vector space V , we take D to be the Koszul resolution for which a choice
of φD has been made in [4, §4] (see also [5, §3.2]). We may take C to be the bar or
reduced bar resolution of kG for some applications, with homotopy φC as defined by
equation (3.4).
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5. A small transvection group example

We end by demonstrating how to use a twisted product resolution to compute Ger-
stenhaber brackets explicitly via Theorem 4.9. We also see how computation of explicit
brackets can shed light on questions in deformation theory (see [8]). We illustrate with
the prototype example of a graded Hecke algebra (or rational Cherednik algebra) in
positive characteristic (see [3] and [8]). In the nonmodular setting, these algebras have
parameters supported only on the identity group element and on bireflections; in the
modular setting, parameters can also be supported on reflections. All reflections in a
finite linear group G acting in the modular setting are either diagonalizable or act as in
this example. We include some explicit details to illustrate how to evaluate the maps in
Theorem 4.9 concretely. We find both a nonzero and a zero Gerstenhaber bracket.

5.1. Group action and twisted product resolution. Say char(k) = p > 0 and
consider the cyclic group G ' Z/pZ acting on V = k2 with basis v, w generated by

g = ( 1 1
0 1 ) , so that gv = v and gw = v + w.

We work in the twisted product resolution X = C ⊗G D of S(V ) o G obtained from
twisting the reduced bar resolution C of kG with the Koszul resolution D of S(V ):

Xn =
⊕
i+j=n

Xi,j for Xi,j = kG⊗ (kG)⊗i ⊗ kG⊗ S(V )⊗
∧j V ⊗ S(V ).

Here, Cn = kG ⊗ (kG)⊗n ⊗ kG with kG = kG/k1G and Dn = S(V ) ⊗
∧n V ⊗ S(V ).

Then C and D satisfy the conditions specified in Section 3, and Theorem 4.9 applies.

5.2. Cochains. Consider cochains on the resolution X:

κ ∈ Hom (S(V )oG)e(X0,2, S(V ) oG),

λ ∈ Hom (S(V )oG)e(X1,1, S(V ) oG), and

δ ∈ Hom (S(V )oG)e(X0,1, S(V ) oG)

defined by (with subscripts on the tensor signs suppressed for brevity)

λ
(
(1G ⊗ gi ⊗ 1G)⊗ (1S ⊗ v ⊗ 1S)

)
= 0,

λ
(
(1G ⊗ gi ⊗ 1G)⊗ (1S ⊗ w ⊗ 1S)

)
= igi−1,

κ
(
(1G ⊗ 1G)⊗ (1S ⊗ v ∧ w ⊗ 1S)

)
= g,

δ
(
(1G ⊗ 1G)⊗ (1S ⊗ v ⊗ 1S)

)
= v,

δ
(
(1G ⊗ 1G)⊗ (1S ⊗ w ⊗ 1S)

)
= 0

for 0 ≤ i ≤ p − 1, with all other values determined by these. One can check directly
that λ and κ are 2-cocycles and that δ is a 1-cocycle for X. We will show that

[δ, κ] 6= 0 and [λ, λ] = [λ, κ] = 0 .
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The diagonal maps. We give some values of the diagonal maps at play in finding the
Gerstenhaber brackets. The diagonal map ∆C on the reduced bar resolution of kG is
deduced from (3.3). For example, after identifying gi with its image in kG,

∆C(1G ⊗ gi ⊗ 1G) = (1G ⊗ 1G)⊗kG (1G ⊗ gi ⊗ 1G) + (1G ⊗ gi ⊗ 1G)⊗kG (1G ⊗ 1G), and

∆C(1G ⊗ 1G) = (1G ⊗ 1G)⊗kG (1G ⊗ 1G) .

The diagonal map ∆D is found from embedding the Koszul into the bar resolution and
then using (3.3). For example, we identify v ∧ w with v ⊗ w − w ⊗ v and observe that

∆D(1S ⊗ v ∧ w ⊗ 1S) = (1S ⊗ 1S)⊗S (1S ⊗ v ∧ w ⊗ 1S)

+(1S ⊗ v ⊗ 1S)⊗S (1⊗ w ⊗ 1)− (1S ⊗ w ⊗ 1S)⊗S (1S ⊗ v ⊗ 1S)

+(1S ⊗ v ∧ w ⊗ 1S)⊗S (1S ⊗ 1S) , and

∆D(1S ⊗ v ⊗ 1S) = (1S ⊗ 1S)⊗S (1S ⊗ v ⊗ 1S) + (1S ⊗ v ⊗ 1S)⊗S (1S ⊗ 1S) .

Homotopies. Let φC : C⊗kGC → C be the homotopy from µC⊗1 to 1⊗µC from (3.4).
We choose the homotopy φD : D ⊗S D → D from µD ⊗ 1 to 1 ⊗ µD given in [4,
Definition 4.1.3] and record a few values here for later use:

φD((1⊗ w ⊗ 1)⊗S (v ⊗ 1)) = 1⊗ v ∧ w ⊗ 1, φD((1⊗ v)⊗S (1⊗ w ⊗ 1)) = 0,

φD((1⊗ 1)⊗S (1⊗ v ⊗ 1)) = 0, φD((1⊗ v ⊗ 1)⊗S (1⊗ 1)) = 0 .

Nonzero bracket. We use Theorem 4.9 to show explicitly that [δ, κ] = κ. First note
that [δ, κ] is zero on all components of X except possibly X0,2. We consider the com-
position (4.11) with f ′ = δ and f = κ to find κ ◦X δ. As a first step, we apply the map
(∆X ⊗ 1X)∆X to the element (1G ⊗ 1G)⊗ (1S ⊗ v ∧ w ⊗ 1S) of X0,2, where, recall

∆X = (1C ⊗ τ ⊗ 1D)(∆C ⊗∆D) .

Direct calculation confirms that

(1⊗ 1)⊗ (1⊗ v ∧ w ⊗ 1)
(∆X⊗1)∆X7−−−−−−−−−→

(1⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ v ∧ w ⊗ 1)

+(1⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ v ⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ w ⊗ 1)

+(1⊗ 1)⊗ (1⊗ v ⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ w ⊗ 1)

−(1⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ w ⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ v ⊗ 1)

−(1⊗ 1)⊗ (1⊗ w ⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ v ⊗ 1)

+(1⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ v ∧ w ⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ 1)

+(1⊗ 1)⊗ (1⊗ v ⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ w ⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ 1)

−(1⊗ 1)⊗ (1⊗ w ⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ v ⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ 1)

+(1⊗ 1)⊗ (1⊗ v ∧ w ⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ 1)

as an element of X ⊗A X ⊗A X. We have suppressed all subscripts for brevity; for
example, the second summand may be written(
(1G⊗kG1G)⊗(1S⊗S1S)

)
⊗A
(
(1G⊗kG1G)⊗(1S⊗Sv⊗S1S)

)
⊗A
(
(1G⊗kG1G)⊗(1S⊗Sw⊗S1S)

)
.

We next apply the map 1X ⊗ δ⊗1X ; it is nonzero on exactly two summands, the second
and the penultimate, and we obtain (with the tensor products over A indicated here)(
(1G⊗1G)⊗(1S⊗v)

)
⊗A
(
(1G⊗1G)⊗(1S⊗w⊗1S)

)
−
(
(1G⊗1G)⊗(1S⊗w⊗v)

)
⊗A
(
(1G⊗1G)⊗(1S⊗1S)

)
.
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To apply φX next, we first rearrange terms with 1G ⊗ τ−1 ⊗ 1S , producing

(1G⊗1G)⊗(1G⊗1G)⊗(1S⊗v)⊗(1S⊗w⊗1S)−(1G⊗1G)⊗(1G⊗1G)⊗(1S⊗w⊗v)⊗(1S⊗1S),

and then apply the map φC ⊗ µD ⊗ 1D + 1C ⊗ µC ⊗ φD to obtain

(1G ⊗ 1G ⊗ 1G)⊗ (v ⊗ w ⊗ 1S)− (1G ⊗ 1G)⊗ (1S ⊗ v ∧ w ⊗ 1S).

Lastly, we apply κ as the last step of (4.11) and obtain 0 from the first term and −g
from the second. Thus

(κ ◦ δ)
(
(1G ⊗ 1G)⊗ (1S ⊗ v ∧ w ⊗ 1S)

)
= −g = κ

(
(1G ⊗ 1G)⊗ (1S ⊗ v ∧ w ⊗ 1S)

)
and κ ◦X δ = −κ. We inspect the above calculation with an eye toward switching the
order of κ and δ and deduce that δ ◦X κ = 0. We conclude, as claimed,

[δ, κ] = δ ◦X κ− κ ◦X δ = κ .

Zero brackets. We now use Theorem 4.9 to show that [λ, f ] = 0 when f is λ or κ.
We evaluate composition (4.11) on X1,2 with f ′ = λ. Other calculations are similar.
We first apply ∆X = (1G ⊗ τ ⊗ 1S)(∆C ⊗ ∆D) to sample input in X1,2, noting that
giw = iv + w (with subscripts suppressed again):

(1⊗ gi ⊗ 1)⊗ (1⊗ v ∧ w ⊗ 1)
∆C⊗∆D7−−−−−−→ (1⊗ 1)⊗ (1⊗ gi ⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ v ∧ w ⊗ 1)

+(1⊗ 1)⊗ (1⊗ gi ⊗ 1)⊗ (1⊗ v ⊗ 1)⊗ (1⊗ w ⊗ 1)

−(1⊗ 1)⊗ (1⊗ gi ⊗ 1)⊗ (1⊗ w ⊗ 1)⊗ (1⊗ v ⊗ 1)

+(1⊗ 1)⊗ (1⊗ gi ⊗ 1)⊗ (1⊗ v ∧ w ⊗ 1)⊗ (1⊗ 1)

+(1⊗ gi ⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ v ∧ w ⊗ 1)

+(1⊗ gi ⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ v ⊗ 1)⊗ (1⊗ w ⊗ 1)

−(1⊗ gi ⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ w ⊗ 1)⊗ (1⊗ v ⊗ 1)

+(1⊗ gi ⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ v ∧ w ⊗ 1)⊗ (1⊗ 1)
1⊗τ⊗17−−−−→ (1⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ gi ⊗ 1)⊗ (1⊗ v ∧ w ⊗ 1)

−(1⊗ 1)⊗ (1⊗ v ⊗ 1)⊗ (1⊗ gi ⊗ 1)⊗ (1⊗ w ⊗ 1)

+(1⊗ 1)⊗ (1⊗ (iv + w)⊗ 1)⊗ (1⊗ gi ⊗ 1)⊗ (1⊗ v ⊗ 1)

+(1⊗ 1)⊗ (1⊗ v ∧ w ⊗ 1)⊗ (1⊗ gi ⊗ 1)⊗ (1⊗ 1)

+(1⊗ gi ⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ v ∧ w ⊗ 1)

+(1⊗ gi ⊗ 1)⊗ (1⊗ v ⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ w ⊗ 1)

−(1⊗ gi ⊗ 1)⊗ (1⊗ w ⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ v ⊗ 1)

+(1⊗ gi ⊗ 1)⊗ (1⊗ v ∧ w ⊗ 1)⊗ (1⊗ 1)⊗ (1⊗ 1) ,

an element of X ⊗A X. Next we apply ∆X ⊗ 1X : Evaluating ∆C ⊗∆D ⊗ 1X on the
last expression yields 27 summands; the map (1G⊗ τ ⊗ 1S)⊗ 1X transforms these to 27
summands in X ⊗A X ⊗A X. A quick check verifies that 1X ⊗ λ ⊗ 1X vanishes on all
but two summands, namely

−
(
(1G ⊗ 1G)⊗ (1S ⊗ 1S)

)
⊗A

(
(1G ⊗ gi ⊗ 1G)⊗ (1S ⊗ w ⊗ 1S)

)
⊗A

(
(1G ⊗ 1G)⊗ (1S ⊗ v ⊗ 1S)

)
,

−
(
(1G ⊗ 1G)⊗ (1S ⊗ v ⊗ 1S)

)
⊗A

(
1G ⊗ gi ⊗ 1G)⊗ (1S ⊗ w ⊗ 1S)

)
⊗A

(
(1G ⊗ 1G)⊗ (1S ⊗ 1S)

)
,
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and we obtain

−
(
(1G ⊗ 1G)⊗ (1S ⊗ 1S)

)
⊗A

(
(igi−1 ⊗ 1G)⊗ (1S ⊗ v ⊗ 1S)

)
−
(
(1G ⊗ 1G)⊗ (1S ⊗ v ⊗ 1S)

)
⊗A

(
(igi−1 ⊗ 1G)⊗ (1S ⊗ 1S)

)
.

Applying φX followed by f = λ or f = κ gives 0 as w does not appear in the input.

Remark 5.1. The cocycles λ and κ above were not chosen randomly. These cocycles
define a PBW deformation of S o G, and the zero brackets calculated above predict
the PBW property. Indeed, in [8], we considered PBW deformations of S oG given by
analogs of Lusztig’s graded Hecke algebras and symplectic reflection algebras over fields
of positive characteristic. These algebras Hλ,κ depend on two parameters λ and κ with
λ : kG ⊗ V → kG and κ : V ⊗ V → kG. The Hochschild 2-cocycles above of the same
name λ and κ are these parameters converted into cocycles on the resolution X; see [8,
Example 2.2] and also [10, Section 5]. A necessary condition for the parameters λ and
κ to define a PBW deformation is that

[λ, λ] = 0 and [λ, κ] = 0

when the cochains κ and λ they define are cocycles. (More generally, we require that
λ is a cocycle, [λ, λ] = 0, and [λ, λ] = 2∂∗κ.) Thus knowing explicit values for brackets
is helpful for finding new deformations. The cocycle δ above is included merely for
illustration purposes; it provides an example of a nonzero Gerstenhaber bracket.
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