Math 6810 (Probability and Fractals)

Spring 2016

Lecture notes

Pieter Allaart University of North Texas

February 2, 2016

Recommended reading: (Do not purchase these books before consulting with your instructor!)

- 1. Real Analysis by H. L. Royden (4th edition), Prentice Hall.
- 2. Probability and Measure by P. Billingsley (3rd edition), Wiley.
- 3. Probability with Martingales by D. Williams, Cambridge University Press.
- 4. Fractal Geometry: Foundations and Applications by K. Falconer (2nd edition), Wiley.

Chapter 1

Preliminaries

1.1 Finite probability spaces

Definition 1.1. A sample space is a finite set Ω of objects (thought of as possible outcomes of an experiment). An *event* is a subset A of Ω .

Example 1.2. (1) Rolling a die: $\Omega = \{1, 2, 3, 4, 5, 6\}$

(2) Flipping a coin 3 times: $\Omega = \{hhh, hht, hth, htt, thh, tht, tth, ttt\}$

Definition 1.3. Let 2^{Ω} denote the power set of Ω (set of all subsets of Ω). A *probability* measure on Ω is a function $P: 2^{\Omega} \to [0, 1]$ satisfying:

- (i) $P(\Omega) = 1$, and
- (ii) $P(\bigcup_{k=1}^{n} A_k) = \sum_{k=1}^{n} P(A_k)$ whenever A_1, \ldots, A_n are disjoint subsets of Ω .

The tuple (Ω, P) is called a (finite) probability space.

Example 1.4. Most common: equally likely outcomes

$$\mathbf{P}(A) = \frac{\#A}{\#\Omega}, \qquad A \subset \Omega$$

In Example 1.2,(1):

P(roll an even number) = 3/6 = 1/2

In Example 1.2,(2): assuming the coin is fair,

P(exactly two of the coin flips land heads) =
$$\frac{\#\{hht, hth, thh\}}{\#\Omega} = \frac{3}{8}$$

Definition 1.5. Let A and B be events in a probability space (Ω, P) with P(B) > 0. The conditional probability of A given B is defined by

$$\mathbf{P}(A|B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}.$$

Definition 1.6. Events A and B in a probability space (Ω, P) are *independent* if P(A|B) = P(A).

Easy to check:

$$P(A|B) = P(A) \quad \Leftrightarrow \quad P(A \cap B) = P(A)P(B) \quad \Leftrightarrow \quad P(B|A) = P(B).$$

Definition 1.7. Events A_1, \ldots, A_n are independent iff

$$\mathbf{P}(C_1 \cap \dots \cap C_n) = \mathbf{P}(C_1) \cdots \mathbf{P}(C_n)$$

for any choice of C_1, \ldots, C_n where for each i, C_i is either A_i or A_i^c .

Definition 1.8. Events A_1, \ldots, A_n are *pairwise independent* iff $P(A_i \cap A_j) = P(A_i) P(A_j)$ for all $i \neq j$.

Example 1.9. Let $\Omega = \{1, 2, 3, 4\}$ with all outcomes equally likely, let $A = \{1, 2\}$, $B = \{1, 3\}$, and $C = \{1, 4\}$. What does this example illustrate?

Definition 1.10. Events B_1, \ldots, B_n are said to be a *partition* of Ω if $\bigcup_{i=1}^n B_i = \Omega$ and $B_i \cap B_j = \emptyset$ for all $i \neq j$.

Proposition 1.11 (Principle of conditioning). If B_1, \ldots, B_n is a partition of Ω with $P(B_i) > 0$ for each *i*, then for any $A \subset \Omega$,

$$\mathbf{P}(A) = \sum_{i=1}^{n} \mathbf{P}(A|B_i) \mathbf{P}(B_i).$$

Proof.

$$P(A) = P\left(A \cap \left(\bigcup_{i=1}^{n} B_{i}\right)\right) = P\left(\bigcup_{i=1}^{n} (A \cap B_{i})\right)$$
$$= \sum_{i=1}^{n} P(A \cap B_{i}) = \sum_{i=1}^{n} P(A|B_{i}) P(B_{i}).$$

_	_	_		
_			1	
			L	
			L	
			L	
			L	

Definition 1.12. A random variable is a function $X : \Omega \to \mathbb{R}$. Instead of $P(\{\omega \in \Omega : X(\omega) = x\})$ we write simply: P(X = x). The *(probability) distribution* of X is the list of values P(X = x), where $x \in X(\Omega)$. When X and Y have the same distribution, we express this by $X \stackrel{d}{=} Y$.

Example 1.13. (1) Roll two dice, and let X be the sum:

$$\Omega = \{(i,j) : i, j \in \{1, 2, \dots, 6\}\} = \{1, 2, \dots, 6\}^2, \qquad X(i,j) = i+j.$$

Then, for instance, $P(X = 9) = P(\{(4, 5), (5, 4)\}) = 2/36 = 1/18$, etc.

1.1. FINITE PROBABILITY SPACES

(2) Flip a fair coin 3 times, and let X denote the number of heads:

$$\mathbf{P}(X=i) = \begin{cases} 1/8, & i=0\\ 3/8, & i=1\\ 3/8, & i=2\\ 1/8, & i=3 \end{cases}$$

Remark 1.14. Note that the r.v. X in the last example determines another probability space $(\tilde{\Omega}, \tilde{P})$, where $\tilde{\Omega} = \{0, 1, 2, 3\}$ and $\tilde{P}(\omega) = 1/8$ for $\omega \in \{0, 3\}$, $\tilde{P}(\omega) = 3/8$ for $\omega \in \{1, 2\}$. This probability space, however, contains "less information" than the space Ω of Example 1.2,(2).

If on this space we define $\tilde{X}(\omega) = \omega$, then \tilde{X} has the same distribution as X, denoted $\tilde{X} \stackrel{d}{=} X$.

Definition 1.15. Random variables X_1, \ldots, X_n are *independent* if for any *n*-tuple (x_1, \ldots, x_n) in \mathbb{R}^n , the events $\{X_1 = x_1\}, \ldots, \{X_n = x_n\}$ are independent.

Definition 1.16. The *expectation* or *expected value* of a r.v. X is defined by

$$\mathcal{E}(X) = \sum_{x \in \mathbb{R}} x \mathcal{P}(X = x)$$

It is easy to see that

$$E(X) = \sum_{\omega \in \Omega} X(\omega) P(\omega).$$
(1.1)

Example 1.17. The expectations of the random variables in Example 1.13 are 7 and 3/2, respectively.

Definition 1.18. Let P(B) > 0. The conditional expectation of X given B is

$$\mathcal{E}(X|B) = \sum_{x \in \mathbb{R}} x \mathcal{P}(X = x|B)$$

Proposition 1.19 (Computing expectation by conditioning). If B_1, \ldots, B_n is a partition of Ω with $P(B_i) > 0$ for each *i*, then

$$E(X) = \sum_{i=1}^{n} E(X|B_i) P(B_i).$$
 (1.2)

Example 1.20. A fair die is rolled, and whichever number comes up, a fair coin is then flipped that many times. Let N be the outcome of the die roll, and X the number of heads obtained. Then

$$E(X) = \sum_{i=1}^{6} E(X|N=i) P(N=i) = \sum_{i=1}^{6} \frac{i}{2} \cdot \frac{1}{6} = \frac{21}{12} = \frac{7}{4}.$$

Proposition 1.21. (i) For a function $h : \mathbb{R} \to \mathbb{R}$,

$$\mathcal{E}(h(X)) = \sum_{x \in \mathbb{R}} h(x) \mathcal{P}(X = x).$$

(ii) For any two r.v.'s X and Y and constants a and b,

$$E(aX + bY) = a E(X) + b E(Y).$$
(1.3)

Proof. Both statements follow directly from (1.1).

Definition 1.22. The variance of a r.v. X is

$$\operatorname{Var}(X) = \operatorname{E}[(X - E(X))^2].$$

Using (1.3), we can derive the shortcut formula:

$$Var(X) = E(X^2) - (E(X))^2.$$

Note that $\operatorname{Var}(X) \ge 0$.

Proposition 1.23. (i) For any function $h : \mathbb{R}^2 \to \mathbb{R}$ and r.v.'s X and Y,

$$\mathbf{E}[h(X,Y)] = \sum_{x} \sum_{y} h(x,y) \mathbf{P}(X=x,Y=y).$$

- (ii) If X and Y are independent, then E(XY) = E(X)E(Y).
- (iii) If X_1, \ldots, X_n are independent r.v.'s, then

$$\operatorname{Var}(X_1 + \dots + X_n) = \operatorname{Var}(X_1) + \dots + \operatorname{Var}(X_n).$$

Proof. (i) Exercise (ii) By (i),

$$\begin{split} \mathbf{E}(XY) &= \sum_{x} \sum_{y} xy \, \mathbf{P}(X = x, Y = y) \\ &= \sum_{x} \sum_{y} xy \, \mathbf{P}(X = x) \, \mathbf{P}(Y = y) \\ &= \left(\sum_{x} x \, \mathbf{P}(X = x)\right) \left(\sum_{y} y \, \mathbf{P}(Y = y)\right) \\ &= \mathbf{E}(X) \, \mathbf{E}(Y). \end{split}$$

We prove (iii) for n = 2. The general result then follows by induction. Let X and Y be independent r.v.'s. Then by (ii),

$$\begin{aligned} \operatorname{Var}(X+Y) &= \operatorname{E}[(X+Y)^2] - [\operatorname{E}(X+Y)]^2 \\ &= \operatorname{E}(X^2 + 2XY + Y^2) - [E(X) + E(Y)]^2 \\ &= \operatorname{E}(X^2) + 2\operatorname{E}(X)\operatorname{E}(Y) + \operatorname{E}(Y^2) - [(\operatorname{E}(X))^2 + 2\operatorname{E}(X)\operatorname{E}(Y) + (\operatorname{E}(Y))^2] \\ &= \operatorname{E}(X^2) - (\operatorname{E}(X))^2 + \operatorname{E}(Y^2) - (\operatorname{E}(Y))^2 \\ &= \operatorname{Var}(X) + \operatorname{Var}(Y). \end{aligned}$$

Example 1.24 (Binomial distribution). A r.v. X is said to have a binomial(n,p) distribution if

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}, \qquad k = 0, 1, \dots, n,$$

where $0 \le p \le 1$. We can construct a binomial r.v. on the probability space $\{0,1\}^n$ with the probability measure P determined by

$$\mathbf{P}(\omega) = \mathbf{P}(\{(\omega_1, \dots, \omega_n)\}) = p^{k(\omega)}(1-p)^{n-k(\omega)},$$

where $k(\omega) = \#\{i : 1 \le i \le n, \omega_i = 1\}$. Then put $X(\omega) = \sum_{i=1}^n \omega_i$.

This construction has the advantage that we can easily calculate the expectation and variance of X, as follows. Let $X_i(\omega) = \omega_i$ so that $X = X_1 + \cdots + X_n$. One checks that

$$P(X_i = 1) = p,$$
 $P(X_i = 0) = 1 - p,$

so that $E(X_i) = p$ and $E(X_i^2) = p$, whence $Var(X_i) = p(1-p)$, for i = 1, ..., n. Thus, by (1.3) and part (iii) of the last proposition,

$$E(X) = E(X_1 + \dots + X_n) = \sum_{i=1}^n E(X_i) = np,$$

and

$$\operatorname{Var}(X) = \operatorname{Var}(X_1 + \dots + X_n) = \sum_{i=1}^n \operatorname{Var}(X_i) = np(1-p).$$

Compare this with calculating the summations

$$E(X) = \sum_{k=1}^{n} k \binom{n}{k} p^{k} (1-p)^{n-k}, \qquad E(X^{2}) = \sum_{k=1}^{n} k^{2} \binom{n}{k} p^{k} (1-p)^{n-k}.$$

Note that the distribution, and hence the expectation and variance, of a random variable do not depend on the underlying probability space. Constructing a random variable (or a whole process) on a carefully chosen probability space can greatly facilitate proving distributional properties, as we'll see again later.

1.2 Infinite probability spaces

Note: Finite probability spaces can only describe finite experiments, and are inadequate for modern probability. It is necessary to employ infinite sample spaces such as $[0, 1], \{0, 1\}^{\mathbb{N}}$ (the space of all sequences of 0's and 1's), C([0, 1]) (the space of continuous functions on [0, 1]), etc. One technical problem with infinite sample spaces is, that it is impossible to define a meaningful probability measure on them which assigns a probability to *every* subset of Ω . Therefore, it is necessary to restrict attention to certain subcollections of sets. These subcollections are called σ -algebras.

Definition 1.25. Let X be any set. A σ -algebra on X is a collection \mathcal{F} of subsets of X such that:

- (i) $\emptyset \in \mathcal{F};$
- (ii) if $A \in \mathcal{F}$, then $A^c = X \setminus A \in \mathcal{F}$; and
- (iii) if A_1, A_2, \ldots are in \mathcal{F} , then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.

Thus, a σ -algebra is a collection of subsets of X which includes the empty set, and is closed under complements and countable unions.

Example 1.26. (1) $\mathcal{F} = 2^{\Omega}$, the power set of Ω , is a σ -algebra.

- (2) $\mathcal{F} = \{\emptyset, \Omega\}$ is a σ -algebra, called the *trivial* σ -algebra.
- (3) Let X be a topological space, and \mathcal{O} the collection of all open sets in X. The smallest σ -algebra that contains \mathcal{O} is called the *Borel* σ -algebra on X, denoted $\mathcal{B}(X)$, and its members are called *Borel sets* in X. (Note: $\mathcal{B}(X)$ is well defined, as it is easy to check that the intersection of any family of σ -algebras is again a σ -algebra, so we can define $\mathcal{B}(X)$ as the intersection of all those σ -algebras on X which contain \mathcal{O} .)

Definition 1.27. Let \mathcal{F} be a σ -algebra on a set Ω . A probability measure on (Ω, \mathcal{F}) is a set function $P : \mathcal{F} \to [0, 1]$ satisfying:

- (i) $P(\Omega) = 1$, and
- (ii) $P(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} P(A_k)$ whenever A_1, A_2, \ldots is a sequence of disjoint subsets of Ω .

The triple (Ω, \mathcal{F}, P) is called a *probability space*. By an *event* we mean a set $A \in \mathcal{F}$.

Note this definition encompasses the definition of probability measure in the finite case, where we simply took the σ -algebra $\mathcal{F} = 2^{\Omega}$. This is however no longer possible in the case of $\Omega = [0, 1]$, say, because there does not exist any probability measure which assigns a probability to every subset of [0, 1] and which gives measure zero to singletons. (This is a consequence of the existence of "nonmeasurable sets"!)

1.2. INFINITE PROBABILITY SPACES

1.2.1 Lebesgue measure

One of the most useful probability spaces is the unit interval [0, 1] with Borel sets and Lebesgue measure. Lebesgue measure generalizes the concept of length of an interval. Carathéodory's extension theorem tells us that this can be done in a unique way to obtain a probability measure on the Borel sets of [0, 1] that assigns to each interval its length. First, we need two definitions.

Definition 1.28. An algebra in a set Ω is a collection \mathcal{A} of subsets of Ω satisfying:

- (i) $\emptyset \in \mathcal{A};$
- (ii) if $A \in \mathcal{A}$, then $A^c = X \setminus A \in \mathcal{A}$; and
- (iii) if A_1, \ldots, A_n are in \mathcal{A} , then $\bigcup_{i=1}^n A_i \in \mathcal{A}$.

Thus, a σ -algebra is a collection of subsets of X which includes the empty set, and is closed under complements and *finite* unions.

Definition 1.29. A probability measure on an algebra \mathcal{A} is a set function $P : \mathcal{A} \to [0, 1]$ such that

- (i) $P(\Omega) = 1$; and
- (ii) if A_1, A_2, \ldots are disjoint sets in \mathcal{A} for which $\bigcup_{k=1}^{\infty} A_k \in \mathcal{A}$, then $P(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} P(A_k)$.

Example 1.30. Let $\Omega = [0, 1]$ and let \mathcal{A} be the collection of all finite unions of subintervals of Ω , where we interpret an interval of the form [a, a] as a single point $\{a\}$. Then \mathcal{A} is an algebra, and we can define a probability measure P on \mathcal{A} , called *pre-Lebesgue measure*, by

$$P\left(\bigcup_{i=1}^{n} I_i\right) = \sum_{i=1}^{n} \ell(I_i),$$

for any finite collection $\{I_i\}$ of disjoint intervals in [0, 1], where $\ell(I)$ denotes the length of the interval I.

Theorem 1.31 (Carathéodory's extension theorem). Let P be a probability measure on an algebra \mathcal{A} . Then P has a unique extension to a probability measure on the smallest σ -algebra containing \mathcal{A} (which we again denote by P).

Corollary 1.32. There is a unique probability measure P on $([0,1], \mathcal{B}([0,1]))$ such that $P(I) = \ell(I)$ for any subinterval I of [0,1].

Definition 1.33. The probability measure of Corollary 1.32 is called *Lebesgue measure* on [0, 1].

Theorem 1.34. Lebesgue measure P has the following properties:

- (1) (Monotonicity) For any Borel sets A and B with $A \subset B$, $P(A) \leq P(B)$.
- (2) (Regularity) For each Borel set $A \subset [0, 1]$,

$$\begin{split} \mathbf{P}(A) &= \inf \left\{ \sum_{i=1}^{\infty} \ell(I_i) : \{I_i\} \text{ are intervals with } A \subset \bigcup_{i=1}^{\infty} I_i \right\}, \\ \mathbf{P}(A) &= \inf \{\mathbf{P}(O) : O \text{ is an open set in } [0,1] \text{ and } A \subset O\}, \\ \mathbf{P}(A) &= \sup \{\mathbf{P}(F) : F \text{ is a closed set in } [0,1] \text{ and } F \subset A\}. \end{split}$$

(3) (Continuity)

(i) If $\{A_n\}$ is a sequence of Borel sets in [0,1] and $A_{n+1} \subset A_n$ for each n, then

$$\mathbf{P}\left(\bigcap_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mathbf{P}(A_n).$$

(ii) If $\{A_n\}$ is a sequence of Borel sets in [0,1] and $A_{n+1} \supset A_n$ for each n, then

$$P\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} P(A_n).$$

In fact, monotonicity and continuity hold for any probability measure.

Note that we can define Lebesgue measure on any subinterval of \mathbb{R} , including \mathbb{R} itself, by the same process. Lebesgue measure on \mathbb{R} will be denoted by λ . It is of course not a probability measure.

1.2.2 Random variables

Definition 1.35. A function $f : \Omega \to \mathbb{R}$ is \mathcal{F} -measurable if for each $a \in \mathbb{R}$, the set $\{\omega \in \Omega : f(\omega) \leq a\}$ belongs to \mathcal{F} . A random variable on a probability space (Ω, \mathcal{F}, P) is an \mathcal{F} -measurable function $X : \Omega \to \mathbb{R}$.

A standard exercise in measure theory shows that if X is a random variable, the set $\{\omega : X(\omega) \in B\}$ is in \mathcal{F} for every Borel set B. Instead of $P(\{\omega : X(\omega) \in B\})$ we will write simply $P(X \in B)$.

Example 1.36. Let $\Omega = [0, 1]$ and $\mathcal{F} = \mathcal{B}([0, 1])$, and put $X(\omega) = \omega$. Then $P(X \in I) = \ell(I)$ for every interval $I \subset [0, 1]$. We say X has the standard uniform distribution. If a < b, we can define a new r.v. Y by Y = a + (b - a)X. Then

$$P(c < Y \le d) = P\left(\frac{c-a}{b-a} < X \le \frac{d-a}{b-a}\right) = \frac{d-c}{b-a}$$

whenever $a \leq c < d \leq b$. We say Y has the uniform(a, b) distribution.

1.2. INFINITE PROBABILITY SPACES

Independence of events is defined in the same way as in the finite case. Independence of random variables, however, requires a somewhat more careful definition.

Definition 1.37. Random variables X_1, \ldots, X_n are *independent* if for any choice of Borel sets B_1, \ldots, B_n in \mathbb{R} , the events $\{X_1 \in B_1\}, \ldots, \{X_n \in B_n\}$ are independent. An infinite sequence of random variables X_1, X_2, \ldots is said to be independent if X_1, \ldots, X_n are independent for every n.

Proposition 1.38. Random variables X_1, \ldots, X_n are independent if and only if the sets $\{X_1 \leq x_1\}, \ldots, \{X_n \leq x_n\}$ are independent for any choice of real numbers x_1, \ldots, x_n .

Example 1.39 (Independent coin tosses). On the space [0, 1] with Lebesgue measure, we can construct independent $\{0, 1\}$ -valued r.v.'s as follows. Each number $\omega \in [0, 1]$ has a binary expansion

$$\omega = 0.d_1 d_2 \dots d_n \dots = \sum_{i=1}^{\infty} 2^{-i} d_i,$$

where $d_i := d_i(\omega) \in \{0, 1\}$ for each *i*. Numbers of the form $k/2^n$, such as 1/2, 1/4, 3/4, etc., have two binary expansions, e.g.

$$1/2 = 0.1000 \cdots = 0.0111 \cdots$$

For such numbers, for definiteness, we choose the expansion ending in all zeros. Exception: for $\omega = 1$ we write $1 = 0.111 \cdots$.

Now the d_i 's are measurable functions because, for each i, the set $\{\omega : d_i(\omega) = 0\}$ is a finite union of intervals, e.g. $\{\omega : d_2(\omega) = 0\} = [0, 1/4) \cup [1/2, 3/4)$. Thus each d_i is a random variable, and $P(d_i = 1) = P(d_i = 0) = 1/2$ (check!). Therefore we can think of d_i as the outcome of a fair coin toss, where 1 represents heads, and 0 represents tails. The sequence $\{d_i\}$ is independent: for any given n, let b_1, \ldots, b_n be an arbitrary finite sequence of 0's and 1's, and put

$$x_0 := \sum_{i=1}^n 2^{-i} b_i.$$

Then

$$\{\omega: d_1(\omega) = b_1, \dots, d_n(\omega) = b_n\} = [x_0, x_0 + 2^{-n}],\$$

and hence,

$$P(d_1 = b_1, \dots, d_n = b_n) = \ell([x_0, x_0 + 2^{-n}]) = 2^{-n} = P(d_1 = b_1) \cdots P(d_n = b_n).$$

Definition 1.40. The *(cumulative) distribution function* (c.d.f. for short) of a r.v. X is the function $F : \mathbb{R} \to [0, 1]$ defined by

$$F(x) := P(X \le x), \qquad x \in \mathbb{R}.$$

Proposition 1.41. The c.d.f. F of any r.v. X has the following properties:

(i) F is nondecreasing.

(ii) $\lim_{x\to\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$.

(*iii*) F is right-continuous: $\lim_{x \downarrow x_0} F(x) = F(x_0)$ for every $x_0 \in \mathbb{R}$.

Vice versa, any function F with properties (i)-(iii) above is the c.d.f. of some r.v. X.

Proof. Statement (i) follows immediately from the monotonicity of P. Statements (ii) and (iii) are consequences of the continuity of P. For the first limit in (ii), set $A_n = \{\omega : X(\omega) \leq -n\}$. Then $A_{n+1} \subset A_n$, and $\bigcap_{n=1}^{\infty} A_n = \emptyset$, so

$$\lim_{n \to \infty} F(-n) = \lim_{n \to \infty} P(A_n) = P(\emptyset) = 0,$$

and then, since F is nondecreasing, $\lim_{x\to\infty} F(x) = 0$ as well. The second limit in (ii) follows similarly. For (iii), let $A_n = \{\omega : X(\omega) \le x_0 + 1/n\}$. Then again $A_{n+1} \subset A_n$, and $\bigcap_{n=1}^{\infty} A_n = \{\omega : X(\omega) \le x_0\}$, from which the result follows.

The last statement of the proposition is proved in the next theorem.

Notation: For a c.d.f. F, let

$$F^{-1}(y) := \inf\{x : F(x) \ge y\}, \qquad y \in [0, 1).$$
(1.4)

We call F^{-1} the generalized inverse of F.

Theorem 1.42 (Construction of a r.v. with given c.d.f.). Let $F : \mathbb{R} \to [0,1]$ satisfy (i)-(iii) of Proposition 1.41. On the Lebesgue space ([0,1], $\mathcal{B}([0,1]), \mathbb{P})$, put $X(\omega) = F^{-1}(\omega)$. Then X is a r.v. with c.d.f. F.

Proof. We show that

$$F^{-1}(\omega) \le x \quad \Longleftrightarrow \quad \omega \le F(x).$$
 (1.5)

Suppose $F^{-1}(\omega) \leq x$. Since F is nondecreasing, this means that for every $\varepsilon > 0$, $F(x+\varepsilon) \geq \omega$. But then $F(x) \geq \omega$, since F is right continuous. The other direction is obvious. By (1.5), we have

$$\mathbf{P}(\omega: X(\omega) \le x) = \mathbf{P}(\omega: F^{-1}(\omega) \le x) = \mathbf{P}(\omega: \omega \le F(x)) = F(x),$$

as required.

Note that any random variable X determines a unique Borel probability measure μ on $\mathbb R$ which satisfies

$$\mu(B) = \mathcal{P}(X \in B), \qquad B \in \mathcal{B}(\mathbb{R}).$$

Taking B = (a, b] we have in particular,

$$\mu((a, b]) = P(a < X \le b) = F(b) - F(a), \qquad a < b.$$

We call μ the *distribution* of X, and sometimes write μ_X when the r.v. X needs to be made explicit. We also sometimes write $\mu = P X^{-1}$.

Observe that an alternative way to construct a random variable X with given distribution μ_X is to take $X(\omega) = \omega$ on the space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu_X)$.

1.2. INFINITE PROBABILITY SPACES

Theorem 1.43. Given any sequence μ_1, μ_2, \ldots of Borel probability measures on \mathbb{R} , there exists, on the probability space ([0,1], $\mathcal{B}([0,1]), \mathbb{P})$, a sequence of independent random variables X_1, X_2, \ldots , such that for each *i* the distribution of X_i is μ_i .

Proof. Let d_1, d_2, \ldots be the independent $\{0, 1\}$ random variables from Example 1.39. We define random variables U_i $(i \in \mathbb{N})$ via their binary expansions as follows:

$$U_1 := 0.d_2d_4d_8\cdots$$
$$U_2 := 0.d_3d_6d_{12}\cdots$$
$$U_3 := 0.d_5d_{10}d_{20}\cdots$$
$$\vdots$$

Precisely, let p_i denote the *i*th prime number, and set

$$U_i := \sum_{j=1}^{\infty} 2^{-j} d_{2^{j-1}p_i}, \qquad i = 1, 2, \dots.$$

Now if $i \neq j$, then U_i and U_j depend on disjoint subsequences of $\{d_k\}$. It follows that U_1, U_2, \ldots are independent. We next show that they have the standard uniform distribution. We show it for U_1 ; the same argument works for any U_i . The binary digits of U_1 are d_2, d_4, d_8, \ldots , which are independent r.v.'s all with the same distribution as d_1 , so the sequence (d_2, d_4, d_8, \ldots) has the same joint distribution as the sequence (d_1, d_2, d_3, \ldots) . Hence, for any dyadic interval

$$I = [j/2^k, (j+1)/2^k),$$
(1.6)

we have

$$P(U_1 \in I) = \ell(I) = 2^{-k},$$

as in Example 1.39. But any interval [0, x) in [0, 1] can be written as a countably union of disjoint intervals of the form (1.6), so by countable additivity of P, $P(U_1 \in [0, x)) = x$ for $x \in [0, 1]$. Hence, U_1 is standard uniform.

We now have an infinite sequence U_1, U_2, \ldots of independent, standard uniform random variables. Let F_i be the c.d.f. corresponding to μ_i ; that is, $F_i(x) := \mu_i((-\infty, x])$, for $i \in \mathbb{N}$. Set $X_i := F_i^{-1}(U_i)$. Then, as in the proof of Theorem 1.42, X_i has distribution μ_i , and since the U_i are independent, so are the X_i .

Definition 1.44. The distribution μ of a r.v. X is absolutely continuous if there is a nonnegative function f on \mathbb{R} such that

$$\mu((a,b]) = \int_{a}^{b} f(x) \, dx \qquad \text{for all } a < b.$$

If this is the case, we call f the *(probability)* density of X. We also say that X is absolutely continuous.

Note that any such density f must satisfy

$$\int_{-\infty}^{\infty} f(x) \, dx = 1. \tag{1.7}$$

Note: absolute continuity of μ_X clearly implies that the c.d.f. F of X is continuous. In fact, it is equivalent to absolute continuity of the c.d.f. F of X. In particular, F is differentiable almost everywhere, and F'(x) = f(x) at each point where F' exists. It is also equivalent to absolute continuity of μ with respect to Lebesgue measure λ on \mathbb{R} .

Example 1.45. A r.v. X has the $normal(\mu, \sigma^2)$ distribution if it has density

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}, \qquad x \in \mathbb{R},$$

where $\mu \in \mathbb{R}$ and $\sigma > 0$. The normal(0,1) distribution is called the *standard normal* distribution; it has density

$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.$$

A straightforward calculus exercise shows that, if X is standard normal and $Y = \mu + \sigma X$ with $\sigma > 0$, then Y is normal (μ, σ^2) . A less straightforward exercise (using double integrals!) shows that ϕ satisfies (1.7).

Example 1.46. The *exponential*(λ) distribution, with parameter $\lambda > 0$, is the distribution with density

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0\\ 0, & x \le 0 \end{cases}$$

The exponential distribution has the *memoryless property*: If X is an exponential r.v., then for any s > 0 and t > 0,

$$P(X > s + t | X > t) = P(X > s).$$

Example 1.47. The gamma(α, λ) distribution, with parameters $\lambda > 0$ and $\alpha > 0$, has density

$$f(x) = \begin{cases} \lambda e^{-\lambda x} \frac{(\lambda x)^{\alpha - 1}}{\Gamma(\alpha)}, & x > 0\\ 0, & x \le 0 \end{cases}$$

where Γ is the gamma function:

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} \, dx, \qquad \alpha > 0.$$

In case $\alpha = n$, an integer, it can be shown (by repeated integration by parts) that $\Gamma(n) = (n-1)!$. Also, $\Gamma(\frac{1}{2}) = \sqrt{\pi}$. (Proof?) The gamma distribution generalizes the exponential distribution, and is further related to it as follows.

Proposition 1.48. If X_1, \ldots, X_n are independent exponential(λ) r.v.'s, then the sum $S := X_1 + \cdots + X_n$ has the gamma (n, λ) distribution.

Definition 1.49. The *joint cumulative distribution function* or *joint c.d.f.* for short, of a pair (X, Y) of random variables, is defined by

$$F(x,y) = P(X \le x, Y \le y)$$

Definition 1.50. Random variables X and Y are *jointly absolutely continuous* if there is a nonnegative function $f : \mathbb{R}^2 \to \mathbb{R}$ such that the joint c.d.f. of X and Y satisfies

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) \, dv \, du, \qquad \text{for all } x \text{ and } y.$$

In that case we call f the *joint density* of X and Y. Note that

$$f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}.$$

Joint c.d.f.'s and joint densities of three or more random variables are defined similarly.

Definition 1.51. A probability distribution μ on \mathbb{R} is *discrete* if there is a countable subset $C \subset \mathbb{R}$ such that $\mu(C) = 1$. A random variable X is discrete if its distribution is discrete.

We have already seen an example of a discrete distribution, namely the binomial distribution of Example 1.24. More examples follow below.

Example 1.52 (Bernoulli distribution). A r.v. X has the *Bernoulli(p)* distribution if P(X = 1) = p and P(X = 0) = 1 - p, where 0 . We can construct such an X on <math>[0,1] with Lebesgue measure by putting $X(\omega) = \chi_{[0,p]}(\omega)$. The c.d.f. of a Bernoulli(p) r.v. is

$$F(x) = \begin{cases} 0, & x < 0\\ 1 - p, & 0 \le x < 1\\ 1, & x \ge 1. \end{cases}$$

Using the method of Theorem 1.43 we can construct on $\Omega = [0, 1]$ an infinite sequence of independent Bernoulli(p) r.v.'s. We can interpret this sequence as a sequence of unfair coin tosses, or more generally, a sequence of *Bernoulli trials*, where 1 stands for success, and 0 for failure.

Example 1.53 (Geometric distribution). Consider a sequence of independent Bernoulli(p) trials as in the last example. Let N be the number of the trial at which the first success occurs. More precisely, if X_1, X_2, \ldots are Bernoulli(p) r.v.'s, set $N = \inf\{i : X_i = 1\}$. Then N takes possible values $1, 2, \ldots$, and conceivably, ∞ . Now

$$P(N = n) = P(X_1 = 0, ..., X_{n-1} = 0, X_n = 1) = (1 - p)^{n-1}p, \quad n \in \mathbb{N}.$$

Since these probabilities add to 1, it follows that $P(N = \infty) = 0$. We say N has the geometric(p) distribution. Note the simple formula

$$\mathbf{P}(N > n) = (1 - p)^n,$$

which can be derived probabilistically, without summing a geometric series!

Example 1.54 (Negative binomial distribution). Consider again a sequence of independent Bernoulli(p) trials, but now, for a fixed $r \in \mathbb{N}$, let N be the number of the trial at which the rth success occurs. Then N takes possible values $r, r + 1, \ldots$, and

$$P(N = n) = {\binom{n-1}{r-1}} p^r (1-p)^{n-r}, \qquad n = r, r+1, \dots$$

(Why?) We say N has the negative binomial(r, p) distribution.

Example 1.55 (Poisson distribution). A r.v. X has the $Poisson(\mu)$ distribution (with parameter $\mu > 0$) if it satisfies

$$P(X = k) = e^{-\mu} \frac{\mu^k}{k!}, \qquad k = 0, 1, 2, \dots$$

The Poisson distribution is often used as a simpler model in place of the binomial distribution if n is very large and p is very small. The justification is as follows. Consider the binomial(n, p) distribution with probabilities

$$P_k = \binom{n}{k} p^k q^{n-k},$$

where q = 1 - p. Put $\mu = np$. Now let $n \to \infty$ and $p \to 0$ in such a way that $np = \mu$ remains constant. Then

$$P_0 = q^n = (1-p)^n = \left(1 - \frac{\mu}{n}\right)^n \to e^{-\mu},$$

and for $k \geq 0$,

$$\frac{P_{k+1}}{P_k} = \frac{n-k}{k+1} \cdot \frac{p}{q} \to \frac{\mu}{k+1}.$$

Thus, for each fixed k,

$$P_k = P_0 \prod_{j=0}^{k-1} \frac{P_{j+1}}{P_j} \to e^{-\mu} \prod_{j=0}^{k-1} \frac{\mu}{j+1} = e^{-\mu} \frac{\mu^k}{k!}.$$

1.2. INFINITE PROBABILITY SPACES

1.2.3 Expectation and the Lebesgue integral

Definition 1.56. Let (Ω, \mathcal{F}, P) be a probability space. A measurable function f on Ω which takes only finitely many values is called a *simple function*. Thus, simple functions are functions of the form

$$\varphi(\omega) = \sum_{i=1}^{n} c_i \chi_{A_i}(\omega), \qquad (1.8)$$

where c_i are constants and A_i are \mathcal{F} -measurable sets. If the sets A_i are disjoint and $c_i \neq c_j$ for $i \neq j$ we call (1.8) the *canonical representation* of φ .

Definition 1.57. The *integral* of a simple function φ with canonical representation (1.8) is defined as

$$\int \varphi(\omega) \, d \, \mathcal{P}(\omega) := \sum_{i=1}^{n} c_i \, \mathcal{P}(A_i). \tag{1.9}$$

(It can be shown that the value of the right-hand side of (1.9) does not depend on the representation of φ . Thus, it is not necessary to put a simple function in canonical representation before determining its integral.)

Definition 1.58. Let f be a nonnegative measurable function on Ω . The integral of f is defined by

$$\int f(\omega) \, d \operatorname{P}(\omega) := \sup_{\varphi} \int \varphi(\omega) \, d \operatorname{P}(\omega),$$

where the supremum is taken over all simple functions φ with $0 \leq \varphi \leq f$ everywhere on Ω .

(Note that the integral of f could take the value $+\infty$.)

Finally, if f is an arbitrary measurable function on Ω , define the positive and negative parts of f respectively by

$$f^+ = \max\{f, 0\}, \qquad f^- = \max\{-f, 0\}.$$

Then $f = f^+ - f^-$, and $f^+ + f^- = |f|$. Note that both f^+ and f^- are nonnegative.

Definition 1.59. The integral of a measurable function f on Ω is defined by

$$\int f(\omega) \, d \operatorname{P}(\omega) := \int f^+(\omega) \, d \operatorname{P}(\omega) - \int f^-(\omega) \, d \operatorname{P}(\omega),$$

unless both integrals on the right equal $+\infty$, in which case the integral of f does not exist.

If both $\int f^+ dP$ and $\int f^- dP$ are finite, we say f is *integrable* (with respect to P).

Note: We can define the integral of f with respect to a nonfinite measure in the same way. If $\Omega = \mathbb{R}$ with Lebesgue measure λ , we write $\int f(x) dx$ instead of $\int f(x) d\lambda(x)$.

Theorem 1.60 (Properties of the integral). Assume the integrals of f and g exist.

- (i) If f = g a.e. (that is, $P(\omega : f(\omega) = g(\omega)) = 1$), then $\int f dP = \int g dP$.
- (ii) (Monotonicity) If $f \leq g$, then $\int f dP \leq \int g dP$. In particular, if $f \geq 0$, then $\int f dP \geq 0$.
- (iii) (Linearity) For real a and b,

$$\int (af + bg) d\mathbf{P} = a \int f d\mathbf{P} + b \int g d\mathbf{P}$$

Definition 1.61. We define the integral of f over a set $A \in \mathcal{F}$ by

$$\int_A f \, d\mathbf{P} := \int f \chi_A \, d\mathbf{P}$$

Definition 1.62. The *expectation* of a random variable X on (Ω, \mathcal{F}, P) is the value of

$$\mathbf{E}(X) := \int X(\omega) \, d \, \mathbf{P}(\omega),$$

provided the integral exist. If $E|X| < \infty$, we say X is *integrable*.

Definition 1.63. Let X and Y be random variables on a common probability space $(\Omega, \mathcal{F} P)$. We say X = Y almost surely (a.s.) if $P(X = Y) = P(\omega : X(\omega) = Y(\omega)) = 1$.

Proposition 1.64. If X = Y a.s., then E(X) = E(Y).

Proof. This is just a restatement of Theorem 1.60 (i).

Theorem 1.65 (Change of variable). Let X be a random variable with distribution μ . Let g be a real function for which g(X) is either nonnegative or integrable with respect to P. Then

$$\int_{\Omega} g(X(\omega)) \, d \operatorname{P}(\omega) = \int_{\mathbb{R}} g(x) \, d\mu(x).$$

Proof. This is a standard exercise in measure theory. We will not prove it here.

Theorem 1.66 (Expectation formulas). Let X be a random variable and g a real function.

(i) If X is discrete, then

$$E(g(X)) = \sum_{x} g(x) P(X = x).$$
 (1.10)

(ii) If X is absolutely continuous with density f, then

$$\mathcal{E}(g(X)) = \int_{-\infty}^{\infty} g(x)f(x) \, dx. \tag{1.11}$$

1.2. INFINITE PROBABILITY SPACES

Proof. (i) If X is discrete, then g(X) takes only countably many values, say c_1, c_2, \ldots . Assume first that g(X) is nonegative. (If not, consider positive part and negative part separately.) Let $\{B_i\}$ be a partition of Ω such that $g(X) = c_i$ on B_i , so that we can write $g(X(\omega)) = \sum_{i=1}^{\infty} c_i \chi_{B_i}(\omega)$. By the definition of $\int g(X) dP$ as a supremum over simple functions, we have

$$\int g(X) \, d\mathbf{P} \ge \sum_{i=1}^{n} c_i \, \mathbf{P}(B_i), \qquad \text{for each } n,$$

and so

$$\int g(X) \, d\mathbf{P} \ge \sum_{i=1}^{\infty} c_i \, \mathbf{P}(B_i).$$

One checks easily that any simple function $0 \le \varphi \le g(X)$ must satisfy

$$\int \varphi \, d\mathbf{P} \leq \sum_{i=1}^{\infty} c_i \, \mathbf{P}(B_i),$$

and hence,

$$\int g(X) \, d\mathbf{P} = \sum_{i=1}^{\infty} c_i \, \mathbf{P}(B_i)$$

(ii) is a consequence of Theorem 1.65 and another standard exercise in measure theory (Royden, Exer. 11.22): if

$$\mu(A) = \int_A f \, d\lambda, \qquad A \in \mathcal{B}(\mathbb{R}),$$

then

$$\int g \, d\mu = \int g f \, d\lambda.$$

Taking $g(x) = x^k$ in the above theorem we obtain the k^{th} moment of X, $E(X^k)$. The variance of X, denoted Var(X), is defined the same way as before, so

$$\operatorname{Var}(X) = \operatorname{E}[(X - E(X))^2] = \operatorname{E}(X^2) - [\operatorname{E}(X)]^2.$$

The expectations and variances in the examples below can all be obtained using basic calculus techniques.

Example 1.67 (Discrete distributions).

- (1) Let $X \sim \text{geometric}(p)$. Then E(X) = 1/p and $Var(X) = (1-p)/p^2$.
- (2) Let $X \sim \text{negative binomial}(r, p)$. Then E(X) = r/p and $Var(X) = r(1-p)/p^2$. (To see this probabilistically, think of X as a sum of r independent geometric(p) r.v.'s!)

(3) Let $X \sim \text{Poisson}(\mu)$. Then $E(X) = \text{Var}(X) = \mu$.

Example 1.68 (Absolutely continuous distributions).

- (1) Let $X \sim uniform(0, 1)$. Then E(X) = 1/2 and Var(X) = 1/12.
- (2) Let $X \sim \operatorname{normal}(\mu, \sigma^2)$. Then $E(X) = \mu$ and $\operatorname{Var}(X) = \sigma^2$.
- (3) Let $X \sim \text{exponential}(\lambda)$. Then $E(X) = 1/\lambda$ and $Var(X) = 1/\lambda^2$.
- (4) Let $X \sim \text{gamma}(\alpha, \lambda)$. Then $E(X) = \alpha/\lambda$ and $Var(X) = \alpha/\lambda^2$. (For $\alpha \in \mathbb{N}$, this follows from Proposition 1.48.)

Definition 1.69. Let P and \tilde{P} be probability measures on the same space (Ω, \mathcal{F}) . We say \tilde{P} is *absolutely continuous* with respect to P, and write $\tilde{P} \ll P$, if P(A) = 0 implies $\tilde{P}(A) = 0$. If both $\tilde{P} \ll P$ and $P \ll \tilde{P}$, we say P and \tilde{P} are *equivalent*.

Losely speaking, equivalent measures agree on what is "possible", but may disagree on the likelihood of possible things.

Theorem 1.70 (Radon-Nikodym). If P and \tilde{P} are probability measures on a (Ω, \mathcal{F}) and $\tilde{P} \ll P$, then there is a nonnegative random variable Z on (Ω, \mathcal{F}) such that

$$\tilde{\mathbf{P}}(A) = \mathbf{E}[Z\chi_A] = \int_A Z \, d\mathbf{P}, \qquad A \in \mathcal{F}.$$

Furthermore, if we let \tilde{E} denote expectation with respect to \tilde{P} , that is,

$$\tilde{\mathcal{E}}(X) = \int X \, d\,\tilde{\mathcal{P}},$$

then

$$\tilde{\mathcal{E}}(X) = \mathcal{E}[XZ].$$

In particular, E(Z) = 1.

We call Z the Radon-Nikodym derivative of \tilde{P} with respect to P, and write

$$Z = \frac{d\,\tilde{\mathbf{P}}}{d\,\mathbf{P}}.$$

Proof. The first part of the theorem is just the Radon-Nikodym theorem from measure theory (see Royden, Thm 11.23). The second part follows from the observations at the end of the proof of Theorem 1.66. \Box

1.2.4 Useful inequalities

We end this section with some useful inequalities. First, let X be a nonnegative random variable, and a > 0. Then

$$E(X) = \int X \, dP = \int_{\{X < a\}} X \, dP + \int_{\{X \ge a\}} X \, dP \ge 0 + \int_{\{X \ge a\}} a \, dP = a \, P(X \ge a).$$

Hence,

$$\mathbf{P}(X \ge a) \le \frac{\mathbf{E}(X)}{a}.$$

This is called *Markov's inequality*. For an arbitrary random variable X and $k \in \mathbb{N}$ we thus have

$$\mathbf{P}(|X| \ge a) = \mathbf{P}(|X|^k \ge a^k) \le \frac{\mathbf{E}(|X|^k)}{a^k}.$$

Now suppose that X is a random variable with mean E(X) = m and finite variance. Taking k = 2 in the last inequality above and replacing X with X - m, we obtain *Chebyshev's inequality*:

$$P(|X - m| \ge a) \le \frac{\operatorname{Var} X}{a^2}.$$

Another useful inequality is *Jensen's inequality*: If X is a random variable and φ a convex real function, then

$$\mathbf{E}[\varphi(X)] \ge \varphi(\mathbf{E}(X)).$$

(See Royden, sec. 5.5.)

1.3 Convergence of random variables

Definition 1.71. A sequence of random variables $\{X_n\}$ defined on a common probability space $(\Omega, \mathcal{F}, \mathbf{P})$ converges almost surely to a random variable X (defined on the same space) if

$$P\left(\lim_{n \to \infty} X_n = X\right) = 1.$$

Notation: $X_n \to X$ a.s.

We often need conditions under which $X_n \to X$ a.s. implies that $E(X_n) \to E(X)$. We state the following convergence theorems from measure theory in their probability contexts without proof. (See Royden, sec. 4.3 or sec. 11.3.)

Theorem 1.72 (Bounded Convergence Theorem). If $\{X_n\}$ is uniformly bounded, i.e. there is K > 0 such that $|X_n(\omega)| \leq K$ for all n and all ω , then $X_n \to X$ a.s. implies that $E(X) = \lim_{n\to\infty} E(X_n)$.

Theorem 1.73 (Fatou's Lemma). If X_n is nonnegative for each n and $X_n \to X$ a.s., then

$$\mathcal{E}(X) \le \liminf_{n \to \infty} \mathcal{E}(X_n).$$

Theorem 1.74 (Monotone Convergence Theorem). If X_n is nonnegative for each n, $X_{n+1} \ge X_n$ a.s. for each n, and $X_n \to X$ a.s., then $E(X) = \lim_{n \to \infty} E(X_n)$.

Theorem 1.75 (Dominated Convergence Theorem). Suppose X_n are integrable random variables, and there is an integrable random variable Y such that $|X_n| \leq Y$ a.s. for each n. Then, if $X_n \to X$ a.s., we have $E(X) = \lim_{n\to\infty} E(X_n)$.

As a typical example of how these theorems may be used, we prove the following expectation formula for nonnegative random variables.

Theorem 1.76. If X is a nonnegative r.v., then

$$\mathcal{E}(X) = \int_0^\infty \mathcal{P}(X > x) \, dx. \tag{1.12}$$

Proof. Assume first that X is a simple r.v. (that is, a r.v. taking only finitely many values). Say the possible values of X are $x_1 < x_2 < \cdots < x_m$. Put $x_0 := 0$, and let $y_i = x_i - x_{i-1}$ for $i = 1, 2, \ldots, m$. Then $x_i = \sum_{\nu=1}^i y_{\nu}$ for each $i \ge 1$. We now calculate

$$E(X) = \sum_{i=1}^{m} x_i P(X = x_i) = \sum_{i=1}^{m} \sum_{\nu=1}^{i} y_{\nu} P(X = x_i)$$
$$= \sum_{\nu=1}^{m} \sum_{i=\nu}^{m} y_{\nu} P(X = x_i) = \sum_{\nu=1}^{m} (x_{\nu} - x_{\nu-1}) P(X \ge x_{\nu})$$
$$= \sum_{\nu=1}^{m} \int_{x_{\nu-1}}^{x_{\nu}} P(X > x) dx = \int_{0}^{\infty} P(X > x) dx,$$

since P(X > x) = 0 for $x > x_m$. Thus, (1.12) holds for simple random variables. If X is an arbitrary nonnegative r.v., let $\{X_n\}$ be an increasing sequence of nonnegative simple r.v.'s such that $X_n \to X$ a.s. By the Monotone Convergence Theorem (MCT), $E(X_n) \uparrow E(X)$. Furthermore, for each x > 0, $P(X_n > x) \uparrow P(X > x)$. So again by the MCT (applied this time to $[0, \infty)$ with Lebesgue measure λ),

$$\int_0^\infty \mathbf{P}(X_n > x) \, dx \quad \uparrow \quad \int_0^\infty \mathbf{P}(X > x) \, dx.$$

Since (1.12) holds for each X_n , it thus holds for X as well.

Similarly, the MCT is used to prove the analog of Proposition 1.23(ii).

Theorem 1.77. If X and Y are independent, then E(XY) = E(X)E(Y).

Proof. Assume first that X and Y are both nonnegative. There are sequences $\{X_n\}$ and $\{Y_n\}$ of nonnegative simple r.v.'s such that for each n, X_n and Y_n are independent, $X_n \uparrow X$ a.s. and $Y_n \uparrow Y$ a.s. By Proposition 1.23, $E(X_nY_n) = E(X_n) E(Y_n)$. Applying the MCT to both sides gives E(XY) = E(X) E(Y), since $X_nY_n \uparrow XY$.

For general X and Y, we have $XY = (X^+ - X^-)(Y^+ - Y^-)$, and hence,

$$\begin{split} \mathbf{E}(XY) &= \mathbf{E}[(X^+ - X^-)(Y^+ - Y^-)] \\ &= \mathbf{E}(X^+Y^+) - \mathbf{E}(X^+Y^-) - \mathbf{E}(X^-Y^+) + \mathbf{E}(X^-Y^-) \\ &= \mathbf{E}(X^+) \, \mathbf{E}(Y^+) - \mathbf{E}(X^+) \, \mathbf{E}(Y^-) - \mathbf{E}(X^-) \, \mathbf{E}(Y^+) + \mathbf{E}(X^-) \, \mathbf{E}(Y^-) \\ &= \left(\, \mathbf{E}(X^+) - \mathbf{E}(X^-) \right) \left(\, \mathbf{E}(Y^+) - \mathbf{E}(Y^-) \right) \\ &= \mathbf{E}(X) \, \mathbf{E}(Y). \end{split}$$

We now turn to the question of proving almost sure convergence. Recalling the definition of a limit, we have

$$\{X_n \not\to X\} = \bigcup_{\varepsilon > 0} \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \{|X_n - X| \ge \varepsilon\} = \bigcup_{\varepsilon > 0, \varepsilon \in \mathbb{Q}} \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} \{|X_n - X| \ge \varepsilon\}.$$

Thus, if we want to show that $X_n \to X$ a.s., it suffices to show (in view of countable additivity) that for each $\varepsilon > 0$,

$$P\left(\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}\{|X_n - X| \ge \varepsilon\}\right) = 0.$$
(1.13)

For this, the first Borel-Cantelli lemma is useful. Given a sequence $\{A_n\}$ of events, define

$$\limsup A_n = \{A_n \text{ infinitely often (i.o.)}\} := \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k,$$
$$\liminf A_n = \{A_n \text{ almost always (a.a.)}\} := \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k.$$

Exercise: Find several relationships between $\limsup A_n$ and $\liminf A_n$.

Proposition 1.78 (The first Borel-Cantelli lemma). Let $\{A_n\}$ be any sequence of events. If $\sum_{n=1}^{\infty} P(A_n) < \infty$, then $P(\limsup A_n) = 0$.

Proof. Note that for each m,

$$P(\limsup A_n) \le P\left(\bigcup_{k=m}^{\infty} A_k\right) \le \sum_{k=m}^{\infty} P(A_k).$$

By the hypothesis, the last sum tends to zero as $m \to \infty$. Hence, $P(\limsup A_n) = 0$. \Box

There exists a partial converse the first Borel-Cantelli lemma. (It requires the A_n to be independent.)

Proposition 1.79 (The second Borel-Cantelli lemma).

Let $\{A_n\}$ be a sequence of independent events. If $\sum_{n=1}^{\infty} P(A_n) = \infty$, then $P(\limsup A_n) = 1$.

Proof. Note $(\limsup A_n)^c = \liminf A_n^c$. Using independence and the inequality $1 - x \le e^{-x}$ we have, for any $j \in \mathbb{N}$,

$$\mathbf{P}\left(\bigcap_{k=n}^{n+j} A_k^c\right) = \prod_{k=n}^{n+j} (1 - \mathbf{P}(A_k)) \le \exp\left(-\sum_{k=n}^{n+j} \mathbf{P}(A_k)\right).$$

By hypothesis, the sum inside the last expression tends to ∞ as $j \to \infty$, and hence the exponential tends to 0. Therefore,

$$\mathbf{P}\left(\bigcap_{k=n}^{\infty} A_k^c\right) = \lim_{j \to \infty} \mathbf{P}\left(\bigcap_{k=n}^{n+j} A_k^c\right) = 0, \quad \text{for each } n.$$

By countable additivity, it follows that $P(\liminf A_n^c) = 0$, and hence, $P(\limsup A_n) = 1$.

In fact it can be shown (as a consequence of *Kolmogorov's zero-one law* - see Billingsley, Theorem 4.5) that when the A_n are independent, P(lim sup A_n) is always either 0 or 1. The Borel-Cantelli lemmas specify which of the two is the case.

Back to almost sure convergence... To prove that $X_n \to X$ a.s., it suffices in view of the first Borel-Cantelli lemma to show that

$$\sum_{n=1}^{\infty} \mathbf{P}(|X_n - X| \ge \varepsilon) < \infty \quad \text{for every } \varepsilon > 0.$$

For this, Chebyshev's inequality is often a useful tool. This procedure is illustrated in the proof of the following theorem.

Theorem 1.80 (Strong law of large numbers). Let X_1, X_2, \ldots be independent and identically distributed random variables with finite mean m, and put $S_n := X_1 + \cdots + X_n$. Then

$$\frac{S_n}{n} \to m \quad a.s.$$

Proof. The full proof is rather involved (see Billingsley, Thm 22.1), but we prove the statement here under the assumption that $E(X_1^4) < \infty$. We may assume that m = 0, for otherwise we can replace X_i with $X_i - m$. Note that $E(X_1^4) < \infty$ implies $E(X_1^2) < \infty$. Our goal is to show that

$$P(|S_n/n| \ge \varepsilon \text{ i.o.}) = 0 \tag{1.14}$$

for every $\varepsilon > 0$. Let $E(X_1^2) = \sigma^2$ and $E(X_1^4) = \xi^4$. Fix $\varepsilon > 0$. By Markov's inequality,

$$P(|S_n/n| \ge \varepsilon) = P(S_n^4 \ge (\varepsilon n)^4) \le \varepsilon^{-4} n^{-4} E(S_n^4).$$
(1.15)

1.3. CONVERGENCE OF RANDOM VARIABLES

Now

$$\mathcal{E}(S_n^4) = \sum_{i,j,k,l} \mathcal{E}(X_i X_j X_k X_l),$$

where the four indices range independently over $1, \ldots, n$. If any of i, j, k and l is different from the other three, then $E(X_iX_jX_kX_l) = 0$ by independence and the fact that m = 0. This leaves terms of the form $E(X_i^2X_j^2) = E(X_i^2)E(X_j^2) = \sigma^4$ with $i \neq j$, of which there are $\binom{4}{2}\binom{n}{2} = 3n(n-1)$, and terms of the form $E(X_i^4) = \xi^4$, of which there are n. Thus,

$$E(S_n^4) = 3n(n-1)\sigma^4 + n\xi^4 \le 3\sigma^4 n^2, \text{ for all large enough } n.$$

It thus follows by (1.15) that $\sum_{n=1}^{\infty} P(|S_n/n| \ge \varepsilon) < \infty$, and the first Borel-Cantelli lemma gives (1.14). As explained earlier, this establishes that $S_n/n \to 0$ a.s.

Note: The above proof is easily modified to show that if the r.v.'s $\{X_n\}$ have uniformly bounded fourth moments, they need not be identically distributed, as long as they have identical expectation m.

Definition 1.81. A sequence of random variables $\{X_n\}$ defined on a common probability space $(\Omega, \mathcal{F}, \mathbf{P})$ converges in probability to a random variable X (defined on the same space) if for every $\varepsilon > 0$,

$$P(|X_n - X| \ge \varepsilon) \to 0, \text{ as } n \to \infty.$$
 (1.16)

Notation: $X_n \to_P X$.

(Note: convergence in probability is the same concept as *convergence in measure* - see Royden sec. 4.5.)

Limits in probability are unique in the following sense.

Proposition 1.82. If $X_n \to_P X$ and $X_n \to_P Y$, then P(X = Y) = 1.

Proof. Let $\varepsilon > 0$. Then

$$P(|X - Y| \ge \varepsilon) \le P(|X_n - X| \ge \varepsilon/2) + P(|X_n - Y| \ge \varepsilon/2) \to 0.$$

Hence $P(|X - Y| \ge \varepsilon) = 0$. Since ε was arbitrary, P(X = Y) = 1.

Proposition 1.83. Let $\{X_n\}$ be a sequence of r.v.'s which converges almost surely to a r.v. X. Then $X_n \to_P X$.

Proof. Fix $\varepsilon > 0$, and let $A_n = \{|X_n - X| \ge \varepsilon\}$. Since $X_n \to X$ a.s., we have in particular that $P(\limsup A_n) = 0$. Since $\bigcup_{k=n}^{\infty} A_k$ is a decreasing sequence, it follows that

$$\lim_{n \to \infty} \mathbf{P}\left(\bigcup_{k=n}^{\infty} A_k\right) = 0.$$

But then $\lim_{n\to\infty} P(A_n) = 0$, as $A_n \subset \bigcup_{k=n}^{\infty} A_k$. Hence, $X_n \to_P X$.

Exercise 1.84. Give an example to show that the converse of Proposition 1.83 is false.

The strong law of large numbers and Proposition 1.83 together imply the *weak law of large numbers*, which says that, under the hypotheses of the strong law,

$$S_n/n \to_P m$$

In case the $\{X_n\}$ have finite variance σ^2 , this last result has a much simpler direct proof using Chebyshev's inequality:

$$\mathbf{P}(|S_n/n - m| \ge \varepsilon) = \mathbf{P}(|S_n - nm| \ge \varepsilon n) \le \frac{\mathbf{Var}(S_n)}{\varepsilon^2 n^2} = \frac{n\sigma^2}{\varepsilon^2 n^2} = \frac{\sigma^2}{\varepsilon^2 n} \to 0.$$

Theorem 1.85. Let $\{X_n\}$ be a sequence of r.v.'s and X a r.v., all defined on the same probability space. Then $X_n \to_P X$ if and only if every subsequence $\{X_{n_k}\}$ has a further subsequence $\{X_{n_{k(i)}}\}$ which converges to X almost surely.

Proof. Suppose $X_n \to_P X$. Given $\{n_k\}$, we can choose a subsequence $\{n_{k(i)}\}$ such that

 $k \ge k(i) \implies \mathcal{P}(|X_{n_k} - X| \ge 1/i) < 2^{-i}.$

This implies by the first Borel-Cantelli lemma that

$$P(|X_{n_{k(i)}} - X| \ge 1/i \text{ i.o.}) = 0.$$

Hence, with probability one, $|X_{n_{k(i)}} - X| < 1/i$ for all but finitely many *i*. But this means $\lim_{i\to\infty} X_{n_{k(i)}} = X$ a.s.

Conversely, suppose X_n does not converge to X in probability. Then there is some $\varepsilon > 0$ and some subsequence $\{n_k\}$ such that

$$P(|X_{n_k} - X| \ge \varepsilon) \ge \varepsilon$$
, for all k.

No subsequence of $\{X_{n_k}\}$ can converge to X in probability, and hence, by Proposition 1.83, no subsequence can converge to X almost surely.

Corollary 1.86. Let $X_n \to_P X$ and let f be a continuous real function. Then $f(X_n) \to_P f(X)$.

Proof. Exercise.

Definition 1.87. Let $r \ge 1$, and let $\{X_n\}$ be random variables on a common probability space with $E(|X_n|^r) < \infty$. Let X be a r.v. defined on the same space as the X_n with $E(|X|^r) < \infty$. We say $X_n \to X$ in L^r if

$$\lim_{n \to \infty} \mathcal{E}(|X_n - X|^r) = 0.$$

Proposition 1.88. If $X_n \to X$ in L^r , then $X_n \to_P X$.

Proof. This follows immediately from Markov's inequality.

Exercise 1.89. Give an example (for given $r \ge 1$) of a sequence $\{X_n\}$ and a r.v. X such that:

(1) X_n converges to X almost surely, but not in L^r .

(2) X_n converges to X in L^r , but not almost surely.

Definition 1.90. Let $\{X_n\}$ be a sequence of random variables, not necessarily defined on the same probability space, with c.d.f.'s $\{F_n\}$. Let X be a random variable with c.d.f. F. We say X_n converges to X in distribution, or converges weakly to X, if $F_n(x) \to F(x)$ for every continuity point x of F. We denote this by $X_n \Rightarrow X$. We also say in this case that F_n converges weakly to F, denoted $F_n \Rightarrow F$.

Theorem 1.91. Let X, $\{X_n\}$ be random variables defined on a common probability space. If $X_n \to_P X$, then $X_n \Rightarrow X$.

Proof. Let x be a continuity point of the c.d.f. F of X; that is, P(X = x) = 0. Verify that for $\varepsilon > 0$,

$$P(X \le x - \varepsilon) - P(|X_n - X| \ge \varepsilon) \le P(X_n \le x) \le P(X \le x + \varepsilon) + P(|X_n - X| \ge \varepsilon).$$

Let $n \to \infty$ and $\varepsilon \downarrow 0$ to obtain, by (1.16),

$$\mathbf{P}(X \le x) = \mathbf{P}(X < x) \le \liminf_{n \to \infty} \mathbf{P}(X_n \le x) \le \limsup_{n \to \infty} \mathbf{P}(X_n \le x) \le \mathbf{P}(X \le x)$$

Thus, $P(X_n \le x) \to P(X \le x)$, as required.

Exercise 1.92. Give an example to show that the converse of Theorem 1.91 fails.

An important tool for proving theorems about convergence in distribution is the following.

Theorem 1.93 (Skorohod's theorem). Suppose $X_n \Rightarrow X$. Then there exist random variables $\{Y_n\}$ and Y on a common probability space $(\Omega, \mathcal{F}, \mathbf{P})$ such that Y_n has the same distribution as X_n for each n, Y has the same distribution as X, and $Y_n(\omega) \to Y(\omega)$ for each $\omega \in \Omega$.

Proof. Take $\Omega = [0, 1]$, $\mathcal{F} = \mathcal{B}([0, 1])$, and P Lebesgue measure on [0, 1]. Let F_n be the c.d.f. of X_n , and F the c.d.f. of X. For each $\omega \in [0, 1]$, put $Y_n(\omega) = F_n^{-1}(\omega)$ and $Y(\omega) = F^{-1}(\omega)$. (Recall the definition (1.4).) As in Theorem 1.42, Y_n has c.d.f. F_n and Y has c.d.f. F. We need to show that $Y_n(\omega) \to Y(\omega)$. The basic idea is that, if $F_n(x) \to F(x)$ for each continuity point x of F, then $F_n^{-1}(u) \to F^{-1}(u)$ at each continuity point u of F^{-1} . In other words, $Y_n(\omega) \to Y(\omega)$ at each continuity point ω of Y. The technical details of the argument can be found in Billingsley, Thm. 25.6. Since Y is nondecreasing on [0, 1], it has at most countably many discontinuity points, so the set of these discontinuity points has measure 0. At each such point ω , redefine $Y_n(\omega) = Y(\omega) = 0$. Then $Y_n(\omega) \to Y(\omega)$ for all ω , and Y_n and Y still have c.d.f. F_n and F, respectively.

The following theorem, which characterizes weak convergence in terms of expectations, illustrates the power of the Skorohod theorem.

Theorem 1.94. Let X, $\{X_n\}$ be random variables. Then $X_n \Rightarrow X$ if and only if

$$\mathbf{E}[f(X_n)] \to \mathbf{E}[f(X)] \tag{1.17}$$

for any bounded, continuous real function f.

Proof. Suppose $X_n \Rightarrow X$. Let f be bounded and continuous. Construct random variables Y_n and Y as in Theorem 1.93. Then $\mathbb{E}[f(X_n)] = \mathbb{E}[f(Y_n)]$ and $\mathbb{E}[f(X)] = \mathbb{E}[f(Y)]$, and by the Dominated (or the Bounded) Convergence Theorem, $\mathbb{E}[f(Y_n)] \to \mathbb{E}[f(Y)]$. Thus, we have (1.17).

Conversely, suppose (1.17) holds for each bounded and continuous f. Let F_n be the c.d.f. of X_n , and F the c.d.f. of X. To show $X_n \Rightarrow X$, we would like to take $f = \chi_{(-\infty,x]}$ for each continuity point x of F, but this f is not continuous. Hence, approximate it by a continuous function as follows. Fix y > x, and put

$$f(t) = \begin{cases} 1, & t \le x\\ \frac{y-t}{y-x}, & x \le t \le y\\ 0, & t \ge y. \end{cases}$$

Then $f \ge \chi_{(-\infty,x]}$, so $F_n(x) = \mathbb{E}[\chi_{(-\infty,x]}(X_n)] \le \mathbb{E}[f(X_n)]$. On the other hand, $f \le \chi_{(-\infty,y]}$, and so $\mathbb{E}[f(X)] \le \mathbb{E}[\chi_{(-\infty,y]}(X)] = F(y)$. It follows from (1.17) that

$$\limsup_{n \to \infty} F_n(x) \le F(y).$$

Letting $y \downarrow x$ and using that F is right-continuous gives

$$\limsup_{n \to \infty} F_n(x) \le F(x)$$

By a similar argument (exercise!) we can show that

$$F(x-) \le \liminf_{n \to \infty} F_n(x).$$

Hence, $F_n(x) \to F(x)$ at all continuity points x of F.

The most important statement about convergence in distribution is, of course, the *Central Limit Theorem*. For its proof and several generalizations, see Billingsley, sec. 27.

Theorem 1.95 (Central Limit Theorem). Let X_1, X_2, \ldots be independent, identically distributed random variables with mean m and finite positive variance σ^2 , and let $S_n = X_1 + \cdots + X_n$. Then

$$\frac{S_n - nm}{\sigma\sqrt{n}} \Rightarrow N,$$

where N is a standard normal random variable.