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Chapter 1

Preliminaries

1.1 Finite probability spaces

Definition 1.1. A sample space is a finite set Ω of objects (thought of as possible outcomes
of an experiment). An event is a subset A of Ω.

Example 1.2. (1) Rolling a die: Ω = {1, 2, 3, 4, 5, 6}

(2) Flipping a coin 3 times: Ω = {hhh, hht, hth, htt, thh, tht, tth, ttt}

Definition 1.3. Let 2Ω denote the power set of Ω (set of all subsets of Ω). A probability
measure on Ω is a function P : 2Ω → [0, 1] satisfying:

(i) P(Ω) = 1, and

(ii) P(
⋃n
k=1Ak) =

∑n
k=1 P(Ak) whenever A1, . . . , An are disjoint subsets of Ω.

The tuple (Ω,P) is called a (finite) probability space.

Example 1.4. Most common: equally likely outcomes

P(A) =
#A

#Ω
, A ⊂ Ω

In Example 1.2,(1):
P(roll an even number) = 3/6 = 1/2

In Example 1.2,(2): assuming the coin is fair,

P(exactly two of the coin flips land heads) =
#{hht, hth, thh}

#Ω
=

3

8

Definition 1.5. Let A and B be events in a probability space (Ω,P) with P(B) > 0. The
conditional probability of A given B is defined by

P(A|B) =
P(A ∩B)

P(B)
.

3
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Definition 1.6. Events A and B in a probability space (Ω,P) are independent if P (A|B) =
P (A).

Easy to check:

P(A|B) = P (A) ⇔ P(A ∩B) = P(A) P(B) ⇔ P(B|A) = P(B).

Definition 1.7. Events A1, . . . , An are independent iff

P(C1 ∩ · · · ∩ Cn) = P(C1) · · ·P(Cn)

for any choice of C1, . . . , Cn where for each i, Ci is either Ai or Aci .

Definition 1.8. Events A1, . . . , An are pairwise independent iff P(Ai ∩Aj) = P(Ai) P(Aj)
for all i 6= j.

Example 1.9. Let Ω = {1, 2, 3, 4} with all outcomes equally likely, let A = {1, 2}, B =
{1, 3}, and C = {1, 4}. What does this example illustrate?

Definition 1.10. Events B1, . . . , Bn are said to be a partition of Ω if
⋃n
i=1Bi = Ω and

Bi ∩Bj = ∅ for all i 6= j.

Proposition 1.11 (Principle of conditioning). If B1, . . . , Bn is a partition of Ω with
P(Bi) > 0 for each i, then for any A ⊂ Ω,

P(A) =
n∑
i=1

P(A|Bi) P(Bi).

Proof.

P(A) = P

(
A ∩

(
n⋃
i=1

Bi

))
= P

(
n⋃
i=1

(A ∩Bi)

)

=

n∑
i=1

P(A ∩Bi) =

n∑
i=1

P(A|Bi) P(Bi).

Definition 1.12. A random variable is a function X : Ω → R. Instead of P({ω ∈ Ω :
X(ω) = x}) we write simply: P(X = x). The (probability) distribution of X is the list of
values P(X = x), where x ∈ X(Ω). When X and Y have the same distribution, we express

this by X
d
= Y .

Example 1.13. (1) Roll two dice, and let X be the sum:

Ω = {(i, j) : i, j ∈ {1, 2, . . . , 6}} = {1, 2, . . . , 6}2, X(i, j) = i+ j.

Then, for instance, P(X = 9) = P({(4, 5), (5, 4)}) = 2/36 = 1/18, etc.
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(2) Flip a fair coin 3 times, and let X denote the number of heads:

P(X = i) =


1/8, i = 0

3/8, i = 1

3/8, i = 2

1/8, i = 3

Remark 1.14. Note that the r.v. X in the last example determines another probability
space (Ω̃, P̃ ), where Ω̃ = {0, 1, 2, 3} and P̃ (ω) = 1/8 for ω ∈ {0, 3}, P̃ (ω) = 3/8 for
ω ∈ {1, 2}. This probability space, however, contains “less information” than the space Ω
of Example 1.2,(2).

If on this space we define X̃(ω) = ω, then X̃ has the same distribution as X, denoted

X̃
d
= X.

Definition 1.15. Random variablesX1, . . . , Xn are independent if for any n-tuple (x1, . . . , xn)
in Rn, the events {X1 = x1}, . . . , {Xn = xn} are independent.

Definition 1.16. The expectation or expected value of a r.v. X is defined by

E(X) =
∑
x∈R

xP(X = x).

It is easy to see that

E(X) =
∑
ω∈Ω

X(ω) P(ω). (1.1)

Example 1.17. The expectations of the random variables in Example 1.13 are 7 and 3/2,
respectively.

Definition 1.18. Let P(B) > 0. The conditional expectation of X given B is

E(X|B) =
∑
x∈R

xP(X = x|B).

Proposition 1.19 (Computing expectation by conditioning). If B1, . . . , Bn is a partition
of Ω with P(Bi) > 0 for each i, then

E(X) =
n∑
i=1

E(X|Bi) P(Bi). (1.2)

Example 1.20. A fair die is rolled, and whichever number comes up, a fair coin is then
flipped that many times. Let N be the outcome of the die roll, and X the number of heads
obtained. Then

E(X) =

6∑
i=1

E(X|N = i) P(N = i) =

6∑
i=1

i

2
· 1

6
=

21

12
=

7

4
.
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Proposition 1.21. (i) For a function h : R→ R,

E(h(X)) =
∑
x∈R

h(x) P(X = x).

(ii) For any two r.v.’s X and Y and constants a and b,

E(aX + bY ) = aE(X) + bE(Y ). (1.3)

Proof. Both statements follow directly from (1.1).

Definition 1.22. The variance of a r.v. X is

Var(X) = E[(X − E(X))2].

Using (1.3), we can derive the shortcut formula:

Var(X) = E(X2)− (E(X))2.

Note that Var(X) ≥ 0.

Proposition 1.23. (i) For any function h : R2 → R and r.v.’s X and Y ,

E[h(X,Y )] =
∑
x

∑
y

h(x, y) P(X = x, Y = y).

(ii) If X and Y are independent, then E(XY ) = E(X) E(Y ).

(iii) If X1, . . . , Xn are independent r.v.’s, then

Var(X1 + · · ·+Xn) = Var(X1) + · · ·+ Var(Xn).

Proof. (i) Exercise

(ii) By (i),

E(XY ) =
∑
x

∑
y

xyP(X = x, Y = y)

=
∑
x

∑
y

xyP(X = x) P(Y = y)

=

(∑
x

xP(X = x)

)(∑
y

yP(Y = y)

)
= E(X) E(Y ).
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We prove (iii) for n = 2. The general result then follows by induction. Let X and Y be
independent r.v.’s. Then by (ii),

Var(X + Y ) = E[(X + Y )2]− [E(X + Y )]2

= E(X2 + 2XY + Y 2)− [E(X) + E(Y )]2

= E(X2) + 2 E(X) E(Y ) + E(Y 2)− [(E(X))2 + 2 E(X) E(Y ) + (E(Y ))2]

= E(X2)− (E(X))2 + E(Y 2)− (E(Y ))2

= Var(X) + Var(Y ).

Example 1.24 (Binomial distribution). A r.v. X is said to have a binomial(n, p) distri-
bution if

P(X = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n,

where 0 ≤ p ≤ 1. We can construct a binomial r.v. on the probability space {0, 1}n with
the probability measure P determined by

P(ω) = P({(ω1, . . . , ωn)}) = pk(ω)(1− p)n−k(ω),

where k(ω) = #{i : 1 ≤ i ≤ n, ωi = 1}. Then put X(ω) =
∑n

i=1 ωi.
This construction has the advantage that we can easily calculate the expectation and

variance of X, as follows. Let Xi(ω) = ωi so that X = X1 + · · ·+Xn. One checks that

P(Xi = 1) = p, P(Xi = 0) = 1− p,

so that E(Xi) = p and E(X2
i ) = p, whence Var(Xi) = p(1− p), for i = 1, . . . , n. Thus, by

(1.3) and part (iii) of the last proposition,

E(X) = E(X1 + · · ·+Xn) =

n∑
i=1

E(Xi) = np,

and

Var(X) = Var(X1 + · · ·+Xn) =

n∑
i=1

Var(Xi) = np(1− p).

Compare this with calculating the summations

E(X) =

n∑
k=1

k

(
n

k

)
pk(1− p)n−k, E(X2) =

n∑
k=1

k2

(
n

k

)
pk(1− p)n−k.

Note that the distribution, and hence the expectation and variance, of a random variable
do not depend on the underlying probability space. Constructing a random variable (or
a whole process) on a carefully chosen probability space can greatly facilitate proving
distributional properties, as we’ll see again later.
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1.2 Infinite probability spaces

Note: Finite probability spaces can only describe finite experiments, and are inadequate
for modern probability. It is necessary to employ infinite sample spaces such as [0, 1], {0, 1}N
(the space of all sequences of 0’s and 1’s), C([0, 1]) (the space of continuous functions on
[0, 1]), etc. One technical problem with infinite sample spaces is, that it is impossible
to define a meaningful probability measure on them which assigns a probability to every
subset of Ω. Therefore, it is necessary to restrict attention to certain subcollections of sets.
These subcollections are called σ-algebras.

Definition 1.25. Let X be any set. A σ-algebra on X is a collection F of subsets of X
such that:

(i) ∅ ∈ F ;

(ii) if A ∈ F , then Ac = X\A ∈ F ; and

(iii) if A1, A2, . . . are in F , then
⋃∞
n=1An ∈ F .

Thus, a σ-algebra is a collection of subsets of X which includes the empty set, and is closed
under complements and countable unions.

Example 1.26. (1) F = 2Ω, the power set of Ω, is a σ-algebra.

(2) F = {∅,Ω} is a σ-algebra, called the trivial σ-algebra.

(3) Let X be a topological space, and O the collection of all open sets in X. The smallest
σ-algebra that contains O is called the Borel σ-algebra on X, denoted B(X), and its
members are called Borel sets in X. (Note: B(X) is well defined, as it is easy to check
that the intersection of any family of σ-algebras is again a σ-algebra, so we can define
B(X) as the intersection of all those σ-algebras on X which contain O.)

Definition 1.27. Let F be a σ-algebra on a set Ω. A probability measure on (Ω,F) is a
set function P : F → [0, 1] satisfying:

(i) P(Ω) = 1, and

(ii) P(
⋃∞
k=1Ak) =

∑∞
k=1 P(Ak) whenever A1, A2, . . . is a sequence of disjoint subsets of

Ω.

The triple (Ω,F ,P) is called a probability space. By an event we mean a set A ∈ F .

Note this definition encompasses the definition of probability measure in the finite case,
where we simply took the σ-algebra F = 2Ω. This is however no longer possible in the
case of Ω = [0, 1], say, because there does not exist any probability measure which assigns
a probability to every subset of [0, 1] and which gives measure zero to singletons. (This is
a consequence of the existence of “nonmeasurable sets”!)
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1.2.1 Lebesgue measure

One of the most useful probability spaces is the unit interval [0, 1] with Borel sets and
Lebesgue measure. Lebesgue measure generalizes the concept of length of an interval.
Carathéodory’s extension theorem tells us that this can be done in a unique way to obtain
a probability measure on the Borel sets of [0, 1] that assigns to each interval its length.
First, we need two definitions.

Definition 1.28. An algebra in a set Ω is a collection A of subsets of Ω satisfying:

(i) ∅ ∈ A;

(ii) if A ∈ A, then Ac = X\A ∈ A; and

(iii) if A1, . . . , An are in A, then
⋃n
i=1Ai ∈ A.

Thus, a σ-algebra is a collection of subsets of X which includes the empty set, and is closed
under complements and finite unions.

Definition 1.29. A probability measure on an algebra A is a set function P : A → [0, 1]
such that

(i) P(Ω) = 1; and

(ii) if A1, A2, . . . are disjoint sets in A for which
⋃∞
k=1Ak ∈ A, then P(

⋃∞
k=1Ak) =∑∞

k=1 P(Ak).

Example 1.30. Let Ω = [0, 1] and let A be the collection of all finite unions of subintervals
of Ω, where we interpret an interval of the form [a, a] as a single point {a}. Then A is an
algebra, and we can define a probability measure P on A, called pre-Lebesgue measure, by

P

(
n⋃
i=1

Ii

)
=

n∑
i=1

`(Ii),

for any finite collection {Ii} of disjoint intervals in [0, 1], where `(I) denotes the length of
the interval I.

Theorem 1.31 (Carathéodory’s extension theorem). Let P be a probability measure on
an algebra A. Then P has a unique extension to a probability measure on the smallest
σ-algebra containing A (which we again denote by P).

Corollary 1.32. There is a unique probability measure P on ([0, 1],B([0, 1])) such that
P(I) = `(I) for any subinterval I of [0, 1].

Definition 1.33. The probability measure of Corollary 1.32 is called Lebesgue measure on
[0, 1].

Theorem 1.34. Lebesgue measure P has the following properties:
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(1) (Monotonicity) For any Borel sets A and B with A ⊂ B, P(A) ≤ P(B).

(2) (Regularity) For each Borel set A ⊂ [0, 1],

P(A) = inf

{ ∞∑
i=1

`(Ii) : {Ii} are intervals with A ⊂
∞⋃
i=1

Ii

}
,

P(A) = inf{P(O) : O is an open set in [0, 1] and A ⊂ O},
P(A) = sup{P(F ) : F is a closed set in [0, 1] and F ⊂ A}.

(3) (Continuity)

(i) If {An} is a sequence of Borel sets in [0, 1] and An+1 ⊂ An for each n, then

P

( ∞⋂
n=1

An

)
= lim

n→∞
P(An).

(ii) If {An} is a sequence of Borel sets in [0, 1] and An+1 ⊃ An for each n, then

P

( ∞⋃
n=1

An

)
= lim

n→∞
P(An).

In fact, monotonicity and continuity hold for any probability measure.

Note that we can define Lebesgue measure on any subinterval of R, including R itself,
by the same process. Lebesgue measure on R will be denoted by λ. It is of course not a
probability measure.

1.2.2 Random variables

Definition 1.35. A function f : Ω → R is F-measurable if for each a ∈ R, the set
{ω ∈ Ω : f(ω) ≤ a} belongs to F . A random variable on a probability space (Ω,F ,P) is
an F-measurable function X : Ω→ R.

A standard exercise in measure theory shows that if X is a random variable, the set
{ω : X(ω) ∈ B} is in F for every Borel set B. Instead of P({ω : X(ω) ∈ B}) we will write
simply P(X ∈ B).

Example 1.36. Let Ω = [0, 1] and F = B([0, 1]), and put X(ω) = ω. Then P(X ∈ I) =
`(I) for every interval I ⊂ [0, 1]. We say X has the standard uniform distribution. If a < b,
we can define a new r.v. Y by Y = a+ (b− a)X. Then

P(c < Y ≤ d) = P

(
c− a
b− a

< X ≤ d− a
b− a

)
=
d− c
b− a

whenever a ≤ c < d ≤ b. We say Y has the uniform(a, b) distribution.
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Independence of events is defined in the same way as in the finite case. Independence
of random variables, however, requires a somewhat more careful definition.

Definition 1.37. Random variables X1, . . . , Xn are independent if for any choice of Borel
sets B1, . . . , Bn in R, the events {X1 ∈ B1}, . . . , {Xn ∈ Bn} are independent. An infi-
nite sequence of random variables X1, X2, . . . is said to be independent if X1, . . . , Xn are
independent for every n.

Proposition 1.38. Random variables X1, . . . , Xn are independent if and only if the sets
{X1 ≤ x1}, . . . , {Xn ≤ xn} are independent for any choice of real numbers x1, . . . , xn.

Example 1.39 (Independent coin tosses). On the space [0, 1] with Lebesgue measure, we
can construct independent {0, 1}-valued r.v.’s as follows. Each number ω ∈ [0, 1] has a
binary expansion

ω = 0.d1d2 . . . dn · · · =
∞∑
i=1

2−idi,

where di := di(ω) ∈ {0, 1} for each i. Numbers of the form k/2n, such as 1/2, 1/4, 3/4,
etc., have two binary expansions, e.g.

1/2 = 0.1000 · · · = 0.0111 · · · .

For such numbers, for definiteness, we choose the expansion ending in all zeros. Exception:
for ω = 1 we write 1 = 0.111 · · · .

Now the di’s are measurable functions because, for each i, the set {ω : di(ω) = 0} is
a finite union of intervals, e.g. {ω : d2(ω) = 0} = [0, 1/4) ∪ [1/2, 3/4). Thus each di is a
random variable, and P(di = 1) = P(di = 0) = 1/2 (check!). Therefore we can think of di
as the outcome of a fair coin toss, where 1 represents heads, and 0 represents tails. The
sequence {di} is independent: for any given n, let b1, . . . , bn be an arbitrary finite sequence
of 0’s and 1’s, and put

x0 :=
n∑
i=1

2−ibi.

Then
{ω : d1(ω) = b1, . . . , dn(ω) = bn} = [x0, x0 + 2−n],

and hence,

P(d1 = b1, . . . , dn = bn) = `([x0, x0 + 2−n]) = 2−n = P(d1 = b1) · · ·P(dn = bn).

Definition 1.40. The (cumulative) distribution function (c.d.f. for short) of a r.v. X is
the function F : R→ [0, 1] defined by

F (x) := P(X ≤ x), x ∈ R.

Proposition 1.41. The c.d.f. F of any r.v. X has the following properties:
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(i) F is nondecreasing.

(ii) limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

(iii) F is right-continuous: limx↓x0 F (x) = F (x0) for every x0 ∈ R.

Vice versa, any function F with properties (i)-(iii) above is the c.d.f. of some r.v. X.

Proof. Statement (i) follows immediately from the monotonicity of P. Statements (ii) and
(iii) are consequences of the continuity of P. For the first limit in (ii), set An = {ω :
X(ω) ≤ −n}. Then An+1 ⊂ An, and

⋂∞
n=1An = ∅, so

lim
n→∞

F (−n) = lim
n→∞

P(An) = P(∅) = 0,

and then, since F is nondecreasing, limx→−∞ F (x) = 0 as well. The second limit in (ii)
follows similarly. For (iii), let An = {ω : X(ω) ≤ x0 + 1/n}. Then again An+1 ⊂ An, and⋂∞
n=1An = {ω : X(ω) ≤ x0}, from which the result follows.

The last statement of the proposition is proved in the next theorem.

Notation: For a c.d.f. F , let

F−1(y) := inf{x : F (x) ≥ y}, y ∈ [0, 1). (1.4)

We call F−1 the generalized inverse of F .

Theorem 1.42 (Construction of a r.v. with given c.d.f.). Let F : R→ [0, 1] satisfy (i)-(iii)
of Proposition 1.41. On the Lebesgue space ([0, 1],B([0, 1]),P), put X(ω) = F−1(ω). Then
X is a r.v. with c.d.f. F .

Proof. We show that
F−1(ω) ≤ x ⇐⇒ ω ≤ F (x). (1.5)

Suppose F−1(ω) ≤ x. Since F is nondecreasing, this means that for every ε > 0, F (x+ε) ≥
ω. But then F (x) ≥ ω, since F is right continuous. The other direction is obvious. By
(1.5), we have

P(ω : X(ω) ≤ x) = P(ω : F−1(ω) ≤ x) = P(ω : ω ≤ F (x)) = F (x),

as required.

Note that any random variable X determines a unique Borel probability measure µ on
R which satisfies

µ(B) = P(X ∈ B), B ∈ B(R).

Taking B = (a, b] we have in particular,

µ((a, b]) = P(a < X ≤ b) = F (b)− F (a), a < b.

We call µ the distribution of X, and sometimes write µX when the r.v. X needs to be
made explicit. We also sometimes write µ = PX−1.

Observe that an alternative way to construct a random variable X with given distribu-
tion µX is to take X(ω) = ω on the space (R,B(R), µX).
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Theorem 1.43. Given any sequence µ1, µ2, . . . of Borel probability measures on R, there
exists, on the probability space ([0, 1],B([0, 1]),P), a sequence of independent random vari-
ables X1, X2, . . . , such that for each i the distribution of Xi is µi.

Proof. Let d1, d2, . . . be the independent {0, 1} random variables from Example 1.39. We
define random variables Ui (i ∈ N) via their binary expansions as follows:

U1 := 0.d2d4d8 · · ·
U2 := 0.d3d6d12 · · ·
U3 := 0.d5d10d20 · · ·

...

Precisely, let pi denote the ith prime number, and set

Ui :=

∞∑
j=1

2−jd2j−1pi , i = 1, 2, . . . .

Now if i 6= j, then Ui and Uj depend on disjoint subsequences of {dk}. It follows that
U1, U2, . . . are independent. We next show that they have the standard uniform distribu-
tion. We show it for U1; the same argument works for any Ui. The binary digits of U1

are d2, d4, d8, . . . , which are independent r.v.’s all with the same distribution as d1, so the
sequence (d2, d4, d8, . . . ) has the same joint distribution as the sequence (d1, d2, d3, . . . ).
Hence, for any dyadic interval

I = [j/2k, (j + 1)/2k), (1.6)

we have
P(U1 ∈ I) = `(I) = 2−k,

as in Example 1.39. But any interval [0, x) in [0, 1] can be written as a countably union of
disjoint intervals of the form (1.6), so by countable additivity of P, P(U1 ∈ [0, x)) = x for
x ∈ [0, 1]. Hence, U1 is standard uniform.

We now have an infinite sequence U1, U2, . . . of independent, standard uniform random
variables. Let Fi be the c.d.f. corresponding to µi; that is, Fi(x) := µi((−∞, x]), for i ∈ N.
Set Xi := F−1

i (Ui). Then, as in the proof of Theorem 1.42, Xi has distribution µi, and
since the Ui are independent, so are the Xi.

Definition 1.44. The distribution µ of a r.v. X is absolutely continuous if there is a
nonnegative function f on R such that

µ((a, b]) =

∫ b

a
f(x) dx for all a < b.

If this is the case, we call f the (probability) density of X. We also say that X is absolutely
continuous.
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Note that any such density f must satisfy∫ ∞
−∞

f(x) dx = 1. (1.7)

Note: absolute continuity of µX clearly implies that the c.d.f. F of X is continuous. In fact,
it is equivalent to absolute continuity of the c.d.f. F of X. In particular, F is differentiable
almost everywhere, and F ′(x) = f(x) at each point where F ′ exists. It is also equivalent
to absolute continuity of µ with respect to Lebesgue measure λ on R.

Example 1.45. A r.v. X has the normal(µ, σ2) distribution if it has density

f(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

, x ∈ R,

where µ ∈ R and σ > 0. The normal(0, 1) distribution is called the standard normal
distribution; it has density

φ(x) =
1√
2π
e−x

2/2.

A straightforward calculus exercise shows that, if X is standard normal and Y = µ +
σX with σ > 0, then Y is normal(µ, σ2). A less straightforward exercise (using double
integrals!) shows that φ satisfies (1.7).

Example 1.46. The exponential(λ) distribution, with parameter λ > 0, is the distribution
with density

f(x) =

{
λe−λx, x > 0

0, x ≤ 0.

The exponential distribution has the memoryless property: If X is an exponential r.v., then
for any s > 0 and t > 0,

P(X > s+ t|X > t) = P(X > s).

Example 1.47. The gamma(α, λ) distribution, with parameters λ > 0 and α > 0, has
density

f(x) =

{
λe−λx (λx)α−1

Γ(α) , x > 0

0, x ≤ 0

where Γ is the gamma function:

Γ(α) =

∫ ∞
0

xα−1e−x dx, α > 0.

In case α = n, an integer, it can be shown (by repeated integration by parts) that Γ(n) =
(n− 1)!. Also, Γ(1

2) =
√
π. (Proof?) The gamma distribution generalizes the exponential

distribution, and is further related to it as follows.
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Proposition 1.48. If X1, . . . , Xn are independent exponential(λ) r.v.’s, then the sum S :=
X1 + · · ·+Xn has the gamma(n, λ) distribution.

Definition 1.49. The joint cumulative distribution function or joint c.d.f. for short, of a
pair (X,Y ) of random variables, is defined by

F (x, y) = P(X ≤ x, Y ≤ y).

Definition 1.50. Random variables X and Y are jointly absolutely continuous if there is
a nonnegative function f : R2 → R such that the joint c.d.f. of X and Y satisfies

F (x, y) =

∫ x

−∞

∫ y

−∞
f(u, v) dv du, for all x and y.

In that case we call f the joint density of X and Y . Note that

f(x, y) =
∂2F (x, y)

∂x∂y
.

Joint c.d.f.’s and joint densities of three or more random variables are defined similarly.

Definition 1.51. A probability distribution µ on R is discrete if there is a countable subset
C ⊂ R such that µ(C) = 1. A random variable X is discrete if its distribution is discrete.

We have already seen an example of a discrete distribution, namely the binomial dis-
tribution of Example 1.24. More examples follow below.

Example 1.52 (Bernoulli distribution). A r.v. X has the Bernoulli(p) distribution if
P(X = 1) = p and P(X = 0) = 1 − p, where 0 < p < 1. We can construct such an X on
[0, 1] with Lebesgue measure by putting X(ω) = χ[0,p](ω). The c.d.f. of a Bernoulli(p) r.v.
is

F (x) =


0, x < 0

1− p, 0 ≤ x < 1

1, x ≥ 1.

Using the method of Theorem 1.43 we can construct on Ω = [0, 1] an infinite sequence of
independent Bernoulli(p) r.v.’s. We can interpret this sequence as a sequence of unfair coin
tosses, or more generally, a sequence of Bernoulli trials, where 1 stands for success, and 0
for failure.

Example 1.53 (Geometric distribution). Consider a sequence of independent Bernoulli(p)
trials as in the last example. Let N be the number of the trial at which the first success
occurs. More precisely, if X1, X2, . . . are Bernoulli(p) r.v.’s, set N = inf{i : Xi = 1}. Then
N takes possible values 1, 2, . . . , and conceivably, ∞. Now

P(N = n) = P(X1 = 0, . . . , Xn−1 = 0, Xn = 1) = (1− p)n−1p, n ∈ N.
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Since these probabilities add to 1, it follows that P(N = ∞) = 0. We say N has the
geometric(p) distribution. Note the simple formula

P(N > n) = (1− p)n,

which can be derived probabilistically, without summing a geometric series!

Example 1.54 (Negative binomial distribution). Consider again a sequence of independent
Bernoulli(p) trials, but now, for a fixed r ∈ N, let N be the number of the trial at which
the rth success occurs. Then N takes possible values r, r + 1, . . . , and

P(N = n) =

(
n− 1

r − 1

)
pr(1− p)n−r, n = r, r + 1, . . . .

(Why?) We say N has the negative binomial(r, p) distribution.

Example 1.55 (Poisson distribution). A r.v. X has the Poisson(µ) distribution (with
parameter µ > 0) if it satisfies

P(X = k) = e−µ
µk

k!
, k = 0, 1, 2, . . . .

The Poisson distribution is often used as a simpler model in place of the binomial distri-
bution if n is very large and p is very small. The justification is as follows. Consider the
binomial(n, p) distribution with probabilities

Pk =

(
n

k

)
pkqn−k,

where q = 1 − p. Put µ = np. Now let n → ∞ and p → 0 in such a way that np = µ
remains constant. Then

P0 = qn = (1− p)n =
(

1− µ

n

)n
→ e−µ,

and for k ≥ 0,

Pk+1

Pk
=
n− k
k + 1

· p
q
→ µ

k + 1
.

Thus, for each fixed k,

Pk = P0

k−1∏
j=0

Pj+1

Pj
→ e−µ

k−1∏
j=0

µ

j + 1
= e−µ

µk

k!
.
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1.2.3 Expectation and the Lebesgue integral

Definition 1.56. Let (Ω,F ,P) be a probability space. A measurable function f on Ω
which takes only finitely many values is called a simple function. Thus, simple functions
are functions of the form

ϕ(ω) =

n∑
i=1

ciχAi(ω), (1.8)

where ci are constants and Ai are F-measurable sets. If the sets Ai are disjoint and ci 6= cj
for i 6= j we call (1.8) the canonical representation of ϕ.

Definition 1.57. The integral of a simple function ϕ with canonical representation (1.8)
is defined as ∫

ϕ(ω) dP(ω) :=

n∑
i=1

ci P(Ai). (1.9)

(It can be shown that the value of the right-hand side of (1.9) does not depend on
the representation of ϕ. Thus, it is not necessary to put a simple function in canonical
representation before determining its integral.)

Definition 1.58. Let f be a nonnegative measurable function on Ω. The integral of f is
defined by ∫

f(ω) dP(ω) := sup
ϕ

∫
ϕ(ω) dP(ω),

where the supremum is taken over all simple functions ϕ with 0 ≤ ϕ ≤ f everywhere on Ω.

(Note that the integral of f could take the value +∞.)

Finally, if f is an arbitrary measurable function on Ω, define the positive and negative
parts of f respectively by

f+ = max{f, 0}, f− = max{−f, 0}.

Then f = f+ − f−, and f+ + f− = |f |. Note that both f+ and f− are nonnegative.

Definition 1.59. The integral of a measurable function f on Ω is defined by∫
f(ω) dP(ω) :=

∫
f+(ω) dP(ω)−

∫
f−(ω) dP(ω),

unless both integrals on the right equal +∞, in which case the integral of f does not exist.

If both
∫
f+ dP and

∫
f− dP are finite, we say f is integrable (with respect to P).

Note: We can define the integral of f with respect to a nonfinite measure in the same
way. If Ω = R with Lebesgue measure λ, we write

∫
f(x) dx instead of

∫
f(x) dλ(x).

Theorem 1.60 (Properties of the integral). Assume the integrals of f and g exist.
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(i) If f = g a.e. (that is, P(ω : f(ω) = g(ω)) = 1), then
∫
f dP =

∫
g dP.

(ii) (Monotonicity) If f ≤ g, then
∫
f dP ≤

∫
g dP. In particular, if f ≥ 0, then∫

f dP ≥ 0.

(iii) (Linearity) For real a and b,∫
(af + bg) dP = a

∫
f dP +b

∫
g dP .

Definition 1.61. We define the integral of f over a set A ∈ F by∫
A
f dP :=

∫
fχA dP .

Definition 1.62. The expectation of a random variable X on (Ω,F ,P) is the value of

E(X) :=

∫
X(ω) dP(ω),

provided the integral exist. If E|X| <∞, we say X is integrable.

Definition 1.63. Let X and Y be random variables on a common probability space
(Ω,F P). We say X = Y almost surely (a.s.) if P(X = Y ) = P(ω : X(ω) = Y (ω)) = 1.

Proposition 1.64. If X = Y a.s., then E(X) = E(Y ).

Proof. This is just a restatement of Theorem 1.60 (i).

Theorem 1.65 (Change of variable). Let X be a random variable with distribution µ. Let
g be a real function for which g(X) is either nonnegative or integrable with respect to P.
Then ∫

Ω
g(X(ω)) dP(ω) =

∫
R
g(x) dµ(x).

Proof. This is a standard exercise in measure theory. We will not prove it here.

Theorem 1.66 (Expectation formulas). Let X be a random variable and g a real function.

(i) If X is discrete, then

E(g(X)) =
∑
x

g(x) P(X = x). (1.10)

(ii) If X is absolutely continuous with density f , then

E(g(X)) =

∫ ∞
−∞

g(x)f(x) dx. (1.11)
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Proof. (i) If X is discrete, then g(X) takes only countably many values, say c1, c2, . . . .
Assume first that g(X) is nonegative. (If not, consider positive part and negative part
separately.) Let {Bi} be a partition of Ω such that g(X) = ci on Bi, so that we can write
g(X(ω)) =

∑∞
i=1 ciχBi(ω). By the definition of

∫
g(X) dP as a supremum over simple

functions, we have ∫
g(X) dP ≥

n∑
i=1

ci P(Bi), for each n,

and so ∫
g(X) dP ≥

∞∑
i=1

ci P(Bi).

One checks easily that any simple function 0 ≤ ϕ ≤ g(X) must satisfy∫
ϕdP ≤

∞∑
i=1

ci P(Bi),

and hence, ∫
g(X) dP =

∞∑
i=1

ci P(Bi).

(ii) is a consequence of Theorem 1.65 and another standard exercise in measure theory
(Royden, Exer. 11.22): if

µ(A) =

∫
A
f dλ, A ∈ B(R),

then ∫
g dµ =

∫
gf dλ.

Taking g(x) = xk in the above theorem we obtain the kth moment of X, E(Xk). The
variance of X, denoted Var(X), is defined the same way as before, so

Var(X) = E[(X − E(X))2] = E(X2)− [E(X)]2.

The expectations and variances in the examples below can all be obtained using basic
calculus techniques.

Example 1.67 (Discrete distributions).

(1) Let X ∼ geometric(p). Then E(X) = 1/p and Var(X) = (1− p)/p2.

(2) Let X ∼ negative binomial(r, p). Then E(X) = r/p and Var(X) = r(1 − p)/p2. (To
see this probabilistically, think of X as a sum of r independent geometric(p) r.v.’s!)
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(3) Let X ∼ Poisson(µ). Then E(X) = Var(X) = µ.

Example 1.68 (Absolutely continuous distributions).

(1) Let X ∼ uniform(0, 1). Then E(X) = 1/2 and Var(X) = 1/12.

(2) Let X ∼ normal(µ, σ2). Then E(X) = µ and Var(X) = σ2.

(3) Let X ∼ exponential(λ). Then E(X) = 1/λ and Var(X) = 1/λ2.

(4) Let X ∼ gamma(α, λ). Then E(X) = α/λ and Var(X) = α/λ2. (For α ∈ N, this
follows from Proposition 1.48.)

Definition 1.69. Let P and P̃ be probability measures on the same space (Ω,F). We
say P̃ is absolutely continuous with respect to P, and write P̃ � P, if P(A) = 0 implies
P̃(A) = 0. If both P̃� P and P� P̃, we say P and P̃ are equivalent.

Losely speaking, equivalent measures agree on what is “possible”, but may disagree on
the likelihood of possible things.

Theorem 1.70 (Radon-Nikodym). If P and P̃ are probability measures on a (Ω,F) and
P̃� P, then there is a nonnegative random variable Z on (Ω,F) such that

P̃(A) = E[ZχA] =

∫
A
Z dP, A ∈ F .

Furthermore, if we let Ẽ denote expectation with respect to P̃, that is,

Ẽ(X) =

∫
X d P̃,

then

Ẽ(X) = E[XZ].

In particular, E(Z) = 1.

We call Z the Radon-Nikodym derivative of P̃ with respect to P, and write

Z =
d P̃

dP
.

Proof. The first part of the theorem is just the Radon-Nikodym theorem from measure
theory (see Royden, Thm 11.23). The second part follows from the observations at the end
of the proof of Theorem 1.66.
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1.2.4 Useful inequalities

We end this section with some useful inequalities. First, let X be a nonnegative random
variable, and a > 0. Then

E(X) =

∫
X dP =

∫
{X<a}

X dP +

∫
{X≥a}

X dP ≥ 0 +

∫
{X≥a}

a dP = aP(X ≥ a).

Hence,

P(X ≥ a) ≤ E(X)

a
.

This is called Markov’s inequality. For an arbitrary random variable X and k ∈ N we thus
have

P(|X| ≥ a) = P(|X|k ≥ ak) ≤ E(|X|k)
ak

.

Now suppose that X is a random variable with mean E(X) = m and finite variance. Taking
k = 2 in the last inequality above and replacing X with X − m, we obtain Chebyshev’s
inequality:

P(|X −m| ≥ a) ≤ VarX

a2
.

Another useful inequality is Jensen’s inequality: If X is a random variable and ϕ a
convex real function, then

E[ϕ(X)] ≥ ϕ(E(X)).

(See Royden, sec. 5.5.)

1.3 Convergence of random variables

Definition 1.71. A sequence of random variables {Xn} defined on a common probability
space (Ω,F ,P) converges almost surely to a random variable X (defined on the same space)
if

P
(

lim
n→∞

Xn = X
)

= 1.

Notation: Xn → X a.s.

We often need conditions under which Xn → X a.s. implies that E(Xn)→ E(X). We
state the following convergence theorems from measure theory in their probability contexts
without proof. (See Royden, sec. 4.3 or sec. 11.3.)

Theorem 1.72 (Bounded Convergence Theorem). If {Xn} is uniformly bounded, i.e. there
is K > 0 such that |Xn(ω)| ≤ K for all n and all ω, then Xn → X a.s. implies that
E(X) = limn→∞ E(Xn).

Theorem 1.73 (Fatou’s Lemma). If Xn is nonnegative for each n and Xn → X a.s., then

E(X) ≤ lim inf
n→∞

E(Xn).
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Theorem 1.74 (Monotone Convergence Theorem). If Xn is nonnegative for each n,
Xn+1 ≥ Xn a.s. for each n, and Xn → X a.s., then E(X) = limn→∞ E(Xn).

Theorem 1.75 (Dominated Convergence Theorem). Suppose Xn are integrable random
variables, and there is an integrable random variable Y such that |Xn| ≤ Y a.s. for each
n. Then, if Xn → X a.s., we have E(X) = limn→∞ E(Xn).

As a typical example of how these theorems may be used, we prove the following
expectation formula for nonnegative random variables.

Theorem 1.76. If X is a nonnegative r.v., then

E(X) =

∫ ∞
0

P(X > x) dx. (1.12)

Proof. Assume first that X is a simple r.v. (that is, a r.v. taking only finitely many values).
Say the possible values of X are x1 < x2 < · · · < xm. Put x0 := 0, and let yi = xi − xi−1

for i = 1, 2, . . . ,m. Then xi =
∑i

ν=1 yν for each i ≥ 1. We now calculate

E(X) =
m∑
i=1

xi P(X = xi) =
m∑
i=1

i∑
ν=1

yν P(X = xi)

=
m∑
ν=1

m∑
i=ν

yν P(X = xi) =
m∑
ν=1

(xν − xν−1) P(X ≥ xν)

=
m∑
ν=1

∫ xν

xν−1

P(X > x) dx =

∫ ∞
0

P(X > x) dx,

since P(X > x) = 0 for x > xm. Thus, (1.12) holds for simple random variables. If X is an
arbitrary nonnegative r.v., let {Xn} be an increasing sequence of nonnegative simple r.v.’s
such that Xn → X a.s. By the Monotone Convergence Theorem (MCT), E(Xn) ↑ E(X).
Furthermore, for each x > 0, P(Xn > x) ↑ P(X > x). So again by the MCT (applied this
time to [0,∞) with Lebesgue measure λ),∫ ∞

0
P(Xn > x) dx ↑

∫ ∞
0

P(X > x) dx.

Since (1.12) holds for each Xn, it thus holds for X as well.

Similarly, the MCT is used to prove the analog of Proposition 1.23(ii).

Theorem 1.77. If X and Y are independent, then E(XY ) = E(X) E(Y ).

Proof. Assume first that X and Y are both nonnegative. There are sequences {Xn} and
{Yn} of nonnegative simple r.v.’s such that for each n, Xn and Yn are independent, Xn ↑ X
a.s. and Yn ↑ Y a.s. By Proposition 1.23, E(XnYn) = E(Xn) E(Yn). Applying the MCT to
both sides gives E(XY ) = E(X) E(Y ), since XnYn ↑ XY .
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For general X and Y , we have XY = (X+ −X−)(Y + − Y −), and hence,

E(XY ) = E[(X+ −X−)(Y + − Y −)]

= E(X+Y +)− E(X+Y −)− E(X−Y +) + E(X−Y −)

= E(X+) E(Y +)− E(X+) E(Y −)− E(X−) E(Y +) + E(X−) E(Y −)

=
(

E(X+)− E(X−)
)(

E(Y +)− E(Y −)
)

= E(X) E(Y ).

We now turn to the question of proving almost sure convergence. Recalling the defini-
tion of a limit, we have

{Xn 6→ X} =
⋃
ε>0

∞⋂
n=1

∞⋃
k=n

{|Xn −X| ≥ ε} =
⋃

ε>0,ε∈Q

∞⋂
n=1

∞⋃
k=n

{|Xn −X| ≥ ε}.

Thus, if we want to show that Xn → X a.s., it suffices to show (in view of countable
additivity) that for each ε > 0,

P

( ∞⋂
n=1

∞⋃
k=n

{|Xn −X| ≥ ε}

)
= 0. (1.13)

For this, the first Borel-Cantelli lemma is useful. Given a sequence {An} of events, define

lim supAn = {An infinitely often (i.o.)} :=
∞⋂
n=1

∞⋃
k=n

Ak,

lim inf An = {An almost always (a.a.)} :=
∞⋃
n=1

∞⋂
k=n

Ak.

Exercise: Find several relationships between lim supAn and lim inf An.

Proposition 1.78 (The first Borel-Cantelli lemma).
Let {An} be any sequence of events. If

∑∞
n=1 P(An) <∞, then P(lim supAn) = 0.

Proof. Note that for each m,

P(lim supAn) ≤ P

( ∞⋃
k=m

Ak

)
≤
∞∑
k=m

P(Ak).

By the hypothesis, the last sum tends to zero as m→∞. Hence, P(lim supAn) = 0.

There exists a partial converse the the first Borel-Cantelli lemma. (It requires the An
to be independent.)
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Proposition 1.79 (The second Borel-Cantelli lemma).
Let {An} be a sequence of independent events. If

∑∞
n=1 P(An) =∞, then P(lim supAn) =

1.

Proof. Note (lim supAn)c = lim inf Acn. Using independence and the inequality 1−x ≤ e−x
we have, for any j ∈ N,

P

(
n+j⋂
k=n

Ack

)
=

n+j∏
k=n

(1− P(Ak)) ≤ exp

(
−
n+j∑
k=n

P(Ak)

)
.

By hypothesis, the sum inside the last expression tends to ∞ as j → ∞, and hence the
exponential tends to 0. Therefore,

P

( ∞⋂
k=n

Ack

)
= lim

j→∞
P

(
n+j⋂
k=n

Ack

)
= 0, for each n.

By countable additivity, it follows that P(lim inf Acn) = 0, and hence, P(lim supAn) =
1.

In fact it can be shown (as a consequence of Kolmogorov’s zero-one law - see Billingsley,
Theorem 4.5) that when the An are independent, P(lim supAn) is always either 0 or 1.
The Borel-Cantelli lemmas specify which of the two is the case.

Back to almost sure convergence... To prove that Xn → X a.s., it suffices in view of
the first Borel-Cantelli lemma to show that

∞∑
n=1

P(|Xn −X| ≥ ε) <∞ for every ε > 0.

For this, Chebyshev’s inequality is often a useful tool. This procedure is illustrated in the
proof of the following theorem.

Theorem 1.80 (Strong law of large numbers). Let X1, X2, . . . be independent and iden-
tically distributed random variables with finite mean m, and put Sn := X1 + · · · + Xn.
Then

Sn
n
→ m a.s.

Proof. The full proof is rather involved (see Billingsley, Thm 22.1), but we prove the
statement here under the assumption that E(X4

1 ) < ∞. We may assume that m = 0, for
otherwise we can replace Xi with Xi−m. Note that E(X4

1 ) <∞ implies E(X2
1 ) <∞. Our

goal is to show that
P(|Sn/n| ≥ ε i.o.) = 0 (1.14)

for every ε > 0. Let E(X2
1 ) = σ2 and E(X4

1 ) = ξ4. Fix ε > 0. By Markov’s inequality,

P(|Sn/n| ≥ ε) = P(S4
n ≥ (εn)4) ≤ ε−4n−4 E(S4

n). (1.15)
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Now
E(S4

n) =
∑
i,j,k,l

E(XiXjXkXl),

where the four indices range independently over 1, . . . , n. If any of i, j, k and l is different
from the other three, then E(XiXjXkXl) = 0 by independence and the fact that m = 0.
This leaves terms of the form E(X2

iX
2
j ) = E(X2

i ) E(X2
j ) = σ4 with i 6= j, of which there

are
(

4
2

)(
n
2

)
= 3n(n− 1), and terms of the form E(X4

i ) = ξ4, of which there are n. Thus,

E(S4
n) = 3n(n− 1)σ4 + nξ4 ≤ 3σ4n2, for all large enough n.

It thus follows by (1.15) that
∑∞

n=1 P(|Sn/n| ≥ ε) <∞, and the first Borel-Cantelli lemma
gives (1.14). As explained earlier, this establishes that Sn/n→ 0 a.s.

Note: The above proof is easily modified to show that if the r.v.’s {Xn} have uniformly
bounded fourth moments, they need not be identically distributed, as long as they have
identical expectation m.

Definition 1.81. A sequence of random variables {Xn} defined on a common probability
space (Ω,F ,P) converges in probability to a random variable X (defined on the same space)
if for every ε > 0,

P(|Xn −X| ≥ ε)→ 0, as n→∞. (1.16)

Notation: Xn →P X.

(Note: convergence in probability is the same concept as convergence in measure - see
Royden sec. 4.5.)

Limits in probability are unique in the following sense.

Proposition 1.82. If Xn →P X and Xn →P Y , then P(X = Y ) = 1.

Proof. Let ε > 0. Then

P(|X − Y | ≥ ε) ≤ P(|Xn −X| ≥ ε/2) + P(|Xn − Y | ≥ ε/2)→ 0.

Hence P(|X − Y | ≥ ε) = 0. Since ε was arbitrary, P(X = Y ) = 1.

Proposition 1.83. Let {Xn} be a sequence of r.v.’s which converges almost surely to a
r.v. X. Then Xn →P X.

Proof. Fix ε > 0, and let An = {|Xn −X| ≥ ε}. Since Xn → X a.s., we have in particular
that P(lim supAn) = 0. Since

⋃∞
k=nAk is a decreasing sequence, it follows that

lim
n→∞

P

( ∞⋃
k=n

Ak

)
= 0.

But then limn→∞ P(An) = 0, as An ⊂
⋃∞
k=nAk. Hence, Xn →P X.
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Exercise 1.84. Give an example to show that the converse of Proposition 1.83 is false.

The strong law of large numbers and Proposition 1.83 together imply the weak law of
large numbers, which says that, under the hypotheses of the strong law,

Sn/n→P m.

In case the {Xn} have finite variance σ2, this last result has a much simpler direct proof
using Chebyshev’s inequality:

P(|Sn/n−m| ≥ ε) = P(|Sn − nm| ≥ εn) ≤ Var(Sn)

ε2n2
=

nσ2

ε2n2
=

σ2

ε2n
→ 0.

Theorem 1.85. Let {Xn} be a sequence of r.v.’s and X a r.v., all defined on the same
probability space. Then Xn →P X if and only if every subsequence {Xnk} has a further
subsequence {Xnk(i)} which converges to X almost surely.

Proof. Suppose Xn →P X. Given {nk}, we can choose a subsequence {nk(i)} such that

k ≥ k(i) =⇒ P(|Xnk −X| ≥ 1/i) < 2−i.

This implies by the first Borel-Cantelli lemma that

P(|Xnk(i) −X| ≥ 1/i i.o.) = 0.

Hence, with probability one, |Xnk(i) −X| < 1/i for all but finitely many i. But this means
limi→∞Xnk(i) = X a.s.

Conversely, suppose Xn does not converge to X in probability. Then there is some
ε > 0 and some subsequence {nk} such that

P(|Xnk −X| ≥ ε) ≥ ε, for all k.

No subsequence of {Xnk} can converge to X in probability, and hence, by Proposition 1.83,
no subsequence can converge to X almost surely.

Corollary 1.86. Let Xn →P X and let f be a continuous real function. Then f(Xn)→P

f(X).

Proof. Exercise.

Definition 1.87. Let r ≥ 1, and let {Xn} be random variables on a common probability
space with E(|Xn|r) < ∞. Let X be a r.v. defined on the same space as the Xn with
E(|X|r) <∞. We say Xn → X in Lr if

lim
n→∞

E(|Xn −X|r) = 0.

Proposition 1.88. If Xn → X in Lr, then Xn →P X.
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Proof. This follows immediately from Markov’s inequality.

Exercise 1.89. Give an example (for given r ≥ 1) of a sequence {Xn} and a r.v. X such
that:

(1) Xn converges to X almost surely, but not in Lr.

(2) Xn converges to X in Lr, but not almost surely.

Definition 1.90. Let {Xn} be a sequence of random variables, not necessarily defined on
the same probability space, with c.d.f.’s {Fn}. Let X be a random variable with c.d.f. F .
We say Xn converges to X in distribution, or converges weakly to X, if Fn(x)→ F (x) for
every continuity point x of F . We denote this by Xn ⇒ X. We also say in this case that
Fn converges weakly to F , denoted Fn ⇒ F .

Theorem 1.91. Let X, {Xn} be random variables defined on a common probability space.
If Xn →P X, then Xn ⇒ X.

Proof. Let x be a continuity point of the c.d.f. F of X; that is, P(X = x) = 0. Verify that
for ε > 0,

P(X ≤ x− ε)− P(|Xn −X| ≥ ε) ≤ P(Xn ≤ x) ≤ P(X ≤ x+ ε) + P(|Xn −X| ≥ ε).

Let n→∞ and ε ↓ 0 to obtain, by (1.16),

P(X ≤ x) = P(X < x) ≤ lim inf
n→∞

P(Xn ≤ x) ≤ lim sup
n→∞

P(Xn ≤ x) ≤ P(X ≤ x).

Thus, P(Xn ≤ x)→ P(X ≤ x), as required.

Exercise 1.92. Give an example to show that the converse of Theorem 1.91 fails.

An important tool for proving theorems about convergence in distribution is the fol-
lowing.

Theorem 1.93 (Skorohod’s theorem). Suppose Xn ⇒ X. Then there exist random vari-
ables {Yn} and Y on a common probability space (Ω,F ,P) such that Yn has the same
distribution as Xn for each n, Y has the same distribution as X, and Yn(ω) → Y (ω) for
each ω ∈ Ω.

Proof. Take Ω = [0, 1], F = B([0, 1]), and P Lebesgue measure on [0, 1]. Let Fn be the c.d.f.
of Xn, and F the c.d.f. of X. For each ω ∈ [0, 1], put Yn(ω) = F−1

n (ω) and Y (ω) = F−1(ω).
(Recall the definition (1.4).) As in Theorem 1.42, Yn has c.d.f. Fn and Y has c.d.f. F .
We need to show that Yn(ω) → Y (ω). The basic idea is that, if Fn(x) → F (x) for each
continuity point x of F , then F−1

n (u) → F−1(u) at each continuity point u of F−1. In
other words, Yn(ω) → Y (ω) at each continuity point ω of Y . The technical details of the
argument can be found in Billingsley, Thm. 25.6. Since Y is nondecreasing on [0, 1], it has
at most countably many discontinuity points, so the set of these discontinuity points has
measure 0. At each such point ω, redefine Yn(ω) = Y (ω) = 0. Then Yn(ω)→ Y (ω) for all
ω, and Yn and Y still have c.d.f. Fn and F , respectively.
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The following theorem, which characterizes weak convergence in terms of expectations,
illustrates the power of the Skorohod theorem.

Theorem 1.94. Let X, {Xn} be random variables. Then Xn ⇒ X if and only if

E[f(Xn)]→ E[f(X)] (1.17)

for any bounded, continuous real function f .

Proof. Suppose Xn ⇒ X. Let f be bounded and continuous. Construct random variables
Yn and Y as in Theorem 1.93. Then E[f(Xn)] = E[f(Yn)] and E[f(X)] = E[f(Y )], and by
the Dominated (or the Bounded) Convergence Theorem, E[f(Yn)] → E[f(Y )]. Thus, we
have (1.17).

Conversely, suppose (1.17) holds for each bounded and continuous f . Let Fn be the
c.d.f. of Xn, and F the c.d.f. of X. To show Xn ⇒ X, we would like to take f = χ(−∞,x]

for each continuity point x of F , but this f is not continuous. Hence, approximate it by a
continuous function as follows. Fix y > x, and put

f(t) =


1, t ≤ x
y−t
y−x , x ≤ t ≤ y
0, t ≥ y.

Then f ≥ χ(−∞,x], so Fn(x) = E[χ(−∞,x](Xn)] ≤ E[f(Xn)]. On the other hand, f ≤
χ(−∞,y], and so E[f(X)] ≤ E[χ(−∞,y](X)] = F (y). It follows from (1.17) that

lim sup
n→∞

Fn(x) ≤ F (y).

Letting y ↓ x and using that F is right-continuous gives

lim sup
n→∞

Fn(x) ≤ F (x).

By a similar argument (exercise!) we can show that

F (x−) ≤ lim inf
n→∞

Fn(x).

Hence, Fn(x)→ F (x) at all continuity points x of F .

The most important statement about convergence in distribution is, of course, the
Central Limit Theorem. For its proof and several generalizations, see Billingsley, sec. 27.

Theorem 1.95 (Central Limit Theorem). Let X1, X2, . . . be independent, identically dis-
tributed random variables with mean m and finite positive variance σ2, and let Sn =
X1 + · · ·+Xn. Then

Sn − nm
σ
√
n
⇒ N,

where N is a standard normal random variable.


