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Chapter 4

Random fractals

This chapter is based on Falconer, Chapters 4 and 15, and a paper by B. Hunt.

4.1 The potential theoretic method

Proposition 4.1. Let u be a mass distribution on R™, F' C R" a Borel set, and 0 < ¢ < o0
a constant. Suppose that

B
lim sup M <c forallz € F. (4.1)
rl0 r

Then H*(F) > pu(F)/c.
Proof. For § > 0, let
Fs:={x € F:u(B(z,r)) <cr® for all 0 <r < d}.
Let {U;} be a d-cover of F. If x € U; N Fy, then U; C B(z,|U;|) and
w(Ui) < w(B(z, |Uil)) < c|Uil*.

It follows that

p(ER) < Y {u(Ui) : Ui Fy £ 0y < e 3 U
Taking the infimum over all §-covers gives pu(Fs) < c¢H5(F'). But, since Fs increases to F
as 0 — 0 by (4.1), we have p(F') = lims_,o pu(Fs), and so u(F) < cH*(F). O

Definition 4.2. Let pu be a mass distribution on R™ and s > 0. The s-potential at a point
x € R" due to pu is

ps(x) = j“_(yy)’ (4.2)
and the s-energy of p is
10 = [ oute)dnto) = [ [ AL, (43)

where each integral is taken over R".

o7
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Observe that if I5(u) < oo, then p is nonatomic; that is, u({z}) = 0 for each z € R™.
The connection between s-energy and Hausdorff measure and Hausdorff dimension is as
follows:

Theorem 4.3. Let F C R"™. If there is a mass distribution p on F with I;(u) < oo, then
H?(F) = oo and therefore, dimy F' > s.

(There is a sort-of-converse to this theorem, which we will not need - see Falconer,
Theorem 4.13(b).)

Proof. Let p be a mass distribution on F', so pu(F) > 0 = p(R™\ F), and suppose I;(1) < oo.

Define the set
B
Fy:=<x € F:limsup wBw,r)) >0p.
rl0 rs

Fix x € F;. Then we can find ¢ > 0 and a sequence {r;} decreasing to 0 such that
w(B(z,7;)) > er? for each i. Since p({z}) = 0, we can find 0 < ¢; < r; small enough so
that (1(A;) > 3erf, where A; is the annulus A; = B(z,r;)\B(z,¢;). Taking a subsequence
if necessary, we may assume ;11 < ¢;, so that the annuli A; are disjoint. It follows that

|x—y|s Z/A oy |s—Z Ty = oo

On the other hand, I;(n) = [ ¢s(z ) < 00, 80 ¢s(x) < oo for p-almost every z. Though
it’s not clear if F} is measurable (a Borel set), there is certainly a Borel set E such that
Fy C E and p(F) = 0, and by definition of Fi,

B
11msup /J;( (x?/r.))
10 rs

¢s(x) =

=0 for all z € F\E.

Hence, by Proposition 4.1,
H(F) 2 H(F\E) 2 n(F\E)/c = p(F)/c,
for every ¢ > 0. Therefore, H*(F') = oc. O

We can use Theorem 4.3 to obtain (almost-sure) lower bounds for the Hausdorff di-
mension of random fractals as follows. Let (€2, F,P) be a probability space, and suppose
for each w € (2 we have a fractal F,. If we can find for each w a mass distribution pu, on

F, such that
At () d g, (
/ (t1e0)dP(w ///“ Hol¥) b () < oo,
Q |z —yl*

then it will follow that Is(u,) < oo for almost every w, and so dimy F, > s for almost
every w, in other words, with probability one. In many practical applications a suitable
change of variable and Fubini’s theorem can be applied to compute or estimate the above
triple integral.
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4.2 Random Cantor sets

We will construct a “statistically self-similar” set analogous to the Cantor set by randomly
choosing the contraction ratios at each stage of the construction. Let 0 < a < b < % be
constants. Let (2, F,P) be a probability space on which is defined a collection of random
variables Cj, ., k € N, (i1,...,i;) € Tj, := {1,2}*, with the following properties:

(i) For each k € N and (i1,...,i;) € Zj, the random variables Cj,, ;, j, 7 = 1,2 are
independent of Fj, where

.Fk = U({Cil,...,iz 1 S l S kv (Z.lv' . '7il) € Il})

(ii) Foreach k € N the collection of random pairs {(Ci, .. i,.1, Cii,.ig,2) = (31, -+, 0k) € Ty}
is independent.

(iii) For each k£ € N and (il, e Zk) S Ik, Cil,...,ik,l ~ Cl and Ci1,~~~7ik72 ~ CQ.
(iv) a < Cj<bas. for j=1,2.

Note that we do not require independence of Cj, .. ;, 1 and Cj; ., 2.

Now define a collection of random intervals {I;, ; } as follows: put I = [0,C}] and
I, =[1-Cs,1). For k € Nand (i1,...,i) € Iy, let I;; 4,1 and I;, ;o be subintervals of
I :=1I;, . ; suchthat I;; _; 1 has the same left endpoint as I, I;, .. ;, » has the same right

endpoint as I, and |1;, i, j| = Ciy,..i. 51| for j =1,2. We call I;, _;, a basic interval at

i

level k. Let
Br=|J ILii» kEN,
(il,...,ik)ézk
and -
F:=()E (4.4)
k=1

Note that for each k, the basic intervals of level k are disjoint, and as a result, F' has the
topological properties of a Cantor set (perfect, totally disconnected).

Theorem 4.4. For the random Cantor set F' described above, dimyg F' = s with probability
1, where s is the unique positive solution of

B(CS +C5) = 1. (4.5)

Proof. Tt is straightforward to check (using that C and C3 are bounded random variables)
that f(s) := E(C} + C3) is continuous and strictly decreasing in s, with f(0) = 2 and
f(1) =E(Cy 4+ C2) < 2b< 1, s0 (4.5) has a unique solution.

Let & be the (finite) collection of intervals I;, ., (i1,...,1) € Iy, with & := {[0, 1]}.

ceey

E (i, i1l + iy, i 21 Fk) = B(CF 0 + O Wiy, il

Lyeeelk2

= E(CT + )|y, |
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where we first used (i) and then (iii). Summing over all the intervals in & gives

E( Y PFe| =) HFE(CS+C3). (4.6)

Iegk+1 Iegk

Taking expectations on both sides we obtain

E{ > || =E[ ) ] |EC]+C). (4.7)

I€€k+1 Ie&y,

If s is the solution of (4.5), then (4.6) reduces to

Bl S 1E|E ] = S

Iegk;Jrl I1€&;,

which shows that the sequence (X) defined by Xy =3 ;¢ |I|° is a martingale.

Exercise: Show that the martingale (X},) is L?-bounded. (Hint: Show that E(X7, || F) <
X2+ ayk, where v = E(C?* + C%*) < 1 and a is a constant.)

As a result, X := limy_,o, X} exists almost surely, and E(X) = E(Xp) = 1. We claim
that X > 0 almost surely. Let ¢ = P(X =0). Since X > 0 and E(X) =1, ¢ < 1. Now

Xe= 2 U+ Y P

Ie&,ICh I1€&,,ICI2

and the two random sums on the right are independent by (ii) (for all £ > 2), and each
tends to 0 with probability ¢, by the self-similarity of the construction. Thus ¢ = P(X} —
0) = ¢?, and so ¢ = 0, proving the claim. It follows that there are random variables M;
and My such that

0<M <Xp=> [P <My<oo as. forallk. (4.8)
Ie&y

Given 0 > 0, & is a d-cover of F for large enough k, and so H*(F) < My < oo with
probability 1. Hence, dimy F' < s almost surely.

For the lower bound we use the potential theoretic method. Let s again be the solution
of (4.5). For I € &, define the random variable

w(I) = lergOZ{|J|S cJe&,JCI}. (4.9)

By the same argument as above, this limit exists, is Fg-measurable, and 0 < u(l) < oo
almost surely. Furthermore, if I € &, then u(I) = p(Ilr) + p(Ir), so u extends to a
(random!) mass distribution on [0, 1] with support in F. (The complete proof of this fact
is rather involved and is omitted here.) In addition, we have

Elu(D)l 7] = |1, 1€ (4.10)
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Fix 0 < t < s. We will estimate the t-energy of u. For x,y € F, there is a largest k
such that x and y belong to the same basic interval I € &; denote this interval by = A y.
If I € &, then the subintervals I, and I are separated by a gap of length at least d|I],
where d =1 — 2b > 0. Thus, for any I € &,

/ / & — y| tdu(z)du(y) = 2 / &~y du(e)du(y)
zAy=1 Iy, JIgr
< 2d M| () u(IR),

and so

B ( / / o= yﬁdu(w)du(y)\aﬂ) < 2d 11 Blpu(I0)| P El(I)| Fosa]
TNA\Yy=
< 211 L | R
< 2d7t|l|237t'

Here the first inequality uses that, conditionally on Fyy1, u(Ig) and pu(lr) are indepen-
dent because of assumption (ii); and the second inequality follows from (4.10). Taking
expectations we obtain

e(ff - oI du()duty) ) < 207 BT

Summing over I € &, and iterating (4.7), we get

B[] sl @ant) | < 20w (et =2,

IcEy Ny=I =

where \ := E(C*™" + C2*7") < 1, since 25 — t > s. Finally, we can sum over k to obtain

E (/F/F |z — y\_td,u(x)du(y)> —E i > // |z —y[ T dp(x)du(y)

k=0 I€&}, Ny=I

o0
< sz—txk < o0.
k=0

This implies that the t-energy of u is finite almost surely, and hence, by Theorem 4.3,
dimyg F' >t a.s. Since t < s was arbitrary, it follows that dimyg > s almost surely. O

Remark 4.5. Note that the proof does not tell us whether H*(F) > 0. The condition
that there is a minimum gap between basic intervals is not necessary. (A version of the
open set condition is enough.) But without this assumption, the proof is more involved.

Example 4.6. Let U be a uniformly distributed random variable on (1/3,2/3). Consider
the construction of a random Cantor set F' whereby for each basic interval I = I;, _;,, the
middle portion of length U;, ;. |I] is removed from I, where the collection {U;, ; :k €
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No, (i1, ...,4%) € Z)} is independent and each Uj, . ;, ~ U. This fits the framework of the
above theorem, with C; = Cy = (1 — U)/2. Thus, dimg F = s, where s is the solution of

E(C{ +C5) = 2E [(1_2U>] =1. (4.11)

Exercise 4.7. Solve (4.11) (numerically). (Solution: dimy F' = s = .4966).

4.3 A random Weierstrass function

In this section we randomize the construction of the Weierstrass function from Chapter 3
by adding random phases as follows. Let 01,602, ... be independent uniform(0, 27) random
variables. For constants A > 1 and 1 < s < 2, define the random function

W(z) = Z A2 Gin (A" + 6,,), 0<z<l1. (4.12)
n=0

The following theorem is due to B. Hunt (“The Hausdorff dimension of graphs of Weier-
strass functions”, Proc. Amer. Math. Soc. 126 (1998), no. 3, 791-800). We present his

proof with minor changes in notation.
Theorem 4.8. With probability one, dimy Graph(W) = s.
The proof uses convolutions of densities. We need a definition and some lemmas.

Definition 4.9. The convolution of two functions f and g in L*(R) is the function
frg(x) = /Rf(y)g(w —y)dy.

An easy exercise (using Fubini’s theorem) shows that f g is well defined and in L*(R).

Lemma 4.10. Let X andY be independent random variables and suppose X is absolutely
continuous with density fx. Then X +Y is absolutely continuous with density fxiy, and

sup, fx+y(2) < sup, fx(z).

Proof. Let py denote the distribution of Y, F'x the c.d.f. of X, and Fx,y the c.d.f. of
X 4+ Y. Then, by integrating over the half-plane z + y < 2z and using Fubini’s theorem,

Frir() = [ Fx(:=pdprls),  z€R

Since Fx is absolutely continuous, it now follows easily that F'x .y is absolutely continuous
also. (Check this!) Then by differentiating both sides of the above equation,

Fxav(z) = /R fx(z = w)duy (),

from which the second statement of the lemma follows immediately. O
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Lemma 4.11. If X and Y are independent absolutely continuous random variables with
densities fx and fy, then X +Y has density fx+v = fx * fy.

Proof. Easy exercise. O

Lemma 4.12 (Young’s inequality for convolutions). Let p,q and r be real numbers in
(1,00) such that%—i—%:%—i—l. If feLP and g € L1, then fxge L", and

1+ gllr < £ lIpllgllq-

(For a proof, which uses a generalized Holder inequality, see proofwiki.org.)

Exercise 4.13. Let ¢ # 0, a € R, and let 6 be a uniform(0, 27) random variable. Show
that the random variable X = gcos(a + ) has density

1

(o) = § Vi
0 if |z| > |q|.

if |z] < lql,

Finally, we recall the trigonometric identity

sinz — siny = 2 cos <:E—2|—y> sin <x;y> . (4.13)

Proof of Theorem 4.8. First, it follows just as in the proof of Theorem 3.42 that W is
Hélder continuous with exponent 2 — s, and hence, by Proposition 3.41, dimy Graph(W) <
s.

For the lower bound we use the potential-theoretic method. Let p be the random
measure on R?, supported on Graph(W), defined by

w(A) = L{z €[0,1]: (z, W(x)) € A}), A € B(R?),

where £ denotes Lebesgue measure on [0,1]. If Ay, Ao, ... are disjoint subsets of R?, then
the sets {x : (x, W(z)) € A;} are disjoint, so p is indeed a measure, and p(Graph(W)) = 1.

Fix 1 <t < s. Our goal is to show that E([;(¢)) < oo, which will imply, as in
the proof of Theorem 4.4, that dimyg Graph(W) > ¢ a.s., and so, since t is arbitrary,
dimy Graph(W) > s a.s. Here we let x, y denote points in R?. By a change-of-variable
and the Pythagorean theorem,

“_/R?/R? lx—ylt / / (= <vi$<f>/—w<y>>2)”2’

so by Fubini’s theorem,

1 1
_ / / B[((@ = 9%+ W (@) - W)?) ] drdy. (4.14)
0 0

Let E; , denote the expectation in the above double integral. We will estimate E, , for all
z,y € [0,1]. Note first that, if |x — y| > 7/A\?, then E,,, < (A\*/7)!. Fix now z and y with
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0<|z—y| <7/N2, and let Z =W (z)— W (y). Then Z is a random variable, and we wish
to show that Z has a bounded density function h(z) satisfying

h(z) < Clx —y|* 2, z € R, (4.15)

for some constant C' > 0 that is independent of x and y. If we can show this, it will follow
that

B —ty2] [ h(z)dz
ool
s—2
<C/ —y|*~*dz
(z—y +z2)t/2
_C/m el

oo o=y (Lt )7

dw
— s—1—t

where the next-to-last step uses the change-of-variable z = |z — y|w. Since t > 1, the
integral in the last line above converges. And (check!) since ¢ < s, the double integral

1 1
/ / |z —y|* " dady
0 0

converges also. Thus, by (4.14), E(I;(1)) < oo, as desired.
Using (4.13), we can write

7 = Z/\52 (sin(A"z + 6,,) — sin(\"y + 6,,))

= Z 22627 gy (/\n:cz—y> cos ()\"m ;_ Y + Hn)

n=0
oo o

= Z Gn cos(ry, + 6,) =: Z -
n=0 n=0

Note that the random variables Z1, Zo, ... are independent, with Z, having density

1

ha(2) = { Va2
0 if |2] > ql,

if 2] < lql,

by Exercise 4.13. It follows from Lemma 4.10 that Z is absolutely continuous with density
h = hg* hy * ho---, and h is bounded by any upper bound for any finite convolution
hj * -+ * hy, where j < k.

Next, recall that |z —y| < m/A2. Thus, there is an integer k¥ > 2 such that TA*~! <
|z — y| < 7A7F. Fix this k. Then

7r
2)\3

k—2% — Y
A 2'

T —y s
<Nl < =
2 ’—2’
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and hence,
T

lgn| > 2sin <2i)\3> A2k 5 9 gin (2—)\3) lz —y>~* (4.16)

forn = k — 2,k — 1,k. Observe that h,, € LP for p < 2, and by direct calculation, for
n=k—-2k—1,k,

1
3/2 _ | -1/2 dw _ ~1/2
thH;}/Q - ’qn’ /;1 7_{_(1_“}2)3/4 _K’qn‘ 9

so that [|halls/e = K?/3|q,| 73 < K'|lx — y|*=/3 by (4.16), where K’ depends only on \.
Now we apply first Young’s inequality (Lemma 4.12) to obtain

lhr—1* hills < [[hr—1llz/2lPll3/2,

and then Holder’s inequality to conclude that

hi—o % hg_1 * h(2) = /thg(z —z)(hg_1 * hg)(z)dx

< |[hk—2ll3/2llhk—1* hill3
< lhr—2llss2llhe—1ll3 2l P lls/2
< K/g‘ﬂf _ y‘s—2‘

But then this bound also applies to h(z), and so we arrive at (4.15), completing the
proof. O



