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Chapter 2

Conditional expectation and
martingales

2.1 Conditional expectation

From here on we write IA for the characteristic function χA.

Theorem 2.1. Let X be an integrable random variable on a probability space (Ω,F ,P),
and let G ⊂ F be a sub-σ-algebra of F . Then there is a G-measurable and integrable random
variable Y such that

E[X IG] = E[Y IG] for every G ∈ G, (2.1)

or in terms of integrals,∫
G
X dP =

∫
G
Y dP for every G ∈ G. (2.2)

Moreover, Y is unique up to sets of measure zero; that is, if Y ′ is another r.v. satisfying
(2.2), then P(Y ′ = Y ) = 1.

Proof. Assume first that X is nonnegative. Let P′ denote the restriction of P to G, and
define a measure Q on G by Q(G) =

∫
GX dP′, G ∈ G. The measure Q is finite because X

is integrable, and Q� P′. So by the Radon-Nikodym theorem there exists a (nonnegative)
G-measurable function (random variable) Y such that Q(G) =

∫
G Y dP′ for G ∈ G, and

this Y is unique up to sets of measure zero. Since P and P′ agree on G, we have (2.2).

For arbitrary integrable X, apply the above to X+ and X− and let Y be the difference
of the resulting functions.

Definition 2.2. The random variable Y in the above theorem is called (a version of) the
conditional expectation of X given G, and denoted E(X|G). Thus,

E(E[X|G] IG) = E(X IG) for every G ∈ G.

29



30 CHAPTER 2. CONDITIONAL EXPECTATION AND MARTINGALES

Note that whereas the expectation of a random variable is a (non-random) number,
its conditional expectation given G is again a random variable. By the last statement
of Theorem 2.1, any two versions of the conditional expectation E(X|G) are equal with
probability 1.

The most familiar special case is the following.

Definition 2.3. Let X be a random variable. The σ-algebra generated by X, denoted
σ(X), is the collection of all sets of the form {ω : X(ω) ∈ B}, where B ∈ B(R). (Check
that this really is a σ-algebra!)

Similarly, if X1, . . . , Xn are random variables on the same probability space, then the
σ-algebra generated by X1, . . . , Xn is the collection of all sets of the form

{ω : (X1(ω), . . . , Xn(ω)) ∈ B}, B ∈ B(Rn),

and is denoted by σ(X1, . . . , Xn).

Instead of E[X|σ(Y )] we simply write E[X|Y ], and instead of E[X|σ(Y1, . . . , Yn)] we
write E[X|Y1, . . . , Yn]. One interpretation of E[X|Y ] is that it is the “best possible predic-
tion” of X when you know the value of Y .

The following proposition shows that for discrete random variables X and Y , the con-
ditional expectation E[X|Y ] corresponds with our earlier notion of conditional expectation
of X given Y = y.

Proposition 2.4. Let X and Y be discrete random variables, where Y takes the values
y1, y2, . . . . There is a version of E[X|Y ] such that for each i, if ω ∈ {Y = yi}, then
E[X|Y ](ω) = E[X|Y = yi].

Proof. Note that each set in σ(Y ) is a union of (finitely or countably many) of the sets
{Y = yi}. So it suffices to show that∫

{Y=yi}
X dP =

∫
{Y=yi}

E[X|Y = yi] dP . (2.3)

Let x1, x2, . . . be the possible values of X. Since

E[X|Y = yi] =
∑
j

xj P(X = xj |Y = yi) =
∑
j

xj
P(X = xj , Y = yi)

P(Y = yi)
,

it follows that∫
{Y=yi}

E[X|Y = yi] dP = E[X|Y = yi] P(Y = yi) =
∑
j

xj P(X = xj , Y = yi).

On the other hand,∫
{Y=yi}

X dP =

∫
X I{Y=yi} dP =

∑
j

xj P(X = xj , Y = yi).

Hence, we have (2.3).
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Conditional expectation has the same properties as expectation (monotonicity, linear-
ity). There is a conditional version of Jensen’s inequality as well as conditional versions of
the Monotone and Dominated Convergence Theorems and Fatou’s lemma. Below we collect
some properties which are specific to conditional expectation. First we need a definition:

Definition 2.5. Two σ-algebras G1 and G2 in a common space Ω are independent if for
each A ∈ G1 and each B ∈ G2, A and B are independent. A random variable X and a
σ-algebra G are independent if σ(X) and G are independent.

Note that from the definition follows immediately that random variables X and Y are
independent if and only if σ(X) and σ(Y ) are independent.

Theorem 2.6 (Properties of conditional expectation). Let X be an integrable r.v. on
(Ω,F ,P) and let G,G1,G2 be sub-σ-algebras of F .

(i) (“Taking out what is known”) If X is G-measurable, then

E[XY |G] = X E[Y |G] (2.4)

for every random variable Y for which Y and XY are integrable. In particular, if X
is G-measurable then

E[X|G] = X.

(This property does not require that X be integrable!)

(ii) If X and G are independent, then

E[X|G] = E(X).

This holds in particular if G is the trivial σ-algebra, G = {∅,Ω}.
(iii) (Tower law) If G1 ⊂ G2, then

E[E[X|G2]|G1] = E[X|G1].

(iv) The law of double expectation:

E[E[X|G]] = E(X). (2.5)

Proof. Property (i) is the most involved; we prove it first for indicator random variables.
Let X = IG0 , where G0 ∈ G. We must show that

E[IG0 Y |G] = IG0 E[Y |G].

This follows since∫
G

IG0 Y dP =

∫
G∩G0

Y dP

=

∫
G∩G0

E[Y |G] dP (by definition of E[Y |G] and G ∩G0 ∈ G)

=

∫
G

IG0 E[Y |G] dP .
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Thus, (2.4) holds for indicator random variables X. By linearity, it then holds for all simple
random variables X. Now let X be an arbitrary random variable. Then there are simple
r.v.’s {Xn} such that |Xn| ≤ |X| and Xn → X a.s. Since (2.4) holds for each Xn, the
conditional form of the DCT implies that it holds for X as well. (Check the details!)

(ii) If X and G are independent, then X and IG are independent for every G ∈ G, and
so ∫

G
X dP = E(X IG) = E(X) E(IG) = E(X) P(G) =

∫
G

E(X) dP .

Hence, E[X|G] = E(X).
(iii) Let G1 ⊂ G2. Then for G ∈ G1,∫

G
E[X|G2] dP =

∫
G
X dP since G ∈ G1 implies G ∈ G2

=

∫
G

E[X|G1] dP by definition of E[X|G1].

Hence, E[E[X|G2]|G1] = E[X|G1].
Finally, (iv) follows from (ii) and (iii) by taking G1 = {∅,Ω}.

Remark 2.7. If B1, . . . , Bn is a partition of Ω and G is the smallest σ-algebra containing
each Bi, then (2.5) is just a more compact statement of (1.2).

Definition 2.8. Let (Ω,F ,P) be a probability space, and G a sub-σ-algebra of F . For
A ∈ F , the conditional probability of A given G is

P(A|G) := E[IA |G].

Exercise 2.9. Show that this definition is consistent with our earlier definition of P(A|B).
(Hint: take G = {∅, B,Bc,Ω}.)

2.2 Martingales

Definition 2.10. Let (Ω,F) be a measurable space. A filtration is an increasing sequence
{Fn}∞n=0 of sub-σ-algebras of F ; that is,

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ · · · ⊂ F .

A probability space (Ω,F ,P) together with a filtration {Fn} on it is called a filtered prob-
ability space, denoted (Ω,F , {Fn},P).

The most common example of a filtration is that generated by a stochastic process:

Fn = σ(X1, . . . , Xn).

We call {Fn} the natural filtration of the process {Xn}. We think of Fn as containing all
information (in this case about the process {Xn}) “up to time n”.
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Definition 2.11. A stochastic process {Xn} is adapted to a filtration {Fn} if Xn is Fn-
measurable for each n.

Definition 2.12. A process {Xn} is called a submartingale relative to the filtration {Fn}
if:

(i) {Xn} is adapted to {Fn};

(ii) E|Xn| <∞ for all n; and

(iii) E[Xn|Fn−1] ≥ Xn−1 a.s. for all n.

A process {Xn} is a supermartingale if {−Xn} is a submartingale. A process that is both
a submartingale and a supermartingale is called a martingale.

When the filtration {Fn} is not mentioned explicitly, {Fn} is normally clear from the
context, or else is understood to be the natural filtration of the process {Xn}.

Example 2.13. Let X be an integrable random variable and {Fn} a filtration. Then the
process

Xn := E[X|Fn], n = 0, 1, 2, . . .

is a martingale relative to {Fn}. To see this, note that Xn is clearly Fn-measurable and
use the tower property:

E[Xn|Fn−1] = E[E[X|Fn]|Fn−1] = E[X|Fn−1] = Xn−1 a.s.

Exercise 2.14. Let {Xn} be a supermartingale. Show that E(Xn) ≤ E(X0) for all n. If
{Xn} is a martingale, then E(Xn) = E(X0) for all n. (Use induction and the law of double
expectation.)

Example 2.15 (Simple random walk). Let X1, X2, . . . be independent, identically dis-
tributed (i.i.d.) {−1, 1}-valued r.v.’s with P(Xi = 1) = p and P(Xi = −1) = q := 1− p for
all i, where p ∈ (0, 1) is a constant parameter. Define

S0 ≡ 0, and Sn = X1 + · · ·+Xn, n ≥ 1. (2.6)

The process {Sn} is called a simple random walk or Bernoulli random walk or a nearest-
neighbor random walk on Z. When p = 1/2, we speak of a symmetric simple random walk.
This random walk can be thought of as the evolving fortune of a gambler who repeatedly
bets $1 on the outcome of a fair coin toss.

Theorem 2.16. Simple random walk has the following properties:

(i) (Independent increments) For all n1 < n2 < · · · < nk, the random variables Sn1 , Sn2−
Sn1 , . . . , Snk

− Snk−1
are independent.

(ii) (Stationary increments) For all n and m with m < n, Sn − Sm
d
= Sn−m.
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Proof. (i) Since Sn1 =
∑n1

i=1Xi, Sn2 − Sn1 =
∑n2

i=n1+1Xi, etc., the random variables
(increments) Sn1 , Sn2 − Sn1 , . . . , Snk

− Snk−1
are functions of disjoint subcollections of the

Xi. Since the Xi are independent, that makes the increments independent.
(ii) We have Sn−m =

∑n−m
i=1 Xi, and Sn − Sm =

∑n
i=m+1Xi. So each of Sn−m and

Sn − Sm is a sum of the same number (n−m) of the Xi, which are independent and have

the same distribution. Hence, Sn−m
d
= Sn − Sm.

Let {Sn} be symmetric simple random walk (p = 1/2). Then {Sn} and {S2
n − n} are

martingales. For simple random walk with arbitrary p, the following are martingales:

(i) Sn − µn, where µ = E(X1) = p− q;
(ii) (Sn − µn)2 − σ2n, where σ2 = Var(X1) = 4pq;

(iii) (p/q)Sn .

Example 2.17 (Sums of independent, zero-mean r.v.’s). More generally, let X1, X2, . . .
be independent r.v.’s with mean 0, and put Sn = X1+ · · ·+Xn. Then {Sn} is a martingale.

Example 2.18 (Products of independent, mean 1 r.v.’s). Let Z1, Z2, . . . be independent
r.v.’s with E(Zn) = 1 for each n, and put Mn = Z1 · · ·Zn. Then {Mn} is a martingale.

Proposition 2.19. (i) Let {Xn} be a martingale and ϕ a convex real function. Put
Yn = ϕ(Xn). If E|Yn| <∞ for all n, then {Yn} is a submartingale.

(ii) Let {Xn} be a submartingale and ϕ a nondecreasing, convex real function. Put Yn =
ϕ(Xn). If E|Yn| <∞ for all n, then {Yn} is a submartingale.

Proof. (i) This follows from the conditional version of Jensen’s inequality:

E[Yn|Fn−1] = E[ϕ(Xn)|Fn−1] ≥ ϕ(E[Xn|Fn−1]) = ϕ(Xn−1) = Yn−1 a.s.

(ii) In this case we can replace the second equality above by “≥” and obtain the desired
result.

2.2.1 Doob’s submartingale inequality

Theorem 2.20 (Submartingale inequality). Let {X0, X1, . . . , Xn} be a submartingale.
Then for any c > 0,

cP

(
max
k≤n

Xk ≥ c
)
≤ E(X+

n ).

Proof. Assume first that Xk is nonnegative. Let A = {maxk≤nXk ≥ c}. Then A =
A0 ∪A1 ∪ · · · ∪An with the union disjoint, where

A0 = {X0 ≥ c},

and
Ak = {X0 < c, . . . ,Xk−1 < c,Xk ≥ c} for k = 1, . . . , n.
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Since Ak ∈ Fk and Xk ≥ c on Ak, we have∫
Ak

Xn dP ≥
∫
Ak

Xk dP ≥ cP(Ak).

Summing over k gives cP(A) ≤ E(Xn), as required.
If Xk is not necessarily nonnegative, put Yk = X+

k . Then Yk is a nondecreasing convex
function of Xk and hence, by Proposition 2.19, {Yk} is a nonnegative submartingale. Now
apply the submartingale inequality to {Yk}.

An application of the submartingale inequality is the following, which strengthens
Chebyshev’s inequality for partial sums of independent mean-zero random variables.

Theorem 2.21 (Kolmogorov’s inequality). Let X1, X2, . . . be independent r.v.’s with mean
0 and finite variance. Put Sn = X1 + · · ·+Xn. Then for any c > 0,

c2P

(
max
k≤n

Sk ≥ c
)
≤ Var(Sn).

Proof. Since {Sn} is a martingale, {S2
n} is a submartingale and it is nonnegative, with

E(S2
n) = Var(Sn) because E(Sn) = 0. The result now follows directly from the submartin-

gale inequality.

2.2.2 Martingale transforms

Definition 2.22. A process {Cn}n≥1 is previsible if Cn is Fn−1-measurable for each n ≥ 1.

Definition 2.23. Let X = {Xn} be an adapted stochastic process and C = {Cn} a
previsible process. The martingale transform of X by C is the process Y = {Yn} defined
by

Yn =
n∑

i=1

Ci(Xi −Xi−1).

We denote Y = C •X.

Note that if Ci ≡ 1 for all i, we have simply Yn = Xn. The martingale transform C •X
has a gambling interpretation: Let Xi −Xi−1 be your net winnings per unit stake at the
ith game in a sequence of games. Your stake Ci in the ith game should depend only on
the outcomes of the first i − 1 games, hence Ci should be Fi−1-measurable, i.e. the stake
process C is previsible. The r.v. Yn = (C •X)n represents your total fortune immediately
after the nth game. Note that, by definition, Y0 ≡ 0.

Theorem 2.24. Let X = {Xn} be an adapted process and C = {Cn} a previsible process.

(i) If C is nonnegative and uniformly bounded and X is a supermartingale, then C •X
is a supermartingale.
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(ii) If C is uniformly bounded and X is a martingale, then C •X is a martingale.

(iii) If E(C2
n) < ∞ and E(X2

n) < ∞ for all n and X is a martingale, then C • X is a
martingale.

Proof. Write Y = C •X. Since

Yn − Yn−1 = Cn(Xn −Xn−1)

and Cn is Fn−1-measurable, it follows from Theorem 2.6(i) that

E[Yn − Yn−1|Fn−1] = Cn E[Xn −Xn−1|Fn−1] ≤ 0

if X is a supermartingale, or = 0 if X is a martingale. In each of (i)-(iii), the hypothe-
sis implies that Cn(Xn − Xn−1) is integrable, in the last case because of the Hölder (or
Schwartz) inequality.

2.2.3 Convergence theorems

An important question in martingale theory is, when and in what sense we can expect a
(sub-, super-)martingale {Xn} to converge as n → ∞. The first main result is known as
the martingale convergence theorem. We follow Williams, chap. 11.

Definition 2.25. Let X = {Xn} be a stochastic process. Fix N ∈ N, and fix real numbers
a < b. The number of upcrossings UN (a, b) of the interval [a, b] by X in the time interval
[0, N ] is the largest integer m for which there exist indices

0 ≤ s1 < t1 < s2 < t2 < · · · < sm < tm ≤ N

such that
Xsi < a < b < Xti , i = 1, . . . ,m.

Lemma 2.26 (Doob’s Upcrossing Lemma). Let X be a supermartingale. Then

(b− a) E (UN (a, b)) ≤ E
[
(XN − a)−

]
.

Proof. Define a process C = {Cn} by

C1 = I{X0<a}

and for n ≥ 2,
Cn = I{Cn−1=1,Xn−1≤b}+ I{Cn−1=0,Xn−1<a} .

Gambling interpretation: wait until the process falls below a. Then play unit stakes until
the process gets above b. Then stop playing until the process gets back below a, etc.

Note that C is previsible. Define Y = C •X, and verify the inequality

YN ≥ (b− a)UN (a, b)− (XN − a)−. (2.7)

By Theorem 2.24, Y is a supermartingale, and hence, since Y0 = 0, E(YN ) ≤ 0. Taking
expectations on both sides of (2.7) now gives the result.
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Corollary 2.27. Let X be a supermartingale bounded in L1; that is, supn E |Xn| < ∞.
Define U∞(a, b) = limN→∞ UN (a, b) (which exists in Z+∪{∞} since UN (a, b) is increasing
in N). Then

P(U∞(a, b) =∞) = 0. (2.8)

Proof. Note that (XN − a)− ≤ |XN |+ |a|, so Lemma 2.26 implies

(b− a) E (UN (a, b)) ≤ |a|+ E |XN | ≤ |a|+ sup
n

E |Xn|.

Letting N →∞ gives, by MCT,

(b− a) E (U∞(a, b)) ≤ |a|+ sup
n

E |Xn| <∞.

Any r.v. with finite expectation is finite a.s., hence (2.8).

Theorem 2.28 (Martingale Convergence Theorem). Let X be a supermartingale bounded
in L1. Then almost surely, X∞ := limn→∞Xn exists and is finite.

Proof. Let X∗ = lim inf Xn and X∗ = lim supXn. Define

Λ := {Xn does not converge to a limit in [−∞,∞]}.

Then
Λ = {X∗ < X∗} =

⋃
a,b∈Q,a<b

{X∗ < a < b < X∗} =:
⋃

a,b∈Q,a<b

Λa,b.

Now P(Λa,b) = 0 by (2.8), since Λa,b ⊂ {U∞(a, b) = ∞}. Therefore, P(Λ) = 0 so that
X∞ := limn→∞Xn exists a.s. in [−∞,∞]. By Fatous’s lemma,

E|X∞| = E(lim inf |Xn|) ≤ lim inf E |Xn| ≤ sup
n

E |Xn| <∞,

and hence, X∞ is finite almost surely.

Corollary 2.29. Let X be a nonnegative supermartingale. Then almost surely, X∞ :=
limn→∞Xn exists and is finite.

Proof. Check that X is bounded in L1.

The martingale convergence theorem is a good start, but we want more. For instance,
we would like to also be able to conclude that Xn → X∞ in L1 (i.e. E|Xn − X∞| → 0)
and that X∞ is itself “part of” the supermartingale, i.e. E(X∞|Fn) ≤ Xn a.s. To obtain
this stronger conclusion we need a stronger hypothesis. This is where uniform integrability
comes in.

Definition 2.30. A collection C of random variables is uniformly integrable (UI) if for each
ε > 0 there is K > 0 such that

E
(
|X| I{|X|>K}

)
< ε ∀X ∈ C. (2.9)
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Exercise 2.31. If {Xn} is UI, then {Xn} is bounded in L1. Give an example to show that
the converse if false.

Proposition 2.32. Let C be a collection of r.v.’s and suppose that either:

(i) There is p > 1 and A > 0 such that E(|X|p) ≤ A for all X ∈ C (i.e. C is bounded in
Lp); or

(ii) There is an integrable nonnegative r.v. Y such that |X| ≤ Y for all X ∈ C.

Then C is UI.

Proof. Assume (i). If x ≥ K > 0, then x ≤ K1−pxp. Hence for X ∈ C,

E[|X| I{|X|>K}] ≤ K1−p E[|X|p I{|X|>K}] ≤ K1−pA,

and since the last expression tends to 0 as K →∞, it follows that C is UI.
Next, assume (ii). Then for all X ∈ C and K > 0,

E[|X| I{|X|>K}] ≤ E[Y I{Y >K}]→ 0 (K →∞).

Hence, C is UI.

The following theorem is what makes uniform integrability a useful concept.

Theorem 2.33. Let {Xn} be a sequence of r.v.’s such that Xn → X a.s. If {Xn} is UI,
then Xn → X in L1; that is, E|Xn −X| → 0.

Proof. Let ε > 0 be given. Define

ϕK(x) =


−K, x < K

x, |x| ≤ K
K, x > K.

Note that for all x, |ϕ(x)− x| ≤ |x|. Hence we have for each n,

E(|ϕK(Xn)−Xn|) = E[|ϕK(Xn)−Xn| I{|Xn|>K}] ≤ E[|Xn| I{|Xn|>K}]

and likewise,

E(|ϕK(X)−X|) = E[|ϕK(X)−X| I{|X|>K}] ≤ E[|X| I{|X|>K}].

Hence, since {Xn} is UI we can find K so large that

E|ϕK(Xn)−Xn| < ε/3 (n ∈ N)

and
E|ϕK(X)−X| < ε/3.



2.2. MARTINGALES 39

Since ϕK is continuous and Xn → X a.s., we also have ϕK(Xn)→ ϕK(X) a.s. And since
ϕK is bounded, the BCT implies the existence of N ∈ N such that, for n ≥ N ,

E|ϕK(Xn)− ϕK(X)| < ε/3.

Hence, by the triangle inequality, we have for n ≥ N ,

E|Xn −X| < ε,

and the proof is complete.

Theorem 2.34. Let {Mn} be a UI martingale. Then M∞ := limn→∞Mn exists a.s. and
Mn →M∞ in L1. Moreover, for each n,

E[M∞|Fn] = Mn a.s. (2.10)

(Of course, the analogous statements hold for UI sub- or supermartingales.) The im-
portant second part of the theorem can be interpreted as saying that M∞ is “part of” the
martingale and is in fact its “last element”. From here on, when considering UI (sub-,
super-)martingales, we will routinely use the fact that M∞ exists and satisfies (2.10).

Proof. Since {Mn} is UI it is bounded in L1, and hence, by the Martingale Convergence
Theorem, M∞ := limn→∞Mn exists and is finite a.s. By Theorem 2.33, Mn →M∞ in L1.
Now for k > n, we have E[Mk|Fn] = Mk, and hence, for F ∈ Fn,

E(Mk IF ) = E(Mn IF ). (2.11)

Now E(Mk IF )→ E(M∞ IF ) because

|E(Mk IF )− E(M∞ IF )| ≤ E(|Mk −M∞| IF ) ≤ E |Mk −M∞| → 0.

Hence, letting k →∞ in (2.11) gives

E(M∞ IF ) = E(Mn IF )

for all F ∈ Fn, and this is equivalent to (2.10).

2.2.4 Martingales bounded in L2

A martingale M is an L2-martingale if E(M2
n) < ∞ for each n. L2-martingales have the

special property that their increments are orthogonal (but not necessarily independent!);
that is, if s ≤ t ≤ u ≤ v, then

E [(Mv −Mu)(Mt −Ms)] = 0. (2.12)

To see this, note that E[Mv|Fu] = Mu a.s., or equivalently,

E[Mv −Mu|Fu] = 0 a.s.
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Thus (since Mt −Ms is Fu-measurable),

E [(Mv −Mu)(Mt −Ms)] = E [E [(Mv −Mu)(Mt −Ms)|Fu]]

= E [(Mt −Ms) E [Mv −Mu|Fu]]

= 0.

In view of (2.12), any L2-martingale satisfies

E(M2
n) = E(M2

0 ) +
n∑

i=1

E[(Mi −Mi−1)
2]. (2.13)

Say a martingale M is bounded in L2 if supn E(M2
n) <∞.

Theorem 2.35. Let M be an L2-martingale.

(i) M is bounded in L2 if and only if
∞∑
n=1

E[(Mn −Mn−1)
2] <∞.

(ii) If M is bounded in L2, then M∞ = limn→∞Mn exists and is finite almost surely, and
Mn →M∞ in L2.

Proof. Statement (i) is obvious from (2.13). For (ii), note first that if M is bounded in
L2, then M is bounded in L1 (why?), so the martingale convergence theorem implies the
existence of M∞. Now for r ∈ N, the orthogonal increment property (2.12) gives

E[(Mn+r −Mn)2] =
n+r∑

i=n+1

E[(Mi −Mi−1)
2].

Hence, by Fatou’s lemma,

E[(M∞ −Mn)2] ≤
∞∑

i=n+1

E[(Mi −Mi−1)
2].

Since the right hand side is the tail of a convergent series, we conclude

lim
n→∞

E[(M∞ −Mn)2] = 0,

in other words, Mn →M∞ in L2.

Exercise 2.36. Show that if M is a martingale bounded in L2, then

E[(M∞ −Mn)2] =

∞∑
i=n+1

E[(Mi −Mi−1)
2].

(Hint: Write M∞−Mn = (M∞−Mn+r)+(Mn+r−Mn). Expand the square, and consider
what happens upon lettig r →∞. The Schwartz (or Hölder) inequality could be helpful.)

Remark 2.37. Since the orthogonal increments play a crucial role in the above proof,
Theorem 2.35 has no analog for sub- or supermartingales in L2.


