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Chapter 5

Brownian motion

5.1 Some general notions

By a stochastic process in continuous time we mean a collection (X(t))t∈[0,∞) of random
variables on a common probability space (Ω,F ,P), or sometimes a collection (X(t))t∈[0,T ],
where T > 0 is a constant. As in the discrete time case, we think of t as a “time parameter”.
When it is necessary to indicate the dependence on ω, we write X(t, ω).

By a filtration we mean here an increasing collection (Ft)t≥0 of sub-σ-algebras of F ;
that is, Fs ⊂ Ft for s < t.

Definition 5.1. A stochastic process (X(t))t is adapted to the filtration (Ft)t if X(t) is
Ft-measurable for each t.

Definition 5.2. A process (X(t))t is called a submartingale relative to the filtration (Ft)t
if:

(i) (X(t))t is adapted to (Ft)t;
(ii) E|X(t)| <∞ for all t; and

(iii) E[X(t)|Fs] ≥ X(s) a.s. for all 0 ≤ s < t.

A process (X(t))t is a supermartingale if (−X(t))t is a submartingale. A process that is
both a submartingale and a supermartingale is called a martingale.

Some stochastic processes are constructed from the ground up; others are defined im-
plicitly by a set of conditions. For this second type of process, it is necessary to prove
that a stochastic process satisfying the conditions actually exists. Kolmogorov’s existence
theorem is an important tool for this.

Definition 5.3. Let X = (X(t))t be a stochastic process. The finite-dimensional distri-
butions of X are the probability measures

µt1...tk(B) := P((X(t1), . . . , X(tk)) ∈ B), k ∈ N, 0 ≤ t1 < t2 < . . . tk, B ∈ B(Rk).

Note that the family {µt1...tk} satisfies the consistency condition

µt1...ti−1ti+1...tk(B1 × · · · ×Bi−1 ×Bi+1 × · · ·Bk)
= µt1...tk(B1 × · · · ×Bi−1 × R×Bi+1 × · · ·Bk),

(5.1)
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68 CHAPTER 5. BROWNIAN MOTION

for all i = 1, . . . , k, where Bi ∈ B(R) for each i.

Theorem 5.4 (Kolmogorov’s existence theorem). If {µt1...tk} is a family of probability
measures satisfying (5.1), then there exists, on some probability space (Ω,F ,P), a stochastic
process (X(t))t whose finite-dimensional distributions are µt1...tk .

Proof. See Billingsley, Section 36.

5.2 Definition of Brownian motion

Botanist Robert Brown described the highly irregular motion of a pollen particle suspended
in liquid in 1828. Albert Einstein gave a physical explanation for this motion and derived
mathematical equations for it in 1905. The process that we now call Brownian motion
was formulated rigorously (from a mathematical point of view) by Norbert Wiener in the
1920s, and because of his work, the process is also frequently called the Wiener process. In
the 1940s, Paul Lévy analyzed Brownian motion more deeply and introduced the notion of
local time, important for the theory of stochastic calculus. Around the same time, Kiyoshi
Itô laid the groundwork for this new kind of calculus, publishing what is now known as Itô’s
rule, which replaces the chain rule from ordinary differential calculus. Brownian motion is
now used in many areas, including physics, engineering and mathematical finance.

Definition 5.5. A (one-dimensional) Brownian motion is a stochastic process {W (t) : t ≥
0} = {W (t, ω) : t ≥ 0} on some probability space (Ω,F ,P) with the following properties:

(i) W (0) ≡ 0.

(ii) (Independence of increments) For 0 ≤ t1 < t2 < · · · < tn < ∞, the increments
W (t2)−W (t1),W (t3)−W (t2), . . . ,W (tn)−W (tn−1) are independent.

(iii) (Stationarity and normality of increments) For 0 < s < t, the increment W (t)−W (s)
has a normal distribution with mean 0 and variance t− s.

(iv) (Continuity of sample paths) For each ω ∈ Ω, the function t 7→W (t, ω) is continuous.

The first question that needs to be addressed is whether such a process actually exists.
It is not difficult to check that the stipulations (ii) and (iii) satisfy the consistency condition
(5.1), so Kolmogorov’s existence theorem implies the existence of a process {W (t)} satisfy-
ing (i)-(iii). However, there is no guarantee that this process will have continuous sample
paths. One way around this is to begin with a process {W (t)} as given by Kolmogorov’s
theorem, and prove that the restriction of this process to dyadic rational time points is with
probability one uniformly continuous on compact intervals. One can then redefine W (t)
at nondyadic t by taking limits over dyadic rationals approaching t, which will guarantee
continuity of W (t). This approach, which can be found in Billingsley, section 37, is rather
technical. Instead, we will construct Brownian motion from the ground up. But first, some
preliminaries.

Definition 5.6. A process {X(t) : t ≥ 0} is Gaussian if every finite linear combination
a1X(t1) + · · ·+ anX(tn) has a normal distribution, where ai ∈ R and ti ≥ 0 for all i.
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Lemma 5.7. Brownian motion is a Gaussian process. It has mean and covariance func-
tions given by

µ(t) := E(W (t)) = 0,

and
r(s, t) := Cov(W (s),W (t)) = min{s, t}.

Proof. Let 0 ≤ t1 < t2 < · · · < tn and a1, . . . , an ∈ R. Put t0 = 0. Note that for each i,
we can write W (ti) as a linear combination of the increments W (t1)−W (t0), . . . ,W (tn)−
W (tn−1). But then a1W (t1)+· · ·+anW (tn) is also a linear combination of these increments.
Hence, {W (t)} is Gaussian.

That the mean of W (t) is zero is obvious. To compute the covariance, assume WLOG
that s < t. Then W (s) and W (t)−W (s) are independent and have mean zero, so

E[W (s)W (t)] = E
[
W (s)(W (t)−W (s))

]
+ E

[
(W (s))2

]
= E(W (s)) E(W (t)−W (s)) + Var(W (s)) = s.

Hence,
Cov(W (s),W (t)) = E(W (s)W (t))− E(W (s)) E(W (t)) = s,

as required.

It can be shown that the finite-dimensional distributions of a Gaussian process are
completely determined by its mean and covariance functions. Thus, if we can construct a
Gaussian process with continuous sample paths and with the correct mean and covariance
functions, then this process must be Brownian motion.

5.3 Construction of Brownian motion

To begin, note that it is sufficient to construct Brownian motion on 0 ≤ t ≤ 1: we can
then construct infinitely many independent copies of this Brownian motion and paste them
together to obtain Brownian motion on [0,∞). Precisely, let Wj(t), j ∈ N be independent
Brownian motions on [0, 1] and put

W (t) =

{
W1(t), 0 ≤ t < 1∑n−1

j=1 Wj(1) +Wn(t− n), n ≤ t < n+ 1, n ∈ N.

Then one checks easily that W (t) is a Brownian motion on [0,∞).

Step 1. Define the Haar functions

H1(t) = 1, 0 ≤ t ≤ 1

H2n+1(t) =


2n/2, 0 ≤ t < 2−(n+1)

−2n/2, 2−(n+1) ≤ t ≤ 2−n

0, elsewhere

(n = 0, 1, 2, . . . )

H2n+j(t) = H2n+1

(
t− j − 1

2n

)
, j = 1, . . . , 2n, n ≥ 0.
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Define the Schauder functions by

Sk(t) =

∫ t

0
Hk(u) du, k ∈ N, 0 ≤ t ≤ 1.

Then S1(t) = t, and for n ≥ 0 and 1 ≤ j ≤ 2n, the graph of S2n+j is a “tent” of height
2−(n+2)/2 over the interval [(j − 1)/2n, j/2n]. Note that

S2n+j(t)S2n+k(t) = 0 ∀ t if 1 ≤ k < j ≤ 2n. (5.2)

Step 2. Let Zk, k ∈ N be independent standard normal r.v.’s. Put

W (n)(t) =

2n∑
k=1

ZkSk(t), 0 ≤ t ≤ 1, n ≥ 0.

Lemma 5.8. As n → ∞, W (n) converges uniformly on [0, 1] to a continuous function
W (t) with probability one.

Proof. Let

Mn := max
1≤j≤2n−1

|Z2n−1+j |, n ∈ N.

For x > 0 and k ∈ N, we have

P(|Zk| > x) = 2 P(Zk > x) =

√
2

π

∫ ∞
x

e−u
2/2 du

≤
√

2

π

∫ ∞
x

u

x
e−u

2/2 du =

√
2

π

e−x
2/2

x
.

Thus, for n ∈ N,

P(Mn > n) = P

 ⋃
1≤j≤2n−1

{
|Z2n−1+j | > n

}
≤

2n−1∑
j=1

P
(
|Z2n−1+j | > n

)
= 2n P(|Z1| > n) ≤

√
2

π
· 2ne−n

2/2

n
.

Since
∞∑
n=1

2ne−n
2/2

n
<∞

(check!!), the first Borel-Cantelli lemma implies that

P(Mn > n for infinitely many n) = 0.
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Hence, with probability one, there is an index N such that Mn ≤ n whenever n ≥ N . But
then,

∞∑
k=2N+1

|ZkSk(t)| ≤
∞∑
n=N

Mn+12
−(n+2)/2 ≤

∞∑
n=N

(n+ 1)2−(n+2)/2 <∞

for all 0 ≤ t ≤ 1. Thus, by the Cauchy criterion, W (n)(t) converges uniformly on [0, 1] to a
function W (t), which is continuous as the uniform limit of continous functions on [0, 1].

Step 3. Note that W (n) is a mean-zero Gaussian process for each n. It can be shown
(for instance using the method of characteristic functions) that the almost-sure limit of a
sequence of Gaussian processes is Gaussian. Hence W is Gaussian, and it remains to check
that it has the correct mean and covariance functions.

Exercise 5.9. Show that
∞∑
k=1

Sk(t) <∞ ∀ t (5.3)

and
∞∑
j=1

∞∑
k=1

Sj(s)Sk(t) <∞ ∀ s, t. (5.4)

By (5.3) and Fubini’s theorem,

E

( ∞∑
k=1

|ZkSk(t)|

)
= E |Z1|

∞∑
k=1

Sk(t) <∞,

and so

E(W (t)) = E

( ∞∑
k=1

ZkSk(t)

)
=
∞∑
k=1

E(Zk)Sk(t) = 0.

To compute the covariance function, we need a little Fourier analysis. Verify that the
functions Hk, k ∈ N form a complete orthonormal system; that is,

∫ 1

0
Hj(t)Hk(t) dt =

{
1, j = k

0, j 6= k.

Therefore, Parseval’s identity implies that for any two bounded functions f, g on [0, 1],∫ 1

0
f(u)g(u) du =

∞∑
k=1

akbk,

where

ak =

∫ 1

0
f(t)Hk(t) dt, bk =

∫ 1

0
g(t)Hk(t) dt.
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Apply this to f = χ[0,s] and g = χ[0,t]. Then ak = Sk(s) and bk = Sk(t). Now

E

 ∞∑
j=1

∞∑
k=1

|ZjZkSj(s)Sk(t)|

 =

∞∑
j=1

∞∑
k=1

E |ZjZk|Sj(s)Sk(t)

≤ max{E |Z2
1 |, (E |Z1|)2}

∞∑
j=1

∞∑
k=1

Sj(S)Sk(t)

<∞

by (5.4) and Fubini’s theorem. Hence,

r(s, t) = E[W (s)W (t)] =
∞∑
j=1

∞∑
k=1

E(ZjZk)Sj(s)Sk(t)

=
∞∑
j=1

E(Z2
j )Sj(s)Sj(t) (by independence of the Zj)

=
∞∑
j=1

Sj(s)Sj(t) (since E(Z2
j ) = 1)

=

∫ 1

0
χ[0,s](u)χ[0,t](u) du (by Parseval’s identity)

= min{s, t}.

This shows that {W (t), 0 ≤ t ≤ 1} is a Brownian motion.

5.4 Various properties of Brownian motion

Exercise 5.10 (Brownian motion martingales). Show that the following are martingales:

(i) W (t)

(ii) W (t)2 − t

(iii) eλW (t)−λ2t/2, where λ ∈ R.

Proposition 5.11. On a set of probability one,

lim
t→∞

W (t)

t
= 0. (5.5)

Proof. Writing W (n) = W (0) + [W (1)−W (0)] + · · ·+ [W (n)−W (n− 1)], we see by the
SLLN that

lim
n→∞

W (n)

n
= 0 a.s.

It is now not hard to believe that (5.5) should hold, because for arbitrary t > 0, we can
write

W (t)

t
=

[t]

t
·
(
W (t)−W ([t])

[t]
+
W ([t])

[t]

)
,
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where [t] denotes the greatest integer in t. Intuitively, the first term in parentheses should
approach zero as t → ∞. But proving this requires some care; see Karatzas and Shreve,
Problem 2.9.3.

Exercise 5.12. Show that each of the following processes is a Brownian motion:

(i) (Reflection) W1(t) = −W (t)

(ii) (Time scaling) W2(t) = cW (t/c2), for fixed c > 0

(iii) (Time shift) W3(t) = W (t0 + t)−W (t0), for fixed t0 > 0

(iv) (Time reversal) W4(t) = W (T − t)−W (T ), 0 ≤ t ≤ T , for fixed T > 0.

(v) (Time inversion)

W5(t) =

{
tW (1/t), t > 0

0, t = 0

(Hint: check that each process is a mean zero Gaussian process with continuous sample
paths and the correct covariance function. For W5, continuity at t = 0 follows from (5.5)
and the substitution u = 1/t.)

Proposition 5.11 has the following strengthening, which specifies the maximum growth
rate of Brownian paths. Its proof is beyond the scope of this course.

Theorem 5.13 (Law of the iterated logarithm). We have

lim sup
t→∞

W (t)√
2t log log t

= 1 a.s.

and

lim inf
t→∞

W (t)√
2t log log t

= −1 a.s.

(Check that these statements together imply (5.5)!)

Exercise 5.14. Use Theorem 5.13 to show that

lim sup
t↓0

W (t)√
2t log log(1/t)

= 1 a.s.

and the corresponding lim inf equals −1, almost surely.

We will use the result of the last exercise later to prove an important property of the
zero set of Brownian motion.

Theorem 5.15 (Nowhere differentiability of sample paths). For all ω outside a set of
probability 0, W (·, ω) is nowhere differentiable.
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Note that we avoid saying something like

P(ω : W (·, ω) is nowhere differentiable) = 1.

The reason is, that it is not at all clear whether the set in question is measurable. Proving
the theorem entails finding a measurable subset of this set which has probability 1.

Proof. (We follow Billingsley, Theorem 37.3.) Put

∆n,k = W

(
k + 1

2n

)
−W

(
k

2n

)
,

and let

Xn,k = max{|∆n,k|, |∆n,k+1|, |∆n,k+2|}.

Note that each ∆n,k has the same distribution as 2−n/2W (1), namely Normal(0, 2−n).
Furthermore, for fixed n, the ∆n,k are independent. Thus, given ε > 0,

P(Xn,k ≤ ε) =
[

P(|W (1)| ≤ 2n/2ε)
]3
.

Now for α > 0,

P(|W (1)| ≤ α) =

∫ α

−α

1√
2π
e−x

2/2 dx ≤ 2α
1√
2π

< α.

Hence,

P(Xn,k ≤ ε) ≤ (2n/2ε)3.

Put

Yn = min
k≤n2n

Xn,k.

Then

P(Yn ≤ ε) ≤ n2n(2n/2ε)3 = n25n/2ε3. (5.6)

We consider the upper and lower right-hand derivatives

D+(t, ω) = lim sup
h↓0

W (t+ h, ω)−W (t, ω)

h
,

D+(t, ω) = lim inf
h↓0

W (t+ h, ω)−W (t, ω)

h
.

Define the set

E = {ω : there is t ≥ 0 such that D+(t, ω) and D+(t, ω) are both finite}.

Suppose ω ∈ E; then we can find t ≥ 0 and K > 0 (both depending on ω) such that

sup
0<h≤1

|W (t+ h, ω)−W (t, ω)|
h

≤ K. (5.7)
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Choose n > max{2, 8K, t}. Let k ∈ N be such that (k − 1)/2n ≤ t < k/2n. Then
|t− i/2n| ≤ 1 for i = k, k + 1, k + 2, k + 3, and hence, by (5.7) and the triangle inequality,

Xn,k(ω) ≤ 2K(4/2n) < n2−n.

Since also k − 1 ≤ t2n < n2n, it follows that Yn(ω) ≤ n2−n.
Define the set An = {Yn ≤ n2−n}. The above argument shows that E ⊂ lim inf An.

Note that each An is measurable, and so lim inf An is measurable. By (5.6),

P(An) ≤ n25n/2(n2−n)3 = n42−n/2 → 0.

It follows (check!) that P(lim inf An) = 0. And outside the set lim inf An, W (·, ω) is
nowhere differentiable (in fact, it does not have finite upper and lower right-hand derivatives
anywhere).

5.5 Stopping times and the strong Markov property

Definition 5.16. A stopping time relative to a filtration (Ft)t is a [0,∞]-valued r.v. τ
such that for each t > 0,

{τ ≤ t} ∈ Ft.

Exercise 5.17. Show that if τ is a stopping time, then for each t > 0,

{τ = t} ∈ Ft.

Definition 5.18. The natural filtration of a process (X(t))t is defined by Ft = σ(X(s) :
0 ≤ s ≤ t).

Proposition 5.19. Let (W (t))t be a Brownian motion. Let A ⊂ R be a closed set, and
define τA := inf{t > 0 : W (t) ∈ A}. Then τA is a stopping time relative to the natural
filtration (Ft)t of (W (t))t.

Proof. Observe, by continuity of sample paths, that

{τA ≤ t} =
∞⋂
n=1

⋃
s∈[0,t]∩Q

{
dist(W (s), A) ≤ 1

n

}
,

and so {τA ≤ t} ∈ Ft.

Definition 5.20. For a stopping time τ , define the collection

Fτ := {A ∈ F : A ∩ {τ ≤ t} ∈ Ft ∀ t}.

Exercise 5.21. Show that Fτ is a σ-algebra and τ is Fτ -measurable.

From now on, let (Ft)t denote the natural filtration of (W (t))t. Fix t0 ≥ 0, and put

W ′(t) = W (t0 + t)−W (t0), t ≥ 0.
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We have seen before that W ′(t) is a Brownian motion, and in view of the independent
increments of W (t), it is independent of Ft. In particular, we have (check!)

P(W (t0 + t) ≤ y|Ft0) = P(W (t0 + t) ≤ y|W (t0)) a.s. (5.8)

We say that Brownian motion possesses the Markov property. More fully, we have, for
0 ≤ t1 < t2 < · · · < tk and H ∈ B(Rk),

P
(
{(W ′(t1), . . . ,W ′(tk)) ∈ H} ∩A

)
= P

(
(W ′(t1), . . . ,W

′(tk)) ∈ H
)

P(A)

= P
(
(W (t1), . . . ,W (tk)) ∈ H

)
P(A), A ∈ Ft0 .

We now want to show that the above identities remain true when t0 is replaced by a
stopping time τ . A process X = (X(t))t satisfying

P(X(τ + t) ≤ y|Fτ ) = P(X(τ + t) ≤ y|X(τ)) a.s. (5.9)

for every finite stopping time τ is said to possess the strong Markov property. Note that
the strong Markov property implies the Markov property, because any constant t0 > 0 is
a stopping time.

Some care is needed here; for instance, it is not a priory clear that X(τ + t) is even a
random variable (i.e. is F-measurable). We also must be careful with the use of conditional
probabilities. We ignore these subtleties here; the details can be found for instance in
Karatzas and Shreve, Chapter 2.

Theorem 5.22 (Strong Markov property of Brownian motion). Let τ be a finite stopping
time, and put

W ∗(t, ω) := W (τ(ω) + t, ω)−W (τ(ω), ω), t ≥ 0.

Then {W ∗(t) : t ≥ 0} is a Brownian motion independent of Fτ . That is, for 0 ≤ t1 < t2 <
· · · < tk, H ∈ B(Rk) and A ∈ Fτ ,

P
(
{(W ∗(t1), . . . ,W ∗(tk)) ∈ H} ∩A

)
= P

(
(W ∗(t1), . . . ,W

∗(tk)) ∈ H) P(A)

= P
(
(W (t1), . . . ,W (tk)) ∈ H) P(A).

(5.10)

Proof. See Billingsley, section 37.

5.6 The reflection principle

The strong Markov property of Brownian motion says roughly speaking that at a finite
stopping τ , Brownian motion “starts afresh” from the (random) level W (τ). One conse-
quence of this is the so-called reflection principle. Let τ be a finite stopping time, and
define a new process

W ′(t) =

{
W (t), t ≤ τ
W (τ)− [W (t)−W (τ)], t ≥ τ.

(5.11)

Thus, the sample path of W ′(t) is the same as the sample path of W (t) up to time τ , and
after that, it is the reflection of this path in the line y = W (τ).
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Theorem 5.23 (Reflection principle). The process {W ′(t) : t ≥ 0} is a Brownian motion.

This theorem is intuitively obvious from the strong Markov property: W ′(t) is a Brow-
nian motion before time τ , and it is a reflection of a Brownian motion, hence a Brownian
motion, after time τ , so it ought to be a Brownian motion “everywhere”. However, since τ
is random, some care is needed to check that the finite-dimensional distributions of W ′(t)
are really the same as those of W (t). (Continuity of sample paths is obvious from the
definition of W ′(t).) See Billingsley, p. 512 for a precise proof.

We now define the hitting time

τa := inf{t > 0 : W (t) ≥ a}, a > 0

and the maximum of Brownian motion up to time t,

M(t) := max{W (s) : 0 ≤ s ≤ t}.

(By continuity of sample paths, this maximum is well defined.) Also by continuity of paths,
W (τa) = a on the event {τa <∞}.

Proposition 5.24. The stopping time τa is finite with probability one: P(τa <∞) = 1.

Proof. We use a martingale argument and the following fact: If (M(t)) is a martingale
and τ a stopping time adapted to the natural filtration of (M(t)), then the stopped process
(M τ (t)) defined by M τ (t) := M(t ∧ τ) (where x ∧ y := min{x, y}) is a martingale. (This
is easy to prove in the discrete time case. In the continuous time case, one approximates
the stopping time τ by a stopping time taking only values in the set {k/2n : k ∈ Z, n ∈ N}
and uses a limiting argument. Details can be found in Karatzas & Shreve.)

Recall from Exercise 5.10 that X(t) := euW (t)−u2t/2 is a martingale for each u > 0, and
note that E(X(t)) = 1. Let Xτa(t) be the corresponding stopped martingale. Then

1 = E(Xτa(t)) = E

[
exp

(
uW (t ∧ τa)−

u2(t ∧ τa)
2

)]
. (5.12)

Now observe that on {τa ≤ t}, W (t∧ τa) = W (τa) = a, and on {τa > t}, W (t∧ τa) = W (t).
Thus, the above equation becomes

1 = E

[
exp

(
ua− u2τa

2

)
I(τa ≤ t)

]
+ E

[
exp

(
uW (t)− u2t

2

)
I(τa > t)

]
. (5.13)

Now on {τa > t} we have W (t) ≤ a, so the second term is bounded by exp(ua − u2t/2),
and hence tends to 0 as t → ∞. On the other hand, {τa ≤ t} ↗ {τa < ∞}, so applying
MCT to the first term gives

1 = E

[
exp

(
ua− u2τa

2

)
I(τa <∞)

]
, (5.14)

which we can write as

E
[
e−u

2τa/2 I(τa <∞)
]

= e−au. (5.15)
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Using the convention e−∞ = 0, we can freely add E[e−u
2τa/2 I(τa =∞)] to the left side and

obtain
E
(
e−u

2τa/2
)

= e−au. (5.16)

Now substitute λ = u2/2, so u =
√

2λ; then the last equation becomes

ψ(λ) := E
(
e−λτa

)
= e−a

√
2λ, for all λ > 0. (5.17)

We call ψ(λ) the Laplace transform of τa. Finally, check that

P(τa <∞) = lim
λ↓0

ψ(λ) = 1,

completing the proof.

Observe that we could also have concluded the finiteness of τa from the law of the
iterated logarithm (LIL); see Theorem 5.13. However, the LIL is a deep theorem whose
proof is heavy on analysis. The above approach is more elementary, and, most importantly,
very probabilistic, and a nice illustration of the use of martingales in probability.

We will use the reflection principle to derive the distributions of τa and M(t). Define
W ′(t) by (5.11) with τ = τa. Then

P(M(t) > a) = P(M(t) > a,W (t) > a) + P(M(t) > a,W (t) ≤ a)

= P(W (t) > a) + P(W ′(t) ≥ a)

= P(W (t) > a) + P(W (t) ≥ a)

= 2 P(W (t) > a).

Here the second equality follows by definition of W ′(t), the third by Theorem 5.23, and
the last since W (t) is continuous. We conclude that

P(M(t) > a) = P(|W (t)| > a), a > 0; (5.18)

in other words, M(t)
d
= |W (t)| for every t ≥ 0. (Be careful, however: the processes (M(t))t

and (|W (t)|)t do not have the same law; in particular, M(t) is increasing in t, whereas
|W (t)| almost surely is not.)

Exercise 5.25. Derive from (5.18) the density of M(t), and using the relation τa ≤ t ⇔
M(t) ≥ a find the density of τa.

5.7 The graph of Brownian motion

Our goal in this section is to compute the Hausdorff dimension of the graph Graph(W ) =
{(t,W (t)) : 0 ≤ t ≤ 1}. We follow Falconer, chapter 16.

Exercise 5.26. Show that for any α > 0 and β > 0,

lim
h↓0

exp(−h−α)

hβ
= 0.

(It helps to make the substitution x = 1/h.)
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Theorem 5.27. For each 0 < α < 1/2, Brownian motion is Hölder continuous with
exponent α; precisely, there is with probability 1 a constant b (depending only on α) and a
(random) number h0 > 0 such that

|W (t+ h)−W (t)| ≤ b|h|α, for all t ∈ [0, 1] and 0 < |h| < h0. (5.19)

Proof. Let Z be a standard normal random variable. For fixed t and h > 0, we have by
the scaling property,

P(|W (t+ h)−W (t)| > hα) = P(|Z| > hα−1/2)

= 2

∫ ∞
hα−1/2

1√
2π
e−u

2/2du

≤ c1
∫ ∞
hα−1/2

e−udu

= c1 exp(−hα−1/2)
≤ c2h2,

(5.20)

where c1 and c2 are constants that do not depend on t or h, and in the last step we used
Exercise 5.26. Now let

An :=

{∣∣∣∣W (
j

2n

)
−W

(
j − 1

2n

)∣∣∣∣ > 2−αn for some 1 ≤ j ≤ 2n
}
.

We see from (5.20) that
P(An) ≤ c22n2−2n = c22

−n. (5.21)

Thus, by the Borel-Cantelli lemma, P(lim supAn) = 0, so with probability 1 there is an
index N such that∣∣∣∣W (

j

2n

)
−W

(
j − 1

2n

)∣∣∣∣ ≤ 2−αn for all n > N and 1 ≤ j ≤ 2n. (5.22)

Set h0 = 2−N . If 0 < h < h0, the interval [t, t + h] can be written (except possibly for
its endpoints) as a countable union of contiguous intervals [(j − 1)/2n, j/2n] with 2−n ≤ h
and 1 ≤ j ≤ 2n, and with no more than two intervals of any one length. By continuity of
W (t) and repeated application of the triangle inequality, it follows by (5.22) that if k is
the smallest integer with 2−k ≤ h,

|W (t+ h)−W (t)| ≤ 2
∞∑
n=k

2−αn = 2
2−αk

1− 2−α
≤ 2hα

1− 2−α

for all t ∈ [0, 1], with probability 1.

Remark 5.28. It is possible to prove a slighly stronger result, namely that with probability
1 there is a constant b such that

|W (t+ h)−W (t)| ≤ b

√
h log2

(
1

h

)
for all 0 ≤ t ≤ 1 and h > 0.
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Theorem 5.29. With probability 1, dimH Graph(W ) = dimB Graph(W ) = 3/2.

Proof. From Theorem 5.27 and Proposition 3.41(i), it follows that dimB Graph(W ) ≤ 2−α
a.s. for all 0 < α < 1/2, and hence, dimB Graph(W ) ≤ 3/2 a.s.

For the lower bound, we use the potential theoretic method. Let c =
√

2/π. Then for
s > 1,

E
[(

(W (t+ h)−W (t))2 + h2
)−s/2]

=

∫ ∞
−∞

(x2 + h2)−s/2
e−x

2/2h

√
2πh

dx

= ch−1/2
∫ ∞
0

(x2 + h2)−s/2e−x
2/2hdx

=
c

2

∫ ∞
0

(wh+ h2)−s/2w−1/2e−w/2dw

≤ c

2

(∫ h

0
(h2)−s/2w−1/2dw +

∫ ∞
h

(wh)−s/2w−1/2dw

)
= c1(s)h

1/2−s,

where we used the substitution w = x2/h and the last step follows by direct calculation
(do it!). Now we define a random measure µW by lifting Lebesgue measure from the t-axis
to the graph of W :

µW (A) := L({t ∈ [0, 1] : (t,W (t)) ∈ A}), A ∈ B(R2),

just as we did in the proof of Theorem 4.8. For 1 < s < 3/2, we now obtain from the above
estimate, using the Pythagorean theorem:

E
(
Is(µW )

)
= E

(∫
R2

∫
R2

|x− y|−sdµW (x)dµW (y)

)
=

∫ 1

0

∫ 1

0
E
[(

(W (t)−W (u))2 + (t− u)2
)−s/2]

dtdu

≤ c1(s)
∫ 1

0

∫ 1

0
|t− u|1/2−sdtdu <∞.

Thus, Is(µW ) <∞ a.s., and by Theorem 4.3, dimH Graph(W ) ≥ s a.s., for all 1 < s < 3/2.
But then dimH Graph(W ) ≥ 3/2 a.s., completing the proof.

5.8 Multidimensional Brownian motion

If we are given n independent Brownian motions (W1(t))t, . . . , (Wn(t))t, we can putW (t) :=
(W1(t), . . . ,Wn(t)). We call the process (W (t))t a Brownian motion in Rn, or n-dimensional
Brownian motion. We will be interested in the Brownian trail {W (t) : t ≥ 0}. Note that
when n = 1, the Brownian trail is an interval (in fact, with probability one, the whole
real line), by continuity of paths, and so it has positive Lebesgue measure and Hausdorff
dimension 1. For n ≥ 2, however, the situation is more interesting:

Theorem 5.30. For all n ≥ 2, the Brownian trail in Rn has Hausdorff and box-counting
dimension 2 with probability 1.
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We first need a couple of lemmas.

Lemma 5.31. Let Z1, . . . , Zn be independent standard normal random variables, and Z :=
(Z1, . . . , Zn). Then |Z| has density

f|Z|(r) := cnr
n−1e−r

2/2, r > 0,

where cn = (2π)−n/2an, with an being the n− 1 dimensional area of the unit sphere in Rn.

Proof. Let E initially be a rectangle of the form E = [a1, b1]× · · · × [an, bn]. Then

P(Z ∈ E) =

∫ b1

a1

· · ·
∫ bn

an

n∏
i=1

1√
2π
e−z

2
i /2dzn · · · dz1 = (2π)−n/2

∫
E
e−|z|

2/2dz.

Since the collection of rectangles of this form is a semi-ring that generates the Borel σ-
algebra in Rn, it follows from the uniqueness part of Carathéodory’s theorem that

P(Z ∈ E) = (2π)−n/2
∫
E
e−|z|

2/2dz for all E ∈ B(Rn).

Take now E = B(0, ρ) where ρ > 0. Then we obtain, by converting to spherical coordinates,

P(|Z| ≤ ρ) = (2π)−n/2
∫
B(0,ρ)

e−|z|
2/2dz = (2π)−n/2an

∫ ρ

0
rn−1e−r

2/2dr.

The lemma now follows by differentiating.

Lemma 5.32. Let F ⊂ Rn and suppose f : F → Rn satisfies the Hölder condition

|f(x)− f(y)| ≤ c|x− y|α, for all x, y ∈ F ,

where α > 0 and c > 0. Then dimH f(F ) ≤ (1/α) dimH F .

Proof. Fix s > dimH F . If {Ui} is a δ-cover of F , then |f(F ∩Ui)| ≤ c|Ui|α, so {f(F ∩Ui)}
is an ε-cover of f(F ), where ε = cδα. Hence,

Hs/αε (f(F )) ≤ Hsδ(F ).

Letting δ ↓ 0 gives Hs/α(f(F )) = 0, and so dimH f(F ) ≤ s/α.

Proof of Theorem 5.30. Let 0 < α < 1/2. By Theorem 5.27, each component Wi is Hölder
continuous with exponent α. Thus (check!) the random function W : [0, 1]→ Rn satisfies
with probability one the condition of Lemma 5.32, so dimHW ([0, 1]) ≤ (1/α) dimH [0, 1] =
1/α, and a similar inequality holds for the box-counting dimension. Letting α increase to
1/2 along a sequence {αn} gives the upper bound.

For the lower bound we use the potential-theoretic method. We first recall that for
t ∈ [0, 1] and h > 0, Wi(t + h) −Wi(t) ∼ Normal(0, h) ∼

√
hZi for i = 1, . . . , n, where Zi

is standard normal, and then |W (t + h) −W (t)| ∼
√
h|Z|, with Z as in Lemma 5.31. By

that lemma and a change of variable, |W (t+ h)−W (t)| thus has density

1√
h
f|Z|(r/

√
h) = cnh

−n/2rn−1e−r
2/2h.
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It follows that, for 1 < s < 2,

E
(
|W (t+ h)−W (t)|−s

)
= cnh

−n/2
∫ ∞
0

r−srn−1e−r
2/2hdr

=
1

2
cnh
−s/2

∫ ∞
0

w(n−s−2)/2e−w/2dw

= c̃h−s/2,

where c̃ does not depend on h or t. (Note that the integral converges since (n− s− 2)/2 ≥
−s/2 > −1.)

Now define a (random) mass distribution µW on the trail W ([0, 1]) by

µW (A) := L({t ∈ [0, 1] : W (t) ∈ A}), A ∈ B(Rn).

Then for any function g,
∫
Rn g(x)dµW (x) =

∫ 1
0 g(W (t))dt, so

E(Is(µW )) = E

(∫
Rn

∫
Rn

dµW (x)dµW (y)

|x− y|s

)
= E

(∫ 1

0

∫ 1

0

dtdu

|W (t)−W (u)|s

)
=

∫ 1

0

∫ 1

0
E
(
|W (t)−W (u)|−s

)
dtdu

= c̃

∫ 1

0

∫ 1

0
|t− u|−s/2dtdu

<∞,

for all 1 < s < 2. Thus, as before, dimHW ([0, 1]) ≥ 2 with probability 1.

Remark 5.33. It can be shown that H2(W ([0, 1])) = 0 for Brownian trail in Rn with
n ≥ 2. In particular, Brownian trail has Lebesgue measure zero, even in R2.

5.9 The zero set of Brownian motion

From now on, let W (t) once again denote a one-dimensional Brownian motion. Our goal
is to study the zero set

ZW := {t ≥ 0 : W (t) = 0}.

We follow lecture notes of Y. Peres (see www.stat.berkeley.edu/∼peres/bmall.pdf).
The Law of the Iterated Logarithm in the form of Exercise 5.14 has the remarkable

consequence that, on any time interval [0, ε], W (t) changes sign infinitely many times with
probability one. Since W (t) is continuous in t, this means that W (t) = 0 for infinitely
many t in [0, ε] with probability one; in other words, 0 is an accumulation point of ZW . In
fact, more can be proved:

Theorem 5.34 (Zero set of Brownian motion). The set ZW is with probability one an
uncountable closed set without isolated points.
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Proof. By continuity of W (t), it is clear that ZW is closed. Since 0 is an accumulation
point of ZW from the right, it follows from the strong Markov property that any stopping
time τ with P(W (τ) = 0) = 1 is an accumulation point from the right. This holds in
particular for stopping times of the form τq := inf{t > q : W (t) = 0}, where q ∈ [0,∞)∩Q.
Since there are only countably many such q, we conclude that with probability one, τq is
an accumulation point of ZW from the right for each rational q. Let t > 0 and suppose t
is a point of ZW isolated from the right. Then we can take a sequence (qn) of rationals
such that qn ↗ t, and define the stopping times τn := τqn . Since W (t) = 0 and τn is an
accumulation point from the right but t is not, qn ≤ τn < t for each n. But qn → t, so t
is an accumulation point of ZW from the left. Thus, ZW is closed without isolated points.
Moreover, ZW is nonempty (since it contains 0). In other words, ZW is a perfect set, and
it well known (and a nice exercise!) that any perfect set is uncountable.

The above theorem says that ZW is essentially a random Cantor set, so it is interesting
to ask about its Hausdorff dimension. Calculating this is the end goal of the remainder of
this section. For the lower bound, we shall use the maximum process

M(t) := max{W (s) : 0 ≤ s ≤ t}, t ≥ 0,

and the reflection of Brownian motion in its maximum,

Y (t) := M(t)−W (t), t ≥ 0.

We will show that, as a process, (Y (t))t has the same distribution as (|W (t)|)t (Brownian
motion reflected in the origin), and so the zero sets of these processes have almost surely
the same Hausdorff dimension. It turns out that a lower bound for the dimension of the
zero set

ZY := {t ≥ 0 : Y (t) = 0}

is much easier to come by:

Proposition 5.35. With probability one, dimH ZY ≥ 1/2.

Proof. Since M(t) is nondecreasing, it induces a unique random Borel measure µ satisfying
µ((s, t]) = M(t) −M(s), for all 0 ≤ s < t < ∞. This measure µ is supported on ZY ,
because M(t) can increase only when the Brownian motion is at its maximum, in which
case Y (t) = 0. So µ is a mass distribution on ZY . By Theorem 5.27, there is for every
0 < α < 1/2 a random constant Cα such that

µ((s, t]) = M(t)−M(s) ≤ max
0≤h≤t−s

W (s+ h)−W (s) ≤ Cα(t− s)α.

Hence, by the mass distribution principle, dimH ZY ≥ α with probability 1. Taking a
sequence {αn} with αn ↗ 1/2 completes the proof.

5.9.1 General Markov processes

We now need to make precise that the processes (Y (t))t and (|W (t)|)t have the same
distribution, or law. First, we can consider any stochastic process (X(t) : t ≥ 0) as a
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random element of R[0,∞), the set of all function from [0,∞) to R. We equip R[0,∞) with
the σ-algebra FC generated by the cylinder sets

{x ∈ R[0,∞) : (x(t1), x(t2), . . . , x(tn)) ∈ A}, n ∈ N, t1, t2, . . . , tn ≥ 0, A ∈ B(Rn).

Definition 5.36. Two processes (X(t) : t ≥ 0) and (X ′(t) : t ≥ 0) are equal in law (or

in distribution), denoted (X(t))t
d
= (X ′(t))t, if P(X(·) ∈ E) = P(X ′(·) ∈ E) for every

E ∈ FC .

If two processes are equal in law, their sample paths have the same almost-sure prop-
erties. We will use this fact below.

Definition 5.37. A Markov transition kernel is a function p : [0,∞)× R× B(R) → [0, 1]
satisfying:

(i) p(t, x, ·) is a Borel probability measure on R for all t ≥ 0 and x ∈ R;

(ii) p(·, ·, A) is Borel measurable in (t, x) for every A ∈ B(R);

(iii) For all t, s > 0, x ∈ R and A ∈ B(R),

p(t+ s, x,A) =

∫
R
p(t, y, A)p(s, x, dy).

Definition 5.38. A process (X(t) : t ≥ 0) is a (time-homogeneous) Markov process with
transition kernel p(t, x,A) if for all t > s and A ∈ B(R) we have

P(X(t) ∈ A|Fs) = p(t− s,X(s), A),

where Fs = σ{X(u) : 0 ≤ u ≤ s}.

Example 5.39. Brownian motion is a Markov process with transition kernel

p(t, x,A) =

∫
A

1√
2πt

e−(y−x)
2/2tdy.

That is, p(t, x, ·) is the N(x, t) (Normal(x, t)) distribution for all (t, x).

Example 5.40. Reflected Brownian motion |W (t)| is Markov with transition kernel p(t, x, ·)
being the distribution of |Z|, where Z ∼ N(x, t).

Example 5.41. The maximum process M(t) is not Markov. Why not?

Theorem 5.42. The process Y (t) = M(t)−W (t) is Markov, and its transition kernel is
the distribution of |Z|, where Z ∼ N(x, t).

Proof. Fix s ≥ 0, and define the processes Ŵ (t) := W (s + t) − W (s) and M̂(t) :=
max{Ŵ (u) : 0 ≤ u ≤ t}. Recall from Exercise 5.12 that Ŵ (t) is again a Brownian

motion, so (Ŵ (t), M̂(t))t
d
= (W (t),M(t))t. Let F(s) := σ{W (u) : 0 ≤ u ≤ s}. We must

show that conditional on F(s) and Y (s) = y, Y (s+ t)
d
= |y + Ŵ (t)|.
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Write x ∨ y := max{x, y}, and note that x ∨ y − z = (x − z) ∨ (y − z). Thus, we can
write

Y (s+ t) = M(s+ t)−W (s+ t)

= M(s) ∨
(
W (s) + M̂(t)

)
−
(
W (s) + Ŵ (t)

)
= Y (s) ∨ M̂(t)− Ŵ (t).

As a result, we need to check that y ∨ M̂(t)− Ŵ (t)
d
= |y + Ŵ (t)|, or equivalently, that

y ∨M(t)−W (t)
d
= |y −W (t)|, (5.23)

since W (t)
d
= −W (t). For a ≥ 0, write

P(y ∨M(t)−W (t) > a) = P(y −W (t) > a) + P(y −W (t) ≤ a,M(t)−W (t) > a). (5.24)

To study the second term we define B(u) := W (t− u)−W (t), and note by Exercise 5.12
that (B(u) : 0 ≤ u ≤ t) is again a Brownian motion. Let MB(t) := max{B(u) : 0 ≤ u ≤ t}.
Then MB(t) = M(t)−W (t), and since B(t) = −W (t), we have

P(y −W (t) ≤ a,M(t)−W (t) > a) = P(y +B(t) ≤ a,MB(t) > a).

Now let B′(t) be the process obtained by reflecting B(u) at the first time it hits a; that
is, B′(u) is defined as in (5.11) with τ = τa := inf{u > 0 : B(u) = a}. By the reflection
principle, B′(t) is also a Brownian motion, and

P(y +B(t) ≤ a,MB(t) > a) = P(B′(t) ≥ a+ y) = P(W (t) ≥ a+ y).

Finally, adding the two terms in (5.24) together, we obtain

P(y ∨M(t)−W (t) > a) = P(y −W (t) > a) + P(W (t)− y ≥ a) = P(|y −W (t)| > a),

proving (5.23), as required.

Proposition 5.43. Two Markov processes with continuous paths, with the same initial
distribution and the same transition kernel, are identical in law.

(The proof of this proposition is beyond the scope of this course.)

Corollary 5.44. The processes (Y (t))t and (|W (t)|)t are equal in law.

As a result, the zero sets ZW and ZY have the same distribution, and so dimH ZW
d
=

dimH ZY . Thus, by Proposition 5.35, dimH ZW ≥ 1/2 a.s.
We will now show that almost surely, dimB (ZW ∩ [0, 1] ≤ 1/2. We begin with a lemma.

Lemma 5.45. For a > 0 and δ > 0, we have

P(W (t) = 0 for some t ∈ [a, a+ δ]) =
2

π
arctan

√
δ

a
.
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Proof. First, for x > 0, we have by the the Markov property and symmetry of Brownian
motion and the reflection principle,

P(∃ t ∈ [a, a+ δ] : W (t) = 0|W (a) = x) = P

(
min

a≤t≤a+δ
W (t) < 0

∣∣W (a) = x

)
= P (M(δ) > x) = 2 P(W (δ) > x).

Similarly, for x < 0, we get P(∃ t ∈ [a, a + δ] : W (t) = 0|W (a) = x) = 2 P(W (δ) > |x|).
Thus,

P(∃ t ∈ [a, a+ δ] : W (t) = 0) =

∫ ∞
−∞

2 P(W (δ) > |x|) P(W (a) ∈ dx)

= 4

∫ ∞
0

∫ ∞
x

1√
2πaδ

exp

(
−y

2

2δ
− x2

2a

)
=

2

π
arctan

√
δ

a
.

It is left as a calculus exercise to verify the last step above! (Hint: make the substitution
w = y

√
a/δ, then transform to polar coordinates.)

As a consequence (and this is all we’ll need),

P(W (t) = 0 for some t ∈ [a, a+ δ]) <

√
δ

a
for all a > 0, δ > 0. (5.25)

Proposition 5.46. With probablity one, dimB (ZW ∩ [0, 1]) ≤ 1/2.

Proof. Let Nm be the number of intervals [(k−1)/2m, k/2m], k = 1, 2, . . . , 2m that intersect
ZW . Taking a = (k − 1)/2m and δ = 1/2m in (5.25), we obtain

E(Nm) =

2m∑
k=1

P(∃ t ∈ [(k − 1)/2m, k/2m] : W (t) = 0)

≤ 1 +

2m∑
k=2

1√
k − 1

< 2 +

∫ 2m

1

dx√
x

< 2(1 + 2m/2) ≤ 3 · 2m/2,

for all m ≥ 2. As a result, we have for each ε > 0,

P
(
Nm > 2m(1/2+ε)

)
≤ E(Nm)

2m(1/2+ε)
≤ 3 · 2m/2

2m(1/2+ε)
=

3

2mε
,

so by the Borel-Cantelli lemma, Nm ≤ 2m(1/2+ε) for all sufficiently large m, with probability
1. Hence, dimB (ZW ∩ [0, 1]) ≤ 1/2 + ε a.s., and letting ε ↓ 0 along a sequence (εn) the
proposition follows.

Combining the results of this section, we finally obtain:
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Theorem 5.47. We have dimH ZW = 1/2 and dimH(ZW ∩ [0, 1]) = dimB(ZW ∩ [0, 1]) =
1/2 almost surely.

Corollary 5.48. For every a ∈ R, the set {t ≥ 0 : W (t) = a} has Hausdorff dimension
1/2 with probability 1.

Proof. By the strong Markov property, conditional on τa = t, the set {s ≥ 0 : W (s) =
a} has the same distribution as t + ZW , and therefore the same almost sure Hausdorff
dimension. By Proposition 5.24, τa < ∞ a.s., and hence, with probability one, dimH{s ≥
0 : W (s) = a} = dimH ZW = 1/2.


