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4. Fractal Geometry: Foundations and Applications by K. Falconer (2nd edition), Wiley.



Chapter 3

Introduction to fractal geometry

There is no universally accepted definition of the idea of a “fractal”. But the sets that most
mathematicians call fractals have one thing in common: when viewed at microscopic scales
they look just the same, or approximately the same, as the set viewed at macro scale.
This phenomenon is made mathematically precise through the notions of a self-similar,
self-affine or self-conformal set. Contrast this with a smooth curve, which when viewed
under a magnifying glass, is virtually indistinguishable from a straigt line.

Another common property of sets we consider to be fractals is that they usually have
Lebesgue measure zero. As a result, Lebesgue measure is not a useful tool to measure the
size of a fractal, and we need a new kind of measure, called Hausdorff measure, which can
distinguish between different sets of Lebesgue measure zero. Associated with Hausdorff
measure is a notion of a fractional dimension which we call Hausdorff dimension. One
reasonable definition of a fractal is any set whose Hausdorff dimension is not an integer,
though this would still exclude many interesting sets having an approximately self-similar
structure. Other commonly used notions of (fractal) dimension include packing dimension,
box-counting dimension, Assouad dimension and quantization dimension. Most of these
are beyond the scope of this course, however. We will focus exclusively on the Hausdorff
and box-counting dimensions of sets.

Pictures of the fractals presented in these notes, and many others, can be found in
Falconer’s book or online.

3.1 Hausdorff measure and Hausdorff dimension

Before we can introduce Hausdorff measure (and prove that it really is a measure!) we
need some preliminary work. We follow Royden, sec. 20.4.

Definition 3.1. Two sets are separated by the function φ if there exist real numbers a > b
such that φ > a on one of the sets, and φ < b on the other.

Observe that this condition is stronger than the sets being disjoint.

Recall that an outer measure on a set X is a set function µ∗ : 2X → [0,∞] satisfying

(i) µ∗(∅) = 0,
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42 CHAPTER 3. INTRODUCTION TO FRACTAL GEOMETRY

(ii) µ∗(
⋃∞
i=1Ei) ≤

∑∞
i=1 µ

∗(Ei) for any sequence (Ei)i of subsets of X.

Definition 3.2. Let Γ be a set of real-valued functions on a set X. An outer measure µ∗

on X is called a Carathéodory outer measure with respect to Γ if, whenever A ⊂ X and
B ⊂ X are separated by some function in Γ, we have µ∗(A ∪B) = µ∗(A) + µ∗(B).

Lemma 3.3. If µ∗ is a Carathéodory outer measure with respect to Γ, then each function
in Γ is µ∗-measurable.

Proof. Fix φ ∈ Γ and a ∈ R, and let E := {x : φ(x) > a}. We need to show that E is
µ∗-measurable; that is,

µ∗(A) ≥ µ∗(A ∩ E) + µ∗(A\E), ∀A ⊂ X. (3.1)

We may assume µ∗(A) <∞, for otherwise (3.1) is trivial. Set B := A∩E, C := A\E, and
define the sets

Bn := B ∩
{
x : φ(x) > a+

1

n

}
, Rn := Bn\Bn−1.

Note that for each n,

B = Bn ∪
∞⋃

k=n+1

Rk. (3.2)

Now φ separates Rn and Bn−2 for each n, and hence φ separates R2k and
⋃k−1
j=1 R2j for

each k. Thus, by induction and using the hypothesis of the lemma,

µ∗

 k⋃
j=1

R2j

 =
k∑
j=1

µ∗(R2j).

Since
⋃k
j=1R2j ⊂ B ⊂ A and µ∗(A) <∞, it follows that

∑∞
j=1 µ

∗(R2j) <∞. By a similar
argument,

∑∞
j=1 µ

∗(R2j−1) <∞. Hence,

∞∑
k=1

µ∗(Rk) <∞.

Now let ε > 0 be given, and choose n so that
∑∞

k=n+1 µ
∗(Rk) < ε. Then by (3.2),

µ∗(B) ≤ µ∗(Bn) +
∞∑

k=n+1

µ∗(Rk) < µ∗(Bn) + ε.

On the other hand, since φ separates Bn and C,

µ∗(A) ≥ µ∗(Bn ∪ C) = µ∗(Bn) + µ∗(C),

and therefore,
µ∗(A) > µ∗(B) + µ∗(C)− ε.

Since ε was arbitrary, this gives (3.1).
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Notation: Given a metric space (X, d), define

d(x,E) := inf
y∈E

d(x, y), E ⊂ X,

d(A,B) := inf
x∈A

d(x,B) = inf
x∈A,y∈B

d(x, y), A,B ⊂ X.

Definition 3.4. Let (X, d) be a metric space. A Carathéodory outer measure on X is an
outer measure µ∗ such that

d(A,B) > 0 ⇒ µ∗(A ∪B) = µ∗(A) + µ∗(B). (3.3)

Lemma 3.5. Let (X, d) be a metric space and µ∗ a Carathéodory outer measure on X.
Then every closed set (and hence, every Borel set) in X is µ∗-measurable.

Proof. Let Γ be the set of functions φ(x) = d(x,E), where E ⊂ X. Fix φ ∈ Γ and
corresponding set E, and suppose sets A and B are separated by φ, so there exist a, b ∈ R
with a > b such that, WLOG, φ > a on A and φ < b on B. It is an easy exercise to
show that d(A,B) ≥ a− b > 0. Thus, by (3.3), µ∗ is a Carathéodory outer measure with
respect to Γ, and by Lemma 3.3 every φ ∈ Γ is µ∗-measurable. But if F ⊂ X is closed,
then F = {x : d(x, F ) ≤ 0} and so F is µ∗-measurable.

Now let (X, d) be a metric space. For B ⊂ X, let |B| := supx,y∈B d(x, y) denote the
diameter of B.

Definition 3.6. For δ > 0, a δ-cover of a set E ⊂ X is a countable collection {Ui} of sets
with |Ui| < δ for all i such that E ⊂

⋃∞
i=1 Ui.

For s ≥ 0, δ > 0 and E ⊂ X, define

Hsδ(E) := inf

{ ∞∑
i=1

|Ui|s : {Ui} is a δ-cover of E

}
. (3.4)

Note that Hsδ(E) increases as δ ↓ 0, so the limit

Hs(E) := lim
δ↓0
Hsδ(E) (3.5)

is well defined.

Lemma 3.7. The set function Hs is a Carathéodory outer measure.

Proof. It is straightforward to check that Hs is an outer measure. We must check that it
satisfies (3.3). Let E,F ⊂ X with d(E,F ) > 0. Choose ε > 0 so that d(E,F ) > ε, and let
0 < δ < ε. If {Ui} is a collection of sets with |Ui| < δ for all i, then no Ui can intersect
both E and F . Thus,

Hsδ(E ∪ F ) ≥ Hsδ(E) +Hsδ(F ). (3.6)

Letting δ ↓ 0 completes the proof.
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As a consequence of Lemmas 3.5 and 3.7, every Borel set in X is Hs-measurable. Thus,
the restriction of Hs to the Borel sets in X is a measure, which we call s-dimensional
Hausdorff measure. Note that if X = Rn and s = n, then Hs is a constant multiple
(depending on n) of n-dimensional Lebesgue measure. But Hs is defined also for noninteger
s, which is why it is useful in fractal geometry.

From here we follow mostly Falconer.

Lemma 3.8. For each Borel set E ⊂ X, there is a unique number s0 ≥ 0 such that

(i) Hs(E) =∞ if s < s0; and

(ii) Hs(E) = 0 if s > s0.

Proof. Let t > s and suppose Hs(E) <∞. Let {Ui} be a δ-cover of E. Then

∞∑
i=1

|Ui|t =

∞∑
i=1

|Ui|t−s|Ui|s ≤ δt−s
∞∑
i=1

|Ui|s.

Taking infima, we get that Htδ(E) ≤ δt−sHsδ(E), and letting δ ↓ 0 this gives

Ht(E) ≤
(

lim
δ↓0

δt−s
)
Hs(E) = 0.

Hence, Ht(E) = 0, and the lemma follows.

Definition 3.9. The number s0 in Lemma 3.8 is called the Hausdorff dimension of E, and
denoted dimH E. Thus,

dimH E = inf{s : Hs(E) = 0} = sup{s : Hs(E) =∞}.

Note that Lemma 3.8 does not say anything about the value of Hs(E) for s = dimH E.
In general this value can be any nonnegative real number, or +∞. For many sufficiently
regular sets, however, it is true that 0 < Hs(E) <∞ for s = dimH E, as we will see.

Example 3.10. Let C denote the ternary Cantor set in [0, 1]. Then dimH C = log 2
log 3 ≈ 0.63.

To see this, let s = log 2
log 3 , so that 3s = 2. We will show that 1/2 ≤ Hs(C) ≤ 1. Note first

that for each k, C is covered by 2k “basic intervals” of length 3−k. Given δ > 0, choose k
so that 3−k < δ. Then the 2k basic intervals of level k form a δ-cover of C, and so

Hsδ(C) ≤ 2k(3−k)s =

(
2

3s

)k
= 1. (3.7)

Since this holds for all δ > 0, Hs(C) ≤ 1.
The lower bound requires more work. Let δ > 0 and let {Ui} be an arbitrary δ-cover of

C. Assume first that {Ui} consists of finitely many closed intervals. For each i, let k ∈ N
be such that

3−(k+1) ≤ |Ui| < 3−k.

Then Ui intersects at most one basic interval at level k. For j ≥ k, each level-k basic interval
contains 2j−k level-j basic intervals, so Ui intersects at most 2j−k = 2j3−sk ≤ 2j3s|Ui|s
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level-j basic intervals. Choose j so large that 3−(j+1) ≤ |Ui| for each i. (This is possible
since the collection {Ui} is finite!) Since collectively the Ui must intersect all 2j basic
intervals at level j, we have

2j ≤
∑
i

2j3s|Ui|s,

and as a result, ∑
i

|Ui|s ≥ 3−s =
1

2
. (3.8)

Now suppose {Ui} is an arbitrary δ-cover of C. For any ε > 0, we can find open intervals
{U ′i} such that Ui ⊂ U ′i and |U ′i | < (1 + ε)|Ui|. Then {U ′i} is an open cover of C, and since
C is compact, it contains a finite subcover, say {U ′1, . . . , U ′n}. Replacing each open interval
U ′i with its closure U ′′i := cl(U ′i) gives a finite cover {U ′′i } of C by closed intervals, which
satisfies (3.8) as shown above. But then

(1 + ε)
∑
i

|Ui|s ≥
∑
i

|U ′i |s ≥
n∑
i=1

|U ′i |s =
n∑
i=1

|U ′′i |s ≥
1

2
.

Since ε was arbitrary, it follows that {Ui} satisfies (3.8). Thus, Hs(C) ≥ 1
2 . Finally, since

0 < Hs(C) <∞, we conclude that dimH C = s.
(By refining the above argument it can in fact be shown that Hs(C) = 1.)

Definition 3.11. Let (X, d) and (Y, ρ) be metric spaces. A function f : X → Y is
bi-Lipschitz if there are constants 0 < C1 < C2 such that

C1d(x, y) ≤ ρ(f(x), f(y)) ≤ C2d(x, y) ∀x, y ∈ X. (3.9)

Proposition 3.12. Hausdorff dimension has the following properties:

(i) (Monotonicity) If E ⊂ F then dimH E ≤ dimH F ;

(ii) (Countable set) If E is a countable set, then dimH E = 0;

(iii) (Countable stability) dimH(
⋃∞
n=1En) = supn∈N dimH En.

(iv) (Lipschitz invariance) If f : X → Y is bi-Lipschitz, then dimH f(E) = dimH E.

Proof. Exercise.

As example 3.10 suggests, calculating the Hausdorff dimension of a set straight from
the definition can be rather tedious, especially where the lower bound is concerned. For-
tunately, there are several useful tools to facilitate the computation. One of them is the
following.

Lemma 3.13 (Distribution of mass principle). Suppose there is a Borel measure µ (distri-
bution of mass) on X and a finite constant C > 0 such that µ(E) > 0 and, for any Borel
set U ⊂ X,

µ(U) ≤ C|U |s. (3.10)

Then Hs(E) ≥ µ(E)/C > 0, and in particular, dimH E ≥ s.
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Proof. For any δ-cover {Ui} of E,

0 < µ(E) ≤
∞∑
i=1

µ(Ui) ≤ C
∞∑
i=1

|Ui|s.

Taking infima completes the proof.

3.2 Box-counting dimension

Because Hausdorff dimension can be difficult to compute, often a different notion of dimen-
sion, called box-counting dimension, is used instead. Box-counting dimension is generally
easier to determine than Hausdorff dimension, but as we will see, it lacks some of the
properties of Proposition 3.12.

Notation: For a set E ⊂ X and δ > 0, let Nδ(E) denote the smallest number of sets of
diameter at most δ which can cover E. For example, Nδ([0, 1]) = d1/δe.

Definition 3.14. The upper and lower box-counting dimension of E ⊂ X are defined by

dimB E := lim sup
δ↓0

logNδ(E)

− log δ
(3.11)

and

dimB E := lim inf
δ↓0

logNδ(E)

− log δ
, (3.12)

respectively. If dimB E = dimB E, we call the common value the box-counting dimension
(also Minkowski dimension) of E, and write

dimB E := lim
δ↓0

logNδ(E)

− log δ
. (3.13)

Example 3.15. Let E = Q ∩ [0, 1] (or any other countable dense subset of [0, 1]). Then
Nδ(E) = d1/δe for every δ > 0, and so

dimB E = lim
δ↓0

logd1/δe
− log δ

= 1,

whereas dimH E = 0 by Proposition 3.12(ii). This shows that box-counting dimension
and Hausdorff dimension can sometimes dramatically disagree, and also that box-counting
dimension fails to satisfy properties (ii) and (iii) of Proposition 3.12.

Example 3.16. Let E = {0, 1, 12 ,
1
3 ,

1
4 , . . . }. We hardly think of E as a fractal, yet

dimB E = 1
2 . (For the calculation, see Falconer, Example 3.5.)

Despite these shortcomings, box-counting dimension does have its uses. For many
fractals of interest, Hausdorff and box-counting dimensions do agree. In general, we have:

Proposition 3.17. For any E ⊂ X,

dimH E ≤ dimB E ≤ dimB E. (3.14)
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Proof. Only the first inequality needs proof. Let s = dimB E and ε > 0. Then for every
δ > 0 there is 0 < δ1 < δ such that

logNδ1(E)

− log δ1
< s+ ε,

and so
Nδ1(E) < (1/δ1)

s+ε.

Thus,
Hs+εδ (E) ≤ Nδ1(E)δs+ε1 < 1.

Letting δ ↓ 0 we obtain Hs+ε(E) ≤ 1, and so dimH E ≤ s + ε. Since ε was arbitrary,
dimH E ≤ s.

Example 3.18. Let C be the ternary Cantor set. Then dimB C = dimH C = log 2
log 3 . On

the one hand, dimB C ≥ dimH C by Proposition 3.17. On the other hand, given δ > 0, let
n ∈ N such that 3−n ≤ δ < 3−n+1. Since C is covered by 2n intervals of diameter 3−n ≤ δ,
Nδ(C) ≤ 2n. Moreover, − log δ > (n− 1) log 3, and so

dimB C = lim sup
δ↓0

logNδ(C)

− log δ
≤ lim

n→∞

n log 2

(n− 1) log 3
=

log 2

log 3
.

In general, both inequalities in (3.14) may be strict.

Exercise 3.19. Construct a set F ⊂ R for which dimB F < dimB F . (See Falconer,
exercise 3.8 for a hint.)

Constructing a set F with dimH F < dimB F is rather harder. It involves showing that
there is a more efficient cover of F by sets of widely different diameters than by sets of
(roughly) the same diameter. Nonetheless, such sets F do exist, and are in fact prevalent
in fractal geometry.

3.3 Iterated function systems

From now on, we take X = Rn for some n ∈ N, with the usual (Euclidian) metric d(x, y) =

|x− y| :=
(∑n

i=1(xi − yi)2
)1/2

.

Definition 3.20. A function S : Rn → Rn is a contraction if there is a constant 0 < c < 1
such that

|S(x)− S(y)| ≤ c|x− y| for all x, y ∈ Rn. (3.15)

Note that a contraction is in particular Lipschitz continuous.

Definition 3.21. A finite set of contractions {S1, . . . , Sm} on Rn is called an iterated
function system (IFS). A nonempty compact set F ⊂ Rn is called an attractor of the IFS
{S1, . . . , Sm} if

F =
m⋃
i=1

Si(F ). (3.16)
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Informally, (3.16) says that F is made up of finitely many smaller sets that look
(roughly) like the set F itself. Many sets that are considered fractals are the attractor
of an IFS.

Example 3.22. In R, let S1(x) = x/3 and S2(x) = (2 + x)/3. Then the ternary Cantor
set C is an attractor of the IFS {S1, S2}.

Our first goal is to show that every IFS has a unique attractor. To do this, we need
some additional definitions. Let K denote the collection of all nonempty compact subsets
of Rn. We will turn K into a metric space as follows. For A ∈ K and δ > 0, define the
δ-neighborhood of A by

Aδ := {x ∈ Rn : |x− a| ≤ δ for some a ∈ A}. (3.17)

Definition 3.23. The Hausdorff metric on K is the metric ρ given by

ρ(A,B) := inf{δ > 0 : A ⊂ Bδ and B ⊂ Aδ}, A,B ∈ K. (3.18)

Exercise 3.24. Check that ρ is indeed a metric!

Lemma 3.25. Let S be a contraction on Rn. Then S(B(0, r)) ⊂ B(0, r) for every suffi-
ciently large r, where B(0, r) := {x ∈ Rn : |x| ≤ r}.

Proof. Exercise. (Hint: if c satisfies (3.15), take r ≥ (1− c)−1|S(0)|.)

For the following theorem, recall that any continuous image of a compact set is compact,
and any finite union of compact sets is again compact.

Theorem 3.26. Every IFS {S1, . . . , Sm} has a unique attractor F . Moreover, if we define
the map S : K → K by

S(E) :=

m⋃
i=1

Si(E), E ∈ K, (3.19)

then

F =
∞⋂
k=1

Sk(E) (3.20)

for any set E ∈ K such that Si(E) ⊂ E for each i; where Sk denotes the kth iterate of S:
Sk(E) = S(Sk−1(E)) for k ≥ 2.

Proof. Let c1, . . . , cm be the Lipschitz constants of S1, . . . , Sm, respectively, so

|Si(x)− Si(y)| ≤ ci|x− y|, i = 1, . . . ,m. (3.21)

Recall that ci < 1. We show first that

ρ(S(A), S(B)) ≤
(

max
1≤i≤m

ci

)
ρ(A,B), A,B ∈ K. (3.22)
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If Si(B) ⊂ (Si(A))δ for each i, then S(B) =
⋃m
i=1 Si(B) ⊂ (

⋃m
i=1 Si(A))δ = ((S(A))δ

(check!). This implies that

ρ(S(A), S(B)) ≤ max
1≤i≤m

ρ(Si(A), Si(B)).

By (3.21), ρ(Si(A), Si(B)) ≤ ciρ(A,B). (Check!) Thus, we have (3.22).

Now let E ∈ K such that Si(E) ⊂ E for each i. Such a set E exists by Lemma 3.25.
Then S(E) ⊂ E, so {Sk(E)} is a decreasing sequence of nonempty compact sets, which has
a nonempty compact intersection F =

⋂∞
k=1 S

k(E). Since Sk(E) is decreasing, Sk(E)→ F
in the Hausdorff metric. But (3.22) says that S : K → K is (Lipschitz) continuous, so

S(F ) = S

(
lim
k→∞

Sk(E)

)
= lim

k→∞
S
(
Sk(E)

)
= lim

k→∞
Sk+1(E) = F.

Thus, F is an attractor of the IFS. The attractor is unique: If A and B are two attractors
of the IFS, then S(A) = A and S(B) = B, so by (3.22),

ρ(A,B) ≤
(

max
1≤i≤m

ci

)
ρ(A,B).

Since maxi ci < 1, this implies ρ(A,B) = 0, and hence, A = B.

Observe that (3.20) provides a practical way to approximate the fractal F : Start with
a suitable compact set E for which Si(E) ⊂ E for each i (say, a large ball or square),
and then iterate the map S a large finite number of times to obtain Sk(E) for large k.
Since Sk(E) → F in the Hausdorff metric, Sk(E) will be a good approximation for F
when k is large. We also see that for each point x ∈ F there is a sequence (i1, i2, . . . ) with
ik ∈ {1, . . . ,m} for each k such that

x = xi1i2... :=

∞⋂
k=1

(Si1 ◦ Si2 ◦ · · · ◦ Sik)(E), (3.23)

and this point x is independent of the choice of E. Thus, each x ∈ F is “coded” by a
sequence (i1, i2, . . . ) in {1, . . . ,m}N. In general, however, this coding need not be unique.

3.4 Self-similar sets

Definition 3.27. A function S : Rn → Rn is called a similarity (map) if there is a constant
c > 0 such that

|S(x)− S(y)| = c|x− y| for all x, y ∈ Rn. (3.24)

If c < 1 we call c the contraction ratio of S. If F is the attractor of an IFS {S1, . . . , Sm}
where all of the Si are (contracting) similarities, we call F a self-similar set.

Note that a map S : Rn → Rn is a similarity if and only if there is a constant c > 0, a
linear isometry T : Rn → Rn and a vector b ∈ Rn such that S(x) = cT (x) + b.
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Example 3.28 (Koch curve). The attractor of the IFS {S1, S2, S3, S4}, where

S1(x, y) =
1

3

[
x
y

]
, S2(x, y) =

1

3

[
1/2 −

√
3/2√

3/2 1/2

] [
x
y

]
+

[
1/3
0

]
,

S3(x, y) =
1

3

[
1/2

√
3/2

−
√

3/2 1/2

] [
x
y

]
+

[
1/2√
3/6

]
, S4(x, y) =

1

3

[
x
y

]
+

[
2/3
0

]
,

is called the Koch curve. (Look at the transformation of the line segment connecting (0, 0)
and (1, 0).) If we fit three copies of the Koch curve on the sides of an equilateral triangle,
we obtain the Koch snowflake.

Example 3.29 (Sierpinski triangle). The attractor of the IFS {S1, S2, S3}, where

S1(x, y) =
1

2

[
x
y

]
, S2(x, y) =

1

2

[
x
y

]
+

[
1/2
0

]
, S3(x, y) =

1

2

[
x
y

]
+

[
1/4√
3/4

]
,

is called the Sierpinski triangle. (Look at the transformation of the equilateral triangle
with vertices (0, 0), (1, 0) and (1/2,

√
3/2).)

Definition 3.30. An IFS {S1, . . . , Sm} satisfies the open set condition (OSC) if there is a
nonempty bounded open set V ⊂ Rn such that

(1) Si(V ) ⊂ V for i = 1, . . . ,m; and

(2) Si(V ) ∩ Sj(V ) = ∅ for all i 6= j.

The open set condition ensures that the m parts of F in (3.16) do not overlap “too
much”.

Example 3.31. The IFS from Example 3.22 satisfies the OSC with U = (0, 1). A related
example is: S1(x) = x and S2(x) = (1 + x)/3. Then {S1, S2} satisfies the OSC with
U = (0, 1), but not with any strictly larger open set. What does the attractor look like?

Theorem 3.32. Let F be the attractor of the IFS {S1, . . . , Sm}, where for each i =
1, . . . ,m, Si is a similarity with contraction ratio ci. Assume the IFS satisfies the OSC.
Then dimH F = dimB F = s, where s is the unique positive root of the equation

m∑
i=1

csi = 1. (3.25)

Moreover, 0 < Hs(F ) <∞.

Preparation for the proof. To prove the lower bound dimH F ≥ s, we will use the mass
distribution principle (Lemma 3.13). The standard procedure for doing so is to first define
a mass distribution µ on the “code space” I := {1, . . . ,m}N and then to lift µ to a mass
distribution on the fractal F via the projection map

π((i1, i2, . . . )) := xi1i2... =
∞⋂
k=1

Si1 ◦ · · · ◦ Sik(E), (3.26)
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where the compact set E is as in Theorem 3.26. This requires a suitable σ-algebra on I,
defined as follows. Let C denote the collection consisting of ∅ and all cylinder sets in I;
that is, sets of the form

Ii1,...,ik := {(j1, j2, . . . ) ∈ I : (j1, . . . , jk) = (i1, . . . , ik)}, k ∈ N, i1, . . . , ik ∈ {1, . . . ,m},

where for completeness we put I∅ := I. One checks easily that C is a semiring. (That is,
C is closed under finite intersections, and if I, J ∈ C, then I\J is a finite union of sets in
C.) Suppose that we now have a set function µ defined on C such that µ(∅) = 0, µ(I) = 1,
and µ satisfies the consistency condition

m∑
j=1

µ(Ii1,...,ik,j) = µ(Ii1,...,ik), for all k ∈ N0 and i1, . . . , ik, j ∈ {1, . . . ,m}. (3.27)

One may check that µ is then a premeasure on C. (Recall that this requires verifying that
if I1, I2, . . . are in C and I :=

⋃∞
j=1 Ij ∈ C, then µ(I) =

∑∞
j=1 µ(Ij). This is a routine

exercise.) Thus, by Carathéodory’s extension theorem, µ extends uniquely to a probability
measure on the σ-algebra M := σ(C), which we again denote by µ.

Next, we wish to define a mass distribution µ̃ on Rn by the prescription

µ̃(B) := µ(π−1(B)) = µ{(i1, i2, . . . ) ∈ I : π((i1, i2, . . . )) ∈ B}. (3.28)

This, however, makes sense only if the set on the right lies inM whenever B ∈ B(Rn). We
check this as follows. First, verify that the collection S := {B ⊂ Rn : π−1(B) ∈ M} is a
σ-algebra, so it is sufficient to show that S contains all open sets in Rn. Let O ⊂ Rn be
open, and let (i1, i2, . . . ) ∈ I. Since the sets Si1 ◦ · · · ◦ Sik(E) are decreasing in k, it is not
difficult to see that

π(i1, i2, . . . ) ∈ O ⇔ ∃k 3 Si1 ◦ · · · ◦ Sik(E) ⊂ O.

As a result,

π−1(O) =
∞⋃
k=1

⋃
{Ii1,...,ik : Si1 ◦ · · · ◦ Sik(E) ⊂ O},

a countable union of cylinder sets. Thus, π−1(O) ∈ S. Moreover, since π(I) = F , we have
µ̃(F ) = 1, so µ̃ is a mass distribution on F .

Lemma 3.33 (Geometry Lemma). Let {Vi} be a collection of disjoint open subsets of Rn
such that each Vi contains a ball of radius a1r and is contained in a ball of radius a2r.
Then any open ball with radius r intersects at most (1 + 2a2)

na−n1 of the closures V̄i.

Proof. Recall that the volume of a ball with radius r in Rn is cnr
n, where cn depends only

on n. Let B be a ball with radius r, and let B̃ be the ball with the same center as B but
with radius (1 + 2a2)r. If V̄i intersects B, then V̄i ⊂ B̃. Let q be the number of sets V̄i that
intersect B. Adding volumes we obtain qcn(a1r)

n ≤ Vol(B̃) = cn(1 + 2a2)
nrn, and hence,

q ≤ (1 + 2a2)
na−n1 .



52 CHAPTER 3. INTRODUCTION TO FRACTAL GEOMETRY

Proof of Theorem 3.32. Let s be given by (3.25). We first show that dimH F ≥ s. Let
Ik := {1, . . . ,m}k. For A ⊂ Rn and (i1, . . . , ik) ∈ Ik, put Ai1,...,ik := Si1 ◦ · · · ◦ Sik(A).
Using (3.16) repeatedly, we have

F =
⋃
Ik

Fi1,...,ik . (3.29)

Now use (3.25) to check that
∑
Ik |Fi1,...,ik |

s = |F |s. Given δ > 0, choose k so that

|Fi1,...,ik | ≤ (max1≤i≤m ci)
k|F | ≤ δ. Then by (3.29), Hsδ(F ) ≤ |F |s. Since δ was arbitrary,

it follows that Hs(F ) ≤ |F |s.
For the lower bound, define a mass distribution on I = {1, . . . ,m}N by

µ(Ii1,...,ik) = (ci1 . . . cik)s, k ∈ N0, (i1, . . . , ik) ∈ Ik.

(Note that by (3.25), µ satisfies the consistency condition (3.27).) Let µ̃(B) = µ(π−1(B))
for B ∈ B(Rn), so µ̃ is a mass distribution on F .

Let V be an open set satisfying the OSC for the IFS {S1, . . . , Sm}. Then V̄ satisfies
the conditions for E in Theorem 3.26, so the decreasing sequence {Sk(V̄ )} converges to F .
In particular, V̄ ⊃ F and V̄i1,...,ik ⊃ Fi1,...,ik for all (i1, . . . , ik) ∈ Ik.

Let B be a ball of radius r < 1. Write cmin := min1≤i≤m ci. For each sequence
(i1, i2, . . . ) ∈ I, there is an integer k such that

cminr ≤ ci1ci2 · · · cik ≤ r. (3.30)

Choose the smallest such k to obtain a finite sequence (i1, . . . , ik). Let Q be the set of
all (finite) sequences obtained in this way. Note that no sequence in Q extends any other
sequence in Q. Since V satisfies the OSC, the sets V1, . . . , Vm are disjoint, and it follows by
iteration that the collection of open sets {Vi1,...,ik : (i1, . . . , ik) ∈ Q} is disjoint. Moreover,

F ⊂
⋃
Q
Fi1,...,ik ⊂

⋃
Q
V̄i1,...,ik . (3.31)

Since V is open and bounded, we can choose a1 and a2 so that V contains a ball of radius
a1 and is contained in a ball of radius a2. Then for all (i1, . . . , ik) ∈ Q, Vi1,...,ik contains
a ball of radius ci1 · · · cika1 and hence one of radius cmina1r, and is contained in a ball of
radius ci1 · · · cika2 and hence in one of radius a2r, by (3.30). Let

Q1 := {(i1, . . . , ik) ∈ Q : V̄i1,...,ik ∩B 6= ∅}.

By Lemma 3.33,
#Q1 ≤ C := (1 + 2a2)

n(a1cmin)−n.

Note that F ∩ B ⊂
⋃
Q1
V̄i1,...,ik , so if xi1i2... ∈ F ∩ B, then there is an integer k such that

(i1, . . . , ik) ∈ Q1. It follows that

µ̃(B) = µ̃(F ∩B) = µ{(i1, i2, . . . ) : xi1i2... ∈ F ∩B}

≤ µ

⋃
Q1

Ii1,...,ik

 ≤∑
Q1

µ(Ii1,...,ik)

=
∑
Q1

(ci1 · · · cik)s ≤
∑
Q1

rs ≤ Crs.
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Finally, since any set U is contained in a ball of radius |U |, we have µ̃(U) ≤ C|U |s, so by
the mass distribution principle, Hs(F ) > 0 and dimH F ≥ s.

It remains to show that dimB F ≤ s; by (3.14), this will complete the proof. Let Q
be the set used in the above argument. Using (3.25) and induction it follows (exercise!)
that

∑
Q(ci1 · · · cik)s = 1. Thus, by (3.30), #Q ≤ (cminr)

−s. If (i1, . . . , ik) ∈ Q, then
|V̄i1,...,ik | = ci1 · · · cik |V̄ | ≤ r|V̄ |, so F can be covered by (cminr)

−s sets of diameter r|V̄ | for
each r < 1. Therefore,

dimB F ≤ lim
r↓0

log(cminr)
−s

− log r|V̄ |
= s,

as required.

Example 3.34. The Koch curve has Hausdorff and box-counting dimension log 4
log 3 : The

IFS from Example 3.28 satisfies the OSC with V being the interior of the triangle with
vertices (0, 0), (1, 0) and (1/2,

√
3/6). By Theorem 3.32, dimH F = dimB F = s, where∑4

i=1 c
s
i = 4(13)s = 1, and this gives s = log 4

log 3 .

Example 3.35. The Sierpinski triangle from Example 3.29 has Hausdorff and box-counting
dimension log 3

log 2 . Check this.

Example 3.36. Fix 0 < a < 1/2, and consider the attractor F of the IFS of 5 transfor-
mations which map the unit square Q := [0, 1]2 onto the 5 squares (4 of side length a, one
of side length 1− 2a) which result when Q is cut by the lines x = a, x = 1− a, y = a and
y = 1 − a. Taking V to be the interior of Q, we find that dimH F = dimB F = s, where
4as + (1− 2a)s = 1. Exercise: Solve this algebraically when (i) a = 1/3; (ii) a = 1/4.

3.5 Graphs of functions

Many important and interesting fractals arise as graphs of continuous functions. (Consider
stock prices, brain waves, etc.) In this section we will develop some tools for computing the
dimension of such graphs, and focus on a particular example: the celebrated Weierstrass
function.

For a function f : [a, b]→ R, let

Graph(f) := {(t, f(t) : a ≤ t ≤ b}

denote the graph of f .

Exercise 3.37. Show that if f is of bounded variation, then

dimH Graph(f) = dimB Graph(f) = 1.

(Hint: Use Lemma 3.40 below.)

It is a consequence of the Baire category theorem that most continuous functions are
of unbounded variation (in fact, nowhere differentiable). The best known example is the
Weierstrass function

f(t) =
∞∑
k=1

λ(s−2)k sin(λkt), 0 ≤ t ≤ 1, (3.32)
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where λ > 1 and 1 < s < 2. It’s easy to see that f is the uniform limit of continuous
functions (the partial sums of the series), and hence continuous. It is considerably harder
to prove that f is nowhere differentiable; the first full proof of this fact was given by G.
H. Hardy, and many different proofs now exist. Note that instead of the sine function, the
cosine may be used to the same effect.

Definition 3.38. A function f : [a, b] → R is Hölder continuous of exponent α if there is
a constant c such that

|f(t)− f(u)| ≤ c|t− u|α for all t, u ∈ [a, b]. (3.33)

Note that the Hölder property with exponent α = 1 is precisely the Lipschitz property.
The interesting case is when 0 < α < 1.

Definition 3.39. The oscillation (or maximum range) of a function f on an interval
I = [t1, t2] is defined by

oscf (I) := sup
t,u∈I

|f(t)− f(u)|. (3.34)

Lemma 3.40. Let f : [0, 1] → R be continuous. For 0 < δ < 1, let Nδ be the number
of δ-mesh squares (i.e. squares of the form [iδ, (i + 1)δ] × [jδ, (j + 1)δ] with i, j ∈ Z) that
intersect Graph(f). Put m := d1/δe. Then

1

δ

m−1∑
i=0

oscf [iδ, (i+ 1)δ] ≤ Nδ ≤ 2m+
1

δ

m−1∑
i=0

oscf [iδ, (i+ 1)δ]. (3.35)

Proof. Since f is continuous, the number of δ-mesh squares in the column [iδ, (i+ 1)δ]×R
that intersect Graph(f) is at least δ−1 oscf [iδ, (i+1)δ], and at most 2+δ−1 oscf [iδ, (i+1)δ].
Summing over all such intervals gives (3.35).

Proposition 3.41. Let f : [0, 1]→ R be continuous.

(i) Suppose f is Hölder continuous with exponent 0 < α ≤ 1. Then dimB Graph(f) ≤
2− α (and hence dimH Graph(f) ≤ 2− α).

(ii) Suppose there are numbers c > 0, δ0 > 0 and 0 < α ≤ 1 with the following property:
for each t ∈ [0, 1] and 0 < δ < δ0 there exists u such that |t− u| ≤ δ and

|f(t)− f(u)| ≥ cδα.

Then dimB Graph(f) ≥ 2− α.

Proof. (i) Let c be a constant for which (3.33) holds. Then oscf [t1, t2] ≤ c|t1 − t2|α for
0 ≤ t1, t2 ≤ 1. Given 0 < δ < 1, let m = d1/δe < 1 + δ−1. Lemma 3.40 yields

Nδ ≤ 2m+ δ−1mcδα ≤ (1 + δ−1)(2 + cδ−1δα) ≤ 2(2 + c)δα−2.

It follows that dimB Graph(f) ≤ 2− α.
(ii) Let 0 ≤ t1 < t2 ≤ 1 such that |t1−t2| ≤ 2δ0. Taking δ = |t1−t2|/2 and t = (t1+t2)/2

in the hypothesis of (ii), we find that there is u ∈ [t1, t2] such that |f(t)− f(u)| ≥ cδα. But
then

oscf [t1, t2] ≥ |f(t)− f(u)| ≥ c
(
|t1 − t2|

2

)α
= c1|t1 − t2|α,
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where c1 = 2−αc. Hence, for all sufficiently small δ, Lemma 3.40 gives

Nδ ≥ δ−1mc1δα ≥ c1δα−2,

where we used that m ≥ δ−1. Since any set of diameter ≤ δ intersects at most four δ-mesh
squares, it follows that dimB Graph(f) ≥ 2− α.

Theorem 3.42. For λ > 1 and 1 < s < 2, let f be the Weierstrass function as in (3.32).
Then, for all sufficiently large λ, dimB Graph(f) = s.

The proof uses the following technical lemma.

Lemma 3.43. For any t ∈ R, there is 0 < h < 1 such that

| sin(t+ h)− sin t| ≥ 2

25
. (3.36)

Proof. We may assume without loss of generality that −π/2 ≤ t ≤ π/2. If t ≤ 1.16, we
can take h = π

2 − 1.16 < 1, and by the symmetry in the graph of sin t and the convexity of
sin t on [−π/2, 0], we get

| sin(t+ h)− sin t| = sin(t+ h)− sin t ≥ sin
(
−π

2
+ h
)
− sin

(
−π

2

)
= sin(−1.16) + 1 ≈ 1− .9168 > 0.08 =

2

25
.

On the other hand, if 1.16 < t ≤ π/2, then

| sin(2.16)− sin t| = sin t− sin(2.16) > sin(1.16)− sin(2.16) >
2

25
.

In both cases, the lemma follows.

Proof of Theorem 3.42. Given 0 < h < λ−1, let N be the integer such that

λ−(N+1) ≤ h < λ−N . (3.37)

Then

|f(t+ h)− f(t)| ≤
∞∑
k=1

λ(s−2)k
∣∣∣sin(λk(t+ h))− sin(λkt)

∣∣∣
≤

N∑
k=1

λ(s−2)kλkh+
∞∑

k=N+1

2λ(s−2)k

=

N∑
k=1

λ(s−1)kh+

∞∑
k=N+1

2λ(s−2)k,

where we used the inequality | sinu − sin v| ≤ |u − v|, which follows from the mean value
theorem. Summing the geometric series gives

|f(t+ h)− f(t)| ≤ hλ(s−1)N

1− λ1−s
+

2λ(s−2)(N+1)

1− λs−2
. (3.38)
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Now (3.37) implies λN < h−1 ≤ λN+1, and since s− 1 > 0 and s− 2 < 0, we can estimate
(3.38) further by

|f(t+ h)− f(t)| ≤ ch2−s,

where c is independent of h. Hence, f is Hölder continuous with exponent 2 − s, and
therefore, dimB Graph(f) ≤ s by Proposition 3.41(i).

Similarly, using that h < λ−N , we can show∣∣∣f(t+ h)− f(t)− λ(s−2)N
(

sinλN (t+ h)− sinλN t
)∣∣

≤ λ(s−2)N−s+1

1− λ1−s
+

2λ(s−2)(N+1)

1− λs−2

=

(
1

λs−1 − 1
+

2

λ2−s − 1

)
λ(s−2)N .

(3.39)

Now assume λ is large enough so that the expression in large parentheses in the last line
of (3.39) is less than 1/25. Given 0 < δ < 1, let N be the integer such that λ−N ≤ δ <
λ−(N−1). For each t, Lemma 3.43 allows us to choose 0 < h < λ−N ≤ δ such that∣∣sinλN (t+ h)− sinλN t

∣∣ > 2

25
, (3.40)

so by (3.39),

|f(t+ h)− f(t)| ≥ 2

25
λ(s−2)N − 1

25
λ(s−2)N =

1

25
λ(s−2)N ≥ 1

25
λs−2δ2−s.

Thus, by Proposition 3.41(ii), dimB Graph(f) ≥ s.

Remark 3.44. Falconer (p. 163) claims a lower bound of 1
10 in (3.40), but this does not

appear possible.

It can in fact be proved (with some extra work) that the conclusion of Theorem 3.42
holds for all λ > 1. It is widely conjectured that even dimH Graph(f) = s. This was only
recently proved (by much more sophisticated techniques!) to be true for s ∈ (s0, 2) where
1 < s0 < 2 depends on λ, but remains open for values of s outside this interval.


