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Text: Introduction to Stochastic Calculus with Applications, by Fima C. Klebaner (3rd
edition), Imperial College Press.

Other recommended reading: (Do not purchase these books before consulting with
your instructor!)

1. Real Analysis by H. L. Royden (3rd edition), Prentice Hall.

2. Probability and Measure by Patrick Billingsley (3rd edition), Wiley.

3. Probability with Martingales by David Williams, Cambridge University Press.

4. Stochastic Calculus for Finance I and II by Steven E. Shreve, Springer.

5. Brownian Motion and Stochastic Calculus by Ioannis Karatzas and Steven E. Shreve,
Springer. (Warning: this requires stamina, but is one of the few texts that is complete
and mathematically rigorous)
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Chapter 6

American options

Whereas a European option can be exercised only at the expiration date T , an American
option is one that may be exercised at any time on or before the expiration date. We
distinguish two types of options: finite-expiration options that have a finite deadline T > 0,
and perpetual options, which have no deadline. For both types of American option, the
exercise time will be a stopping time τ . (See Chapter 3!) The holder of the option can
choose from among many stopping times, and thus the seller of the option must hedge his
risk against all possible stopping times the buyer might employ. This is the fundamentally
new idea in this chapter, and means that pricing an American option involves solving an
optimal stopping problem.

6.1 Hitting time for a Brownian motion with drift

We will need the following result:

Theorem 6.1. Let W (t) : t ≥ 0 be a Brownian motion on a probability space (Ω,F ,P).
Let µ ∈ R, and define X(t) = W (t) + µt. For m > 0, let

τm := inf{t ≥ 0 : X(t) = m},

where inf ∅ = ∞. Then, for all λ > 0,

E(e−λτm) = e−m(−µ+
√

µ2+2λ), (6.1)

where we set e−∞ = 0.

Exercise 6.2. Show that τm is a stopping time relative to the natural filtration (Ft)t of
W (t). (Hint: by the continuity of X(t), τm = inf{t ≥ 0 : X(t) ≥ m}. Recall that you
have to show {τ ≤ t} ∈ Ft for every t. Again use the continuity of X(t) and consider a
countable dense set of time points, e.g. Q ∩ [0, t].)
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Proof of Theorem 6.1. Put σ = −µ+
√

µ2 + 2λ; then σ > 0 and a direct calculation shows

σµ+
1

2
σ2 = λ.

Thus,

eσX(t)−λt = eσW (t)−σ2t/2, (6.2)

and we know from Chapter 3 that this last process is a martingale. By the optimal stopping
theorem (continuous time version!), the stopped martingale

M(t) := exp

{
σW (t ∧ τm)− 1

2
σ2(t ∧ τm)

}

is also a martingale. Hence, for each n ∈ N,

1 = M(0) = EM(n) = E
[
eσX(n∧τm)−λ(n∧τm)

]
(by (6.2))

= E
[
eσm−λτm I{τm≤n}

]
+ E

[
eσX(n)−λn I{τm>n}

]
.

Now the nonnegative r.v.’s eσm−λτm I{τm≤n} increase in n to the limit eσm−λτm I{τm<∞}, so
by MCT,

lim
n→∞

E
[
eσm−λτm I{τm≤n}

]
= E

[
eσm−λτm I{τm<∞}

]
.

On the other hand,

0 ≤ eσX(n)−λn I{τm>n} ≤ eσm−λn,

and so

0 ≤ E
[
eσX(n)−λn I{τm>n}

]
≤ eσm−λn → 0.

Therefore, we obtain

1 = E
[
eσm−λτm I{τm<∞}

]
,

or equivalently,

E
[
e−λτm I{τm<∞}

]
= e−σm = e−m(−µ+

√
µ2+2λ), (6.3)

for all λ > 0.

Note: Letting λ ↓ 0 in (6.3), we get by MCT,

P(τm < ∞) = E
(
I{τm<∞}

)
= lim

λ↓0
e−m(−µ+

√
µ2+2λ) = emµ−m|µ|, (6.4)

so that

P(τm < ∞) =

{
1, when µ ≥ 0,

e−2m|µ|, when µ ≤ 0.
(6.5)
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6.2 The perpetual American put option

We now consider the perpetual American put option, whose owner has the right to sell a
share of stock at any time t > 0 for a fixed price K. Of course, no clairvoyance of the
future is allowed, so the stock must be sold at a stopping time τ which takes values in
[0,∞], where τ = ∞ means the option is never exercised. We assume the Black-Scholes
model, with a constant interest rate r > 0, constant mean rate of return α, and constant
volatility σ > 0. The discounted value of the perpetual American put when exercised at
time τ is

e−rτ (K − S(τ)),

which is interpreted as 0 if τ = ∞. We would like to proceed as before and consider the
expectation of this under a risk-neutral measure, but there is a subtlety: The risk-neutral
measure used in Chapter 5 was based on a fixed finite time horizon T through the relation
Q(A) = E[Z(T ) IA], where Z(t) was an exponential martingale derived from the parameters
of the stock price process. This construction is clearly inadequate here: we need a measure
on all of F∞ = σ(W (t) : 0 ≤ t < ∞), not just on FT for some finite T . We deal with this
issue first.

6.2.1 Construction of the risk-neutral measure

We shall construct Brownian motion as the coordinate mapping process W (t, ω) := ω(t)
on the canonical space (Ω,F ,P) = (C[0,∞),B(C[0,∞)), Wiener measure) (see Section
3.2.6). We let Ft = σ(W (s) : 0 ≤ s ≤ t) for 0 ≤ t < ∞, and F∞ = B(C[0,∞)). We define
a process Z(t) as in the Girsanov theorem: let θ = (α− r)/σ (a constant!), and set

Z(t) := exp

{
−
∫ t

0
θdW (u)− 1

2

∫ t

0
θ2du

}
= e−θW (t)−θ2t/2, 0 ≤ t < ∞.

We know from Chapter 3 that Z(t) is a martingale with mean 1. (This does not require
Novikov’s theorem!) Now for every T ∈ [0,∞), define a probability measure QT on FT by

QT (A) := E[Z(T ) IA], A ∈ FT .

Exercise 6.3. Show that, if 0 ≤ t ≤ T and A ∈ Ft, then QT (A) = Qt(A). (Use the
martingale property of Z(t).)

The exercise implies that the family (QT )0≤T<∞ is consistent, so it defines a finitely
additive set function Q on the algebra

⋃
0≤T<∞FT which satisfies Q(∅) = 0 and Q(Ω) = 1.

It can be shown with some effort that this set function is in fact countably additive, so by
Carathéodory’s extension theorem it can be uniquely extended to a probability measure Q
defined on F∞ = σ(

⋃
0≤T<∞FT ).

Now the process

W̃ (t) := W (t) + θt, t ≥ 0
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is adapted to (Ft)t, and is a Brownian motion under Q. Note that the restriction of Q to
FT is QT , for 0 ≤ T < ∞. We write

dQ

dP

∣∣∣∣
FT

= Z(T ).

However, as a measure on F∞, Q is not absolutely continuous with respect to P, at least
not if θ 6= 0, as it usually is in real financial markets. For instance, the law of large numbers
(Proposition 3.21) implies

Q

(
lim
t→∞

W (t)

t
= −θ

)
= Q

(
lim
t→∞

W̃ (t)

t
= 0

)
= 1,

whereas

P

(
lim
t→∞

W (t)

t
= −θ

)
= 0.

This shows that neither P nor Q is absolutely continuous with respect to the other as
measures on F∞.

We recall from Chapter 5 that in terms of W̃ , the SDE for the stock price becomes

dS(t) = rS(t)dt+ σS(t)dW̃ (t). (6.6)

This has the explicit solution

S(t) = S(0) exp

{(
r − σ2

2

)
t+ σW̃ (t)

}
. (6.7)

6.2.2 Price of the perpetual American put

We follow Shreve, Section 8.3. Assume the model setup of the previous subsection. Let T
denote the collection of all stopping times τ (relative to the filtration (Ft)t) taking values
in [0,∞].

Definition 6.4. The price of the perpetual American put option with strike K is defined
by

v∗(x) = sup
τ∈T

EQ

[
e−rτ (K − S(τ))

]
, (6.8)

when S(0) = x.

It will be explained later, by arbitrage considerations, why it makes sense to define the
price of the option this way. But first we focus on the optimal stopping problem (6.8). We
wish to find a specific stopping time τ∗ that attains the supremum, that is,

EQ

[
e−rτ∗(K − S(τ∗))

]
= v∗(x).
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At each time t, the amount of time left is the same (i.e. infinity), so one would expect that
at any time t, the decision whether to stop and exercise the option or to wait longer should
depend only on the stock price S(t), but not on t itself. A further look at (6.8) leads us to
guess that the optimal stopping time might well be of the form

τL := inf{t ≥ 0 : S(t) ≤ L}, (6.9)

for some constant L < K. We compute first the expectation in (6.8) for this stopping time
τL. Put

vL(x) := EQ

[
e−rτL(K − S(τL))

]
,

when S(0) = x, and note that, by the continuity of S(t),

vL(x) =

{
K − x, if 0 ≤ x ≤ L,

(K − L) EQ(e
−rτL), if x ≥ L,

since S(τL) = L a.s. when S(0) ≥ L. Using (6.7), we have that S(t) = L if and only if

−W̃ (t)− 1

σ

(
r − σ2

2

)
t =

1

σ
log

x

L
.

Thus we can apply Theorem 6.1, with −W̃ instead of W , EQ instead of E, and λ = r,
µ = −σ−1(r − 1

2σ
2), and m = σ−1 log(x/L). This gives, after some algebra(!),

EQ(e
−rτL) = exp

{
− 1

σ
log

x

L
· 2r
σ

}
=
(x
L

)−2r/σ2

,

when S(0) = x ≥ L. Thus, we obtain the formula

vL(x) =

{
K − x, if 0 ≤ x ≤ L,

(K − L)
(
x
L

)−2r/σ2

, if x > L.
(6.10)

It is a straightforward calculus exercise to maximize this over L. For each x, the maximum
value of the second expression in the above equation is attained at

L∗ =
2r

2r + σ2
K.

(Note that indeed, L∗ < K.) One can check that at x = L∗, the left- and right-hand
derivatives of vL∗(x) are equal (both = −1). This could have been guessed from the figure
below, which shows the graph of vL(x) for several values of L. The fact that, although
the formula for vL∗(x) has two cases, the two pieces of the graph connect “smoothly” (i.e.
with a common tangent line), is known as the “principle of smooth fit”, which is a useful
heuristic tool in the theory of optimal stopping.
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(Figure reproduced from Shreve, p. 350)
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6.2.3 Optimality of the rule τL∗

Theorem 6.5. The process e−rtvL∗(S(t)) is a supermartingale under Q, and the stopped

process e−r(t∧τL∗ )vL∗(S(t ∧ τL∗)) is a martingale under Q.

Proof. We first observe that v′L∗ is continuous, and v′′L∗ is defined and continuous every-
where except at x = L∗. Furthermore, vL∗ satisfies the differential equation

rvL∗(x)− rxv′L∗(x)− 1

2
σ2x2v′′L∗(x) =

{
rK, if 0 ≤ x < L∗,

0, if x > L∗.
(6.11)

(Check this!) We want to apply Itô’s formula to the function f(x, t) = e−rtvL∗(x). It can
be shown that Itô’s formula still holds when fxx has jumps, as long as fx is continuous.
(This is proved using the concept of local time; see K & S, Section 3.6.) Thus, we obtain

d
(
e−rtvL∗(S(t))

)
= df(S(t), t)

= ft(S(t), t)dt+ fx(S(t), t)dS(t) +
1

2
fxx(S(t), t)d[S, S](t)

= e−rt

[
−rvL∗(S(t)) + rS(t)v′L∗(S(t)) +

1

2
σ2S2(t)v′′L∗(S(t))

]
dt

+ e−rtσS(t)v′L∗(S(t))dW̃ (t),

after substituting (6.6). Now it does not matter that v′′L∗(L∗) is undefined, because
Q(S(t) = L∗) = 0 for all t, and so the set {t ≥ 0 : S(t) = L∗} has Lebesgue-measure
zero with probability one. Using (6.11), the above differential simplifies to

d
(
e−rtvL∗(S(t))

)
= −e−rtrK I{S(t)<L∗} dt+ e−rtσS(t)v′L∗(S(t))dW̃ (t). (6.12)

In integral form:

e−rtvL∗(S(t)) = vL∗(S(0))−
∫ t

0
e−rurK I{S(u)<L∗} du+

∫ t

0
e−ruσS(u)v′L∗(S(u))dW̃ (u).

(6.13)
Because xv′L∗(x) is bounded, the integrand in the Itô integral is bounded and so the Itô
integral is a Q-martingale in t. Since the rest of the right hand side above is nonincreasing
in t, this implies that e−rtvL∗(S(t)) is a supermartingale under Q. Finally, the stopped
process satisfies (6.13) with t ∧ τL∗ in place of t. But for u ≤ τL∗ we have S(u) ≥ L∗, so
the Riemann integral vanishes and we have

e−r(t∧τL∗ )vL∗(S(t ∧ τL∗)) = vL∗(S(0)) +

∫ t∧τL∗

0
e−ruσS(u)v′L∗(S(u))dW̃ (u).

Thus, the stopped process is a martingale under Q.
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Corollary 6.6. The stopping time τL∗ is optimal in (6.8). In other words,

vL∗ = v∗ = max
τ∈T

EQ

[
e−rτ (K − S(τ))

]
,

where x = S(0). Thus, vL∗ is the price of the perpetual American put option.

Proof. If a process X(t) is a supermartingale, then for any stopping time τ the stopped
process X(t∧τ) is also a supermartingale. (Compare Proposition 2.18 for the discrete-time
case.) Thus, for any stopping time τ ∈ T , we have

vL∗(x) = vL∗(S(0)) ≥ EQ

[
e−r(t∧τ)vL∗

(
S(t ∧ τ)

)]
. (6.14)

Since vL∗ is bounded, BCT gives

vL∗(x) ≥ EQ

[
e−rτvL∗(S(τ))

]
≥ EQ

[
e−rτ

(
K − S(τ)

)]
,

where the last inequality follows since vL∗(x) ≥ K − x for all x, as can be seen easily from
(6.10). Since τ was arbitrary, we conclude

vL∗(x) ≥ sup
τ∈T

EQ

[
e−rτ (K − S(τ))

]
.

On the other hand, the choice τ = τL∗ gives equality in (6.14), and BCT gives

vL∗(x) = EQ

[
e−rτvL∗(S(τL∗))

]
.

But (provided x ≥ L∗), S(τL∗) = L∗ and vL∗(L∗) = K − L∗, so

e−rτL∗vL∗(S(τL∗)) = e−rτL∗

(
K − S(τL∗)

)
.

This holds also if x < L∗, in which case S(τL∗) = S(0) = x, and if τL∗ = ∞, in which case
both sides equal 0. Hence,

vL∗(x) = EQ

[
e−rτL∗

(
K − S(τL∗)

)]
≤ sup

τ∈T
EQ

[
e−rτ (K − S(τ))

]
,

and as a result, vL∗ = v∗.

6.2.4 Hedging the American put option

Why did we define the price of the perpetual American put the way we did? Consider
an agent with initial capital V (0) = vL∗(S(0)). Suppose this agent invests at each time t
an amount a(t) = v′L∗(S(t)) in the stock, and invests the remainder of his fortune in the
money market account. In addition, the agent consumes cash at rate C(t) = rK I{S(t)<L∗}.
Let V (t) be the value of the agent’s portfolio. Then

dV (t) = a(t)dS(t) + r
(
V (t)− a(t)S(t)

)
dt− C(t)dt,
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and so

d
(
e−rtV (t)

)
= e−rt

(
− rV (t)dt+ dV (t)

)

= e−rt
(
a(t)dS(t)− ra(t)S(t)dt− C(t)dt

)

= e−rt
(
a(t)σS(t)dW̃ (t)− C(t)dt

)
.

Substituting a(t) = v′L∗(S(t)) and C(t) = rK I{S(t)<L∗} and comparing with (6.12) we see
that

d
(
e−rtV (t)

)
= d

(
e−rtvL∗(S(t))

)
.

Since V (0) = vL∗(S(0)), this implies that V (t) = vL∗(S(t)) for all t prior to exercise of
the option. In particular, V (t) ≥ (K − S(t))+ for all t until the option is exercised, so the
agent can pay off a short position in the option regardless of when it is exercised. If the
option is exercised after the optimal time τL∗ , the agent can even consume cash during
periods when the stock price is below L∗. This shows that, if the option is sold for more
than vL∗(S(0)), the seller of the option has an arbitrage opportunity.

On the other hand, if the option is exercised at the optimal time τL∗ , then V (τL∗) =
vL∗(S(τL∗)) = vL∗(L∗) = K − L∗ = K − S(τL∗), so the agent has exactly enough to pay
off a short position in the option, and can not consume cash. Thus, if the option were sold
for a lower price than vL∗(S(0)), the seller would not be able to hedge the option. Hence,
vL∗(S(0)) is the arbitrage-free price.

6.3 The finite-expiration American put

While the perpetual American put option has a simple explicit pricing formula, it is not
actually traded in real financial markets. By contrast, the American put option with a
finite expiration date T > 0 is traded in real markets. One can develop a pricing theory
for it analogous to that of the previous section, but this pricing theory will necessarily be
more complicated since the price of the option will depend not only on the strike price K,
but now also on T . In particular, one has to solve the optimal stopping problem

v∗(x, t) = sup
τ∈T ,t≤τ≤T

EQ

[
e−r(τ−t)(K − S(τ))+

∣∣S(t) = x
]
,

where Q is the risk-neutral measure. Here the optimal strategy at time t (stop or continue)
will depend both on the stock price and on the time T − t remaining until the deadline. It
is no longer possible to give an explicit expression for v∗(x, t), but one can derive a PDE for
it analogous to (6.11). As with the perpetual American put, the finite-expiration American
put can be hedged by an investment-consumption portfolio which may consume cash if the
buyer of the option exercises it after the optimal time. For the details, see Shreve, Section
8.4.
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6.4 The finite-expiration American call

We now turn to the American call option, which gives its owner the right to buy a share
of stock for a fixed price K any time on or before a deadline T > 0. For American options,
there is no direct relationship between the price of a call option and the price of a put
option (i.e. no put-call parity). Indeed, we shall see that the for a stock which pays no
dividends (the model considered so far), the pricing of a finite-expiration American call is
in a sense uninteresting, as the arbitrage-free price is the same as for the European call
option. We shall consider the more general American derivative security, which pays its
holder h(S(t)) upon exercise at time t. We call h(S(t)) the intrinsic value of the derivative
security.

Let 0 < T < ∞, let Q be a risk-neutral probability measure, and let the stock price
S(t) satisfy the SDE

dS(t) = rS(t)dt+ σS(t)dW̃ (t),

where W̃ (t) is a Brownian motion under Q, and r is the constant interest rate.

Lemma 6.7. Let h : [0,∞) → R be a nonnegative convex function satisfying h(0) = 0.
Then e−rth(S(t)) is a submartingale under Q.

Proof. Convexity implies that

h(λx) ≤ λh(x), x ≥ 0, 0 ≤ λ ≤ 1. (6.15)

We can now calculate, for 0 ≤ u ≤ t ≤ T :

EQ

[
e−r(t−u)h(S(t))

∣∣Fu

]
≥ EQ

[
h
(
e−r(t−u)S(t)

) ∣∣Fu

]
(by (6.15))

≥ h
(
EQ

[
e−r(t−u)S(t)

∣∣Fu

])
(conditional Jensen)

= h
(
eru EQ

[
e−rtS(t)|Fu

])

= h
(
erue−ruS(u)

)
(since e−rtS(t) is a Q-martingale)

= h(S(u)).

Multiplying by e−ru we obtain

EQ[e
−rth(S(t))|Fu] ≥ e−ruh(S(u)).

Thus, e−rth(S(t)) is a submartingale under Q.

Theorem 6.8. Let h : [0,∞) → R be a nonnegative convex function satisfying h(0) = 0.
The price of the American derivative security expiring at time T and having intrinsic value

h(S(t)), 0 ≤ t ≤ T , is the same as the price of the European derivative security paying

h(S(T )) at time T .
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Proof. By Lemma 6.7,

EQ

[
e−r(T−t)h(S(T ))

∣∣Ft

]
≥ h(S(t)), 0 ≤ t ≤ T.

The left hand side is the value of the European derivative security at time t. Thus, at any
time t it is at least as good to own the European derivative security as it is to exercise
the American derivative security. In other words, the early exercise option is worthless,
and the price of the American derivative security is the same as the price of the European
derivative security.

The finite-expiration American call option becomes nontrivial for models where the
stock pays dividends, either at discrete times or as a continuous flow. See Shreve, Section
8.5.2 for a treatment of the discrete case.


