Math 6810
 (Probability and Fractals)

Spring 2016
Lecture notes

Pieter Allaart
University of North Texas
March 23, 2016

Recommended reading: (Do not purchase these books before consulting with your instructor!)

1. Real Analysis by H. L. Royden (4th edition), Prentice Hall.
2. Probability and Measure by P. Billingsley (3rd edition), Wiley.
3. Probability with Martingales by D. Williams, Cambridge University Press.
4. Fractal Geometry: Foundations and Applications by K. Falconer (2nd edition), Wiley.

Chapter 4

Random fractals

This chapter is based on Falconer, Chapters 4 and 15, and a paper by B. Hunt.

4.1 The potential theoretic method

Proposition 4.1. Let μ be a mass distribution on $\mathbb{R}^{n}, F \subset \mathbb{R}^{n}$ a Borel set, and $0<c<\infty$ a constant. Suppose that

$$
\begin{equation*}
\limsup _{r \downarrow 0} \frac{\mu(B(x, r))}{r^{s}}<c \quad \text { for all } x \in F \text {. } \tag{4.1}
\end{equation*}
$$

Then $\mathcal{H}^{s}(F) \geq \mu(F) / c$.
Proof. For $\delta>0$, let

$$
F_{\delta}:=\left\{x \in F: \mu(B(x, r))<c r^{s} \text { for all } 0<r \leq \delta\right\}
$$

Let $\left\{U_{i}\right\}$ be a δ-cover of F. If $x \in U_{i} \cap F_{\delta}$, then $U_{i} \subset B\left(x,\left|U_{i}\right|\right)$ and

$$
\mu\left(U_{i}\right) \leq \mu\left(B\left(x,\left|U_{i}\right|\right)\right)<c\left|U_{i}\right|^{s} .
$$

It follows that

$$
\mu\left(F_{\delta}\right) \leq \sum_{i}\left\{\mu\left(U_{i}\right): U_{i} \cap F_{\delta} \neq \emptyset\right\} \leq c \sum_{i}\left|U_{i}\right|^{s}
$$

Taking the infimum over all δ-covers gives $\mu\left(F_{\delta}\right) \leq c \mathcal{H}_{\delta}^{s}(F)$. But, since F_{δ} increases to F as $\delta \rightarrow 0$ by (4.1), we have $\mu(F)=\lim _{\delta \rightarrow 0} \mu\left(F_{\delta}\right)$, and so $\mu(F) \leq c \mathcal{H}^{s}(F)$.

Definition 4.2. Let μ be a mass distribution on \mathbb{R}^{n} and $s \geq 0$. The s-potential at a point $x \in \mathbb{R}^{n}$ due to μ is

$$
\begin{equation*}
\phi_{s}(x):=\int \frac{d \mu(y)}{|x-y|^{s}}, \tag{4.2}
\end{equation*}
$$

and the s-energy of μ is

$$
\begin{equation*}
I_{s}(\mu):=\int \phi_{s}(x) d \mu(x)=\iint \frac{d \mu(x) d \mu(y)}{|x-y|^{s}}, \tag{4.3}
\end{equation*}
$$

where each integral is taken over \mathbb{R}^{n}.

Observe that if $I_{s}(\mu)<\infty$, then μ is nonatomic; that is, $\mu(\{x\})=0$ for each $x \in \mathbb{R}^{n}$. The connection between s-energy and Hausdorff measure and Hausdorff dimension is as follows:

Theorem 4.3. Let $F \subset \mathbb{R}^{n}$. If there is a mass distribution μ on F with $I_{s}(\mu)<\infty$, then $\mathcal{H}^{s}(F)=\infty$ and therefore, $\operatorname{dim}_{H} F \geq s$.
(There is a sort-of-converse to this theorem, which we will not need - see Falconer, Theorem 4.13(b).)

Proof. Let μ be a mass distribution on F, so $\mu(F)>0=\mu\left(\mathbb{R}^{n} \backslash F\right)$, and suppose $I_{s}(\mu)<\infty$. Define the set

$$
F_{1}:=\left\{x \in F: \underset{r \downarrow 0}{\lim \sup } \frac{\mu(B(x, r))}{r^{s}}>0\right\} .
$$

Fix $x \in F_{1}$. Then we can find $\varepsilon>0$ and a sequence $\left\{r_{i}\right\}$ decreasing to 0 such that $\mu\left(B\left(x, r_{i}\right)\right) \geq \varepsilon r_{i}^{s}$ for each i. Since $\mu(\{x\})=0$, we can find $0<q_{i}<r_{i}$ small enough so that $\mu\left(A_{i}\right) \geq \frac{1}{2} \varepsilon r_{i}^{s}$, where A_{i} is the annulus $A_{i}=B\left(x, r_{i}\right) \backslash B\left(x, q_{i}\right)$. Taking a subsequence if necessary, we may assume $r_{i+1}<q_{i}$, so that the annuli A_{i} are disjoint. It follows that

$$
\phi_{s}(x)=\int \frac{d \mu(y)}{|x-y|^{s}} \geq \sum_{i=1}^{\infty} \int_{A_{i}} \frac{d \mu(y)}{|x-y|^{s}} \geq \sum_{i=1}^{\infty} \frac{1}{2} \varepsilon r_{i}^{s} r_{i}^{-s}=\infty .
$$

On the other hand, $I_{s}(\mu)=\int \phi_{s}(x) d \mu(x)<\infty$, so $\phi_{s}(x)<\infty$ for μ-almost every x. Though it's not clear if F_{1} is measurable (a Borel set), there is certainly a Borel set E such that $F_{1} \subset E$ and $\mu(E)=0$, and by definition of F_{1},

$$
\limsup _{r \downarrow 0} \frac{\mu(B(x, r))}{r^{s}}=0 \quad \text { for all } x \in F \backslash E \text {. }
$$

Hence, by Proposition 4.1,

$$
\mathcal{H}^{s}(F) \geq \mathcal{H}^{s}(F \backslash E) \geq \mu(F \backslash E) / c=\mu(F) / c,
$$

for every $c>0$. Therefore, $\mathcal{H}^{s}(F)=\infty$.
We can use Theorem 4.3 to obtain (almost-sure) lower bounds for the Hausdorff dimension of random fractals as follows. Let $(\Omega, \mathcal{F}, \mathrm{P})$ be a probability space, and suppose for each $\omega \in \Omega$ we have a fractal F_{ω}. If we can find for each ω a mass distribution μ_{ω} on F_{ω} such that

$$
\int_{\Omega} I_{s}\left(\mu_{\omega}\right) d \mathrm{P}(\omega)=\int_{\Omega} \iint \frac{d \mu_{\omega}(x) d \mu_{\omega}(y)}{|x-y|^{s}} d \mathrm{P}(\omega)<\infty
$$

then it will follow that $I_{s}\left(\mu_{\omega}\right)<\infty$ for almost every ω, and so $\operatorname{dim}_{H} F_{\omega} \geq s$ for almost every ω, in other words, with probability one. In many practical applications a suitable change of variable and Fubini's theorem can be applied to compute or estimate the above triple integral.

4.2 Random Cantor sets

We will construct a "statistically self-similar" set analogous to the Cantor set by randomly choosing the contraction ratios at each stage of the construction. Let $0<a \leq b<\frac{1}{2}$ be constants. Let $(\Omega, \mathcal{F}, \mathrm{P})$ be a probability space on which is defined a collection of random variables $C_{i_{1}, \ldots, i_{k}}, k \in \mathbb{N},\left(i_{1}, \ldots, i_{k}\right) \in \mathcal{I}_{k}:=\{1,2\}^{k}$, with the following properties:
(i) For each $k \in \mathbb{N}$ and $\left(i_{1}, \ldots, i_{k}\right) \in \mathcal{I}_{k}$, the random variables $C_{i_{1}, \ldots, i_{k}, j}, j=1,2$ are independent of \mathcal{F}_{k}, where

$$
\mathcal{F}_{k}:=\sigma\left(\left\{C_{i_{1}, \ldots, i_{l}}: 1 \leq l \leq k,\left(i_{1}, \ldots, i_{l}\right) \in \mathcal{I}_{l}\right\}\right) .
$$

(ii) For each $k \in \mathbb{N}$ the collection of random pairs $\left\{\left(C_{i_{1}, \ldots, i_{k}, 1}, C_{i_{1}, \ldots, i_{k}, 2}\right):\left(i_{1}, \ldots, i_{k}\right) \in \mathcal{I}_{k}\right\}$ is independent.
(iii) For each $k \in \mathbb{N}$ and $\left(i_{1}, \ldots, i_{k}\right) \in \mathcal{I}_{k}, C_{i_{1}, \ldots, i_{k}, 1} \sim C_{1}$ and $C_{i_{1}, \ldots, i_{k}, 2} \sim C_{2}$.
(iv) $a \leq C_{j} \leq b$ a.s. for $j=1,2$.

Note that we do not require independence of $C_{i_{1}, \ldots, i_{k}, 1}$ and $C_{i_{1}, \ldots, i_{k}, 2}$.
Now define a collection of random intervals $\left\{I_{i_{1}, \ldots, i_{k}}\right\}$ as follows: put $I_{1}=\left[0, C_{1}\right]$ and $I_{2}=\left[1-C_{2}, 1\right]$. For $k \in \mathbb{N}$ and $\left(i_{1}, \ldots, i_{k}\right) \in \mathcal{I}_{k}$, let $I_{i_{1}, \ldots, i_{k}, 1}$ and $I_{i_{1}, \ldots, i_{k}, 2}$ be subintervals of $I:=I_{i_{1}, \ldots, i_{k}}$ such that $I_{i_{1}, \ldots, i_{k}, 1}$ has the same left endpoint as $I, I_{i_{1}, \ldots, i_{k}, 2}$ has the same right endpoint as I, and $\left|I_{i_{1}, \ldots, i_{k}, j}\right|=C_{i_{1}, \ldots, i_{k}, j}|I|$ for $j=1,2$. We call $I_{i_{1}, \ldots, i_{k}}$ a basic interval at level k. Let

$$
E_{k}=\bigcup_{\left(i_{1}, \ldots, i_{k}\right) \in \mathcal{I}_{k}} I_{i_{1}, \ldots, i_{k}}, \quad k \in \mathbb{N},
$$

and

$$
\begin{equation*}
F:=\bigcap_{k=1}^{\infty} E_{k} . \tag{4.4}
\end{equation*}
$$

Note that for each k, the basic intervals of level k are disjoint, and as a result, F has the topological properties of a Cantor set (perfect, totally disconnected).

Theorem 4.4. For the random Cantor set F described above, $\operatorname{dim}_{H} F=s$ with probability 1, where s is the unique positive solution of

$$
\begin{equation*}
\mathrm{E}\left(C_{1}^{s}+C_{2}^{s}\right)=1 \tag{4.5}
\end{equation*}
$$

Proof. It is straightforward to check (using that C_{1} and C_{2} are bounded random variables) that $f(s):=\mathrm{E}\left(C_{1}^{s}+C_{2}^{s}\right)$ is continuous and strictly decreasing in s, with $f(0)=2$ and $f(1)=\mathrm{E}\left(C_{1}+C_{2}\right) \leq 2 b<1$, so (4.5) has a unique solution.

Let \mathcal{E}_{k} be the (finite) collection of intervals $I_{i_{1}, \ldots, i_{k}},\left(i_{1}, \ldots, i_{k}\right) \in \mathcal{I}_{k}$, with $\mathcal{E}_{0}:=\{[0,1]\}$. For $I=I_{i_{1}, \ldots, i_{k}} \in \mathcal{E}_{k}$, write $I_{L}:=I_{i_{1}, \ldots, i_{k}, 1}$ and $I_{R}:=I_{i_{1}, \ldots, i_{k}, 2}$. For $s>0$, we have

$$
\begin{aligned}
\mathrm{E}\left(\left|I_{i_{1}, \ldots, i_{k}, 1}\right|^{s}+\left|I_{i_{1}, \ldots, i_{k}, 2}\right|^{s} \mid \mathcal{F}_{k}\right) & =\mathrm{E}\left(C_{i_{1}, \ldots, i_{k}, 1}^{s}+C_{i_{1}, \ldots, i_{k}, 2}^{s}\right)\left|I_{i_{1}, \ldots, i_{k}}\right|^{s} \\
& =\mathrm{E}\left(C_{1}^{s}+C_{2}^{s}\right)\left|I_{i_{1}, \ldots, i_{k}}\right|^{s},
\end{aligned}
$$

where we first used (i) and then (iii). Summing over all the intervals in \mathcal{E}_{k} gives

$$
\begin{equation*}
\mathrm{E}\left(\sum_{I \in \mathcal{E}_{k+1}}|I|^{s} \mid \mathcal{F}_{k}\right)=\sum_{I \in \mathcal{E}_{k}}|I|^{s} \mathrm{E}\left(C_{1}^{s}+C_{2}^{s}\right) . \tag{4.6}
\end{equation*}
$$

Taking expectations on both sides we obtain

$$
\begin{equation*}
\mathrm{E}\left(\sum_{I \in \mathcal{E}_{k+1}}|I|^{s}\right)=\mathrm{E}\left(\sum_{I \in \mathcal{E}_{k}}|I|^{s}\right) \mathrm{E}\left(C_{1}^{s}+C_{2}^{s}\right) . \tag{4.7}
\end{equation*}
$$

If s is the solution of (4.5), then (4.6) reduces to

$$
\mathrm{E}\left(\sum_{I \in \mathcal{\mathcal { E }}_{k+1}}|I|^{s} \mid \mathcal{F}_{k}\right)=\sum_{I \in \mathcal{E}_{k}}|I|^{s},
$$

which shows that the sequence $\left(X_{k}\right)$ defined by $X_{k}=\sum_{I \in \mathcal{E}_{k}}|I|^{s}$ is a martingale.
Exercise: Show that the martingale $\left(X_{k}\right)$ is L^{2}-bounded. (Hint: Show that $\mathrm{E}\left(X_{k+1}^{2} \mid \mathcal{F}_{k}\right) \leq$ $X_{k}^{2}+a \gamma^{k}$, where $\gamma=\mathrm{E}\left(C_{1}^{2 s}+C_{2}^{2 s}\right)<1$ and a is a constant.)

As a result, $X:=\lim _{k \rightarrow \infty} X_{k}$ exists almost surely, and $\mathrm{E}(X)=\mathrm{E}\left(X_{0}\right)=1$. We claim that $X>0$ almost surely. Let $q=\mathrm{P}(X=0)$. Since $X \geq 0$ and $\mathrm{E}(X)=1, q<1$. Now

$$
X_{k}=\sum_{I \in \mathcal{E}_{k}, I \subset I_{1}}|I|^{s}+\sum_{I \in \mathcal{E}_{k}, I \subset I_{2}}|I|^{s},
$$

and the two random sums on the right are independent by (ii) (for all $k \geq 2$), and each tends to 0 with probability q, by the self-similarity of the construction. Thus $q=\mathrm{P}\left(X_{k} \rightarrow\right.$ $0)=q^{2}$, and so $q=0$, proving the claim. It follows that there are random variables M_{1} and M_{2} such that

$$
\begin{equation*}
0<M_{1} \leq X_{k}=\sum_{I \in \mathcal{E}_{k}}|I|^{s} \leq M_{2}<\infty \quad \text { a.s. for all } k \tag{4.8}
\end{equation*}
$$

Given $\delta>0, \mathcal{E}_{k}$ is a δ-cover of F for large enough k, and so $\mathcal{H}^{s}(F) \leq M_{2}<\infty$ with probability 1 . Hence, $\operatorname{dim}_{H} F \leq s$ almost surely.

For the lower bound we use the potential theoretic method. Let s again be the solution of (4.5). For $I \in \mathcal{E}_{k}$, define the random variable

$$
\begin{equation*}
\mu(I):=\lim _{j \rightarrow \infty} \sum\left\{|J|^{s}: J \in \mathcal{E}_{j}, J \subset I\right\} . \tag{4.9}
\end{equation*}
$$

By the same argument as above, this limit exists, is \mathcal{F}_{k}-measurable, and $0<\mu(I)<\infty$ almost surely. Furthermore, if $I \in \mathcal{E}_{k}$, then $\mu(I)=\mu\left(I_{L}\right)+\mu\left(I_{R}\right)$, so μ extends to a (random!) mass distribution on $[0,1]$ with support in F. (The complete proof of this fact is rather involved and is omitted here.) In addition, we have

$$
\begin{equation*}
\mathrm{E}\left[\mu(I) \mid \mathcal{F}_{k}\right]=|I|^{s}, \quad I \in \mathcal{E}_{k} \tag{4.10}
\end{equation*}
$$

Fix $0<t<s$. We will estimate the t-energy of μ. For $x, y \in F$, there is a largest k such that x and y belong to the same basic interval $I \in \mathcal{E}_{k}$; denote this interval by $x \wedge y$. If $I \in \mathcal{E}_{k}$, then the subintervals I_{L} and I_{R} are separated by a gap of length at least $d|I|$, where $d=1-2 b>0$. Thus, for any $I \in \mathcal{E}_{k}$,

$$
\begin{aligned}
\iint_{x \wedge y=I}|x-y|^{-t} d \mu(x) d \mu(y) & =2 \int_{I_{L}} \int_{I_{R}}|x-y|^{-t} d \mu(x) d \mu(y) \\
& \leq 2 d^{-t}|I|^{-t} \mu\left(I_{L}\right) \mu\left(I_{R}\right),
\end{aligned}
$$

and so

$$
\begin{aligned}
\mathrm{E}\left(\iint_{x \wedge y=I}|x-y|^{-t} d \mu(x) d \mu(y) \mid \mathcal{F}_{k+1}\right) & \leq 2 d^{-t}|I|^{-t} \mathrm{E}\left[\mu\left(I_{L}\right) \mid \mathcal{F}_{k+1}\right] \mathrm{E}\left[\mu\left(I_{R}\right) \mid \mathcal{F}_{k+1}\right] \\
& \leq 2 d^{-t}|I|^{-t}\left|I_{L}\right|^{s}\left|I_{R}\right|^{s} \\
& \leq 2 d^{-t}|I|^{2 s-t}
\end{aligned}
$$

Here the first inequality uses that, conditionally on $\mathcal{F}_{k+1}, \mu\left(I_{R}\right)$ and $\mu\left(I_{L}\right)$ are independent because of assumption (ii); and the second inequality follows from (4.10). Taking expectations we obtain

$$
\mathrm{E}\left(\iint_{x \wedge y=I}|x-y|^{-t} d \mu(x) d \mu(y)\right) \leq 2 d^{-t} \mathrm{E}\left(|I|^{2 s-t}\right) .
$$

Summing over $I \in \mathcal{E}_{k}$ and iterating (4.7), we get

$$
\mathrm{E}\left(\sum_{I \in \mathcal{E}_{k}} \iint_{x \wedge y=I}|x-y|^{-t} d \mu(x) d \mu(y)\right) \leq 2 d^{-t} \mathrm{E}\left(\sum_{I \in \mathcal{E}_{k}}|I|^{2 s-t}\right)=2 d^{-t} \lambda^{k}
$$

where $\lambda:=\mathrm{E}\left(C_{1}^{2 s-t}+C_{2}^{2 s-t}\right)<1$, since $2 s-t>s$. Finally, we can sum over k to obtain

$$
\begin{aligned}
\mathrm{E}\left(\int_{F} \int_{F}|x-y|^{-t} d \mu(x) d \mu(y)\right) & =\mathrm{E}\left(\sum_{k=0}^{\infty} \sum_{I \in \mathcal{E}_{k}} \iint_{x \wedge y=I}|x-y|^{-t} d \mu(x) d \mu(y)\right) \\
& \leq \sum_{k=0}^{\infty} 2 d^{-t} \lambda^{k}<\infty
\end{aligned}
$$

This implies that the t-energy of μ is finite almost surely, and hence, by Theorem 4.3, $\operatorname{dim}_{H} F \geq t$ a.s. Since $t<s$ was arbitrary, it follows that $\operatorname{dim}_{H} \geq s$ almost surely.

Remark 4.5. Note that the proof does not tell us whether $\mathcal{H}^{s}(F)>0$. The condition that there is a minimum gap between basic intervals is not necessary. (A version of the open set condition is enough.) But without this assumption, the proof is more involved.

Example 4.6. Let U be a uniformly distributed random variable on $(1 / 3,2 / 3)$. Consider the construction of a random Cantor set F whereby for each basic interval $I=I_{i_{1}, \ldots, i_{k}}$, the middle portion of length $U_{i_{1}, \ldots, i_{k}}|I|$ is removed from I, where the collection $\left\{U_{i_{1}, \ldots, i_{k}}: k \in\right.$
$\left.\left.\mathbb{N}_{0},\left(i_{1}, \ldots, i_{k}\right) \in \mathcal{I}_{k}\right)\right\}$ is independent and each $U_{i_{1}, \ldots, i_{k}} \sim U$. This fits the framework of the above theorem, with $C_{1}=C_{2}=(1-U) / 2$. Thus, $\operatorname{dim}_{H} F=s$, where s is the solution of

$$
\begin{equation*}
\mathrm{E}\left(C_{1}^{s}+C_{2}^{s}\right)=2 \mathrm{E}\left[\left(\frac{1-U}{2}\right)^{s}\right]=1 \tag{4.11}
\end{equation*}
$$

Exercise 4.7. Solve (4.11) (numerically). (Solution: $\operatorname{dim}_{H} F=s \doteq .4966$).

4.3 A random Weierstrass function

In this section we randomize the construction of the Weierstrass function from Chapter 3 by adding random phases as follows. Let $\theta_{1}, \theta_{2}, \ldots$ be independent uniform $(0,2 \pi)$ random variables. For constants $\lambda>1$ and $1<s<2$, define the random function

$$
\begin{equation*}
W(x)=\sum_{n=0}^{\infty} \lambda^{(s-2) n} \sin \left(\lambda^{n} x+\theta_{n}\right), \quad 0 \leq x \leq 1 \tag{4.12}
\end{equation*}
$$

The following theorem is due to B. Hunt ("The Hausdorff dimension of graphs of Weierstrass functions", Proc. Amer. Math. Soc. 126 (1998), no. 3, 791-800). We present his proof with minor changes in notation.

Theorem 4.8. With probability one, $\operatorname{dim}_{H} \operatorname{Graph}(W)=s$.
The proof uses convolutions of densities. We need a definition and some lemmas.
Definition 4.9. The convolution of two functions f and g in $L^{1}(\mathbb{R})$ is the function

$$
f * g(x):=\int_{\mathbb{R}} f(y) g(x-y) d y
$$

An easy exercise (using Fubini's theorem) shows that $f * g$ is well defined and in $L^{1}(\mathbb{R})$.
Lemma 4.10. Let X and Y be independent random variables and suppose X is absolutely continuous with density f_{X}. Then $X+Y$ is absolutely continuous with density f_{X+Y}, and $\sup _{z} f_{X+Y}(z) \leq \sup _{x} f_{X}(x)$.
Proof. Let μ_{Y} denote the distribution of Y, F_{X} the c.d.f. of X, and F_{X+Y} the c.d.f. of $X+Y$. Then, by integrating over the half-plane $x+y \leq z$ and using Fubini's theorem,

$$
F_{X+Y}(z)=\int_{\mathbb{R}} F_{X}(z-y) d \mu_{Y}(y), \quad z \in \mathbb{R}
$$

Since F_{X} is absolutely continuous, it now follows easily that F_{X+Y} is absolutely continuous also. (Check this!) Then by differentiating both sides of the above equation,

$$
f_{X+Y}(z)=\int_{\mathbb{R}} f_{X}(z-y) d \mu_{Y}(y)
$$

from which the second statement of the lemma follows immediately.

Lemma 4.11. If X and Y are independent absolutely continuous random variables with densities f_{X} and f_{Y}, then $X+Y$ has density $f_{X+Y}=f_{X} * f_{Y}$.

Proof. Easy exercise.
Lemma 4.12 (Young's inequality for convolutions). Let p, q and r be real numbers in $(1, \infty)$ such that $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}+1$. If $f \in L^{p}$ and $g \in L^{q}$, then $f * g \in L^{r}$, and

$$
\|f * g\|_{r} \leq\|f\|_{p}\|g\|_{q}
$$

(For a proof, which uses a generalized Hölder inequality, see proofwiki.org.)

Exercise 4.13. Let $q \neq 0, a \in \mathbb{R}$, and let θ be a uniform $(0,2 \pi)$ random variable. Show that the random variable $X=q \cos (a+\theta)$ has density

$$
f_{X}(x)= \begin{cases}\frac{1}{\pi \sqrt{q^{2}-x^{2}}} & \text { if }|x|<|q|, \\ 0 & \text { if }|x| \geq|q| .\end{cases}
$$

Finally, we recall the trigonometric identity

$$
\begin{equation*}
\sin x-\sin y=2 \cos \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right) . \tag{4.13}
\end{equation*}
$$

Proof of Theorem 4.8. First, it follows just as in the proof of Theorem 3.42 that W is Hölder continuous with exponent $2-s$, and hence, by Proposition 3.41, $\operatorname{dim}_{H} \operatorname{Graph}(W) \leq$ s.

For the lower bound we use the potential-theoretic method. Let μ be the random measure on \mathbb{R}^{2}, supported on $\operatorname{Graph}(W)$, defined by

$$
\mu(A):=\mathcal{L}(\{x \in[0,1]:(x, W(x)) \in A\}), \quad A \in \mathcal{B}\left(\mathbb{R}^{2}\right)
$$

where \mathcal{L} denotes Lebesgue measure on $[0,1]$. If A_{1}, A_{2}, \ldots are disjoint subsets of \mathbb{R}^{2}, then the sets $\left\{x:(x, W(x)) \in A_{i}\right\}$ are disjoint, so μ is indeed a measure, and $\mu(\operatorname{Graph}(W))=1$.

Fix $1<t<s$. Our goal is to show that $\mathrm{E}\left(I_{t}(\mu)\right)<\infty$, which will imply, as in the proof of Theorem 4.4, that $\operatorname{dim}_{H} \operatorname{Graph}(W) \geq t$ a.s., and so, since t is arbitrary, $\operatorname{dim}_{H} \operatorname{Graph}(W) \geq s$ a.s. Here we let \mathbf{x}, \mathbf{y} denote points in \mathbb{R}^{2}. By a change-of-variable and the Pythagorean theorem,

$$
I_{t}(\mu)=\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \frac{d \mu(\mathbf{x}) d \mu(\mathbf{y})}{|\mathbf{x}-\mathbf{y}|^{t}}=\int_{0}^{1} \int_{0}^{1} \frac{d x d y}{\left((x-y)^{2}+(W(x)-W(y))^{2}\right)^{t / 2}},
$$

so by Fubini's theorem,

$$
\begin{equation*}
\mathrm{E}\left(I_{t}(\mu)\right)=\int_{0}^{1} \int_{0}^{1} \mathrm{E}\left[\left((x-y)^{2}+(W(x)-W(y))^{2}\right)^{-t / 2}\right] d x d y \tag{4.14}
\end{equation*}
$$

Let $\mathrm{E}_{x, y}$ denote the expectation in the above double integral. We will estimate $\mathrm{E}_{x, y}$ for all $x, y \in[0,1]$. Note first that, if $|x-y| \geq \pi / \lambda^{2}$, then $\mathrm{E}_{x, y} \leq\left(\lambda^{2} / \pi\right)^{t}$. Fix now x and y with
$0<|x-y|<\pi / \lambda^{2}$, and let $Z=W(x)-W(y)$. Then Z is a random variable, and we wish to show that Z has a bounded density function $h(z)$ satisfying

$$
\begin{equation*}
h(z) \leq C|x-y|^{s-2}, \quad z \in \mathbb{R} \tag{4.15}
\end{equation*}
$$

for some constant $C>0$ that is independent of x and y. If we can show this, it will follow that

$$
\begin{aligned}
\mathrm{E}_{x, y}=\mathrm{E}\left[\left((x-y)^{2}+Z^{2}\right)^{-t / 2}\right] & =\int_{-\infty}^{\infty} \frac{h(z) d z}{\left((x-y)^{2}+z^{2}\right)^{t / 2}} \\
& \leq C \int_{-\infty}^{\infty} \frac{|x-y|^{s-2} d z}{\left((x-y)^{2}+z^{2}\right)^{t / 2}} \\
& =C \int_{-\infty}^{\infty} \frac{|x-y|^{s-2}|x-y| d w}{|x-y|^{t}\left(1+w^{2}\right)^{t / 2}} \\
& =C|x-y|^{s-1-t} \int_{-\infty}^{\infty} \frac{d w}{\left(1+w^{2}\right)^{t / 2}},
\end{aligned}
$$

where the next-to-last step uses the change-of-variable $z=|x-y| w$. Since $t>1$, the integral in the last line above converges. And (check!) since $t<s$, the double integral

$$
\int_{0}^{1} \int_{0}^{1}|x-y|^{s-1-t} d x d y
$$

converges also. Thus, by (4.14), $\mathrm{E}\left(I_{t}(\mu)\right)<\infty$, as desired.
Using (4.13), we can write

$$
\begin{aligned}
Z & =\sum_{n=0}^{\infty} \lambda^{(s-2) n}\left(\sin \left(\lambda^{n} x+\theta_{n}\right)-\sin \left(\lambda^{n} y+\theta_{n}\right)\right) \\
& =\sum_{n=0}^{\infty} 2 \lambda^{(s-2) n} \sin \left(\lambda^{n} \frac{x-y}{2}\right) \cos \left(\lambda^{n} \frac{x+y}{2}+\theta_{n}\right) \\
& =\sum_{n=0}^{\infty} q_{n} \cos \left(r_{n}+\theta_{n}\right)=: \sum_{n=0}^{\infty} Z_{n} .
\end{aligned}
$$

Note that the random variables Z_{1}, Z_{2}, \ldots are independent, with Z_{n} having density

$$
h_{n}(z)= \begin{cases}\frac{1}{\pi \sqrt{q^{2}-z^{2}}} & \text { if }|z|<|q|, \\ 0 & \text { if }|z| \geq|q|,\end{cases}
$$

by Exercise 4.13. It follows from Lemma 4.10 that Z is absolutely continuous with density $h=h_{0} * h_{1} * h_{2} \cdots$, and h is bounded by any upper bound for any finite convolution $h_{j} * \cdots * h_{k}$, where $j \leq k$.

Next, recall that $|x-y|<\pi / \lambda^{2}$. Thus, there is an integer $k \geq 2$ such that $\pi \lambda^{-k-1}<$ $|x-y| \leq \pi \lambda^{-k}$. Fix this k. Then

$$
\frac{\pi}{2 \lambda^{3}}<\left|\lambda^{k-2} \frac{x-y}{2}\right|<\left|\lambda^{k} \frac{x-y}{2}\right| \leq \frac{\pi}{2},
$$

and hence,

$$
\begin{equation*}
\left|q_{n}\right|>2 \sin \left(\frac{\pi}{2 \lambda^{3}}\right) \lambda^{(s-2) k}>2 \sin \left(\frac{\pi}{2 \lambda^{3}}\right)|x-y|^{2-s} \tag{4.16}
\end{equation*}
$$

for $n=k-2, k-1, k$. Observe that $h_{n} \in L^{p}$ for $p<2$, and by direct calculation, for $n=k-2, k-1, k$,

$$
\left\|h_{n}\right\|_{3 / 2}^{3 / 2}=\left|q_{n}\right|^{-1 / 2} \int_{-1}^{1} \frac{d w}{\pi\left(1-w^{2}\right)^{3 / 4}}=K\left|q_{n}\right|^{-1 / 2}
$$

so that $\left\|h_{n}\right\|_{3 / 2}=K^{2 / 3}\left|q_{n}\right|^{-1 / 3} \leq K^{\prime}|x-y|^{(s-2) / 3}$ by (4.16), where K^{\prime} depends only on λ. Now we apply first Young's inequality (Lemma 4.12) to obtain

$$
\left\|h_{k-1} * h_{k}\right\|_{3} \leq\left\|h_{k-1}\right\|_{3 / 2}\left\|h_{k}\right\|_{3 / 2}
$$

and then Hölder's inequality to conclude that

$$
\begin{aligned}
h_{k-2} * h_{k-1} * h_{k}(z) & =\int_{\mathbb{R}} h_{k-2}(z-x)\left(h_{k-1} * h_{k}\right)(x) d x \\
& \leq\left\|h_{k-2}\right\|_{3 / 2}\left\|h_{k-1} * h_{k}\right\|_{3} \\
& \leq\left\|h_{k-2}\right\|_{3 / 2}\left\|h_{k-1}\right\|_{3 / 2}\left\|h_{k}\right\|_{3 / 2} \\
& \leq K^{\prime 3}|x-y|^{s-2}
\end{aligned}
$$

But then this bound also applies to $h(z)$, and so we arrive at (4.15), completing the proof.

