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Text: Introduction to Stochastic Calculus with Applications, by Fima C. Klebaner (3rd
edition), Imperial College Press.

Other recommended reading: (Do not purchase these books before consulting with
your instructor!)

1. Real Analysis by H. L. Royden (3rd edition), Prentice Hall.

2. Probability and Measure by Patrick Billingsley (3rd edition), Wiley.

3. Probability with Martingales by David Williams, Cambridge University Press.

4. Stochastic Calculus for Finance I and II by Steven E. Shreve, Springer.

5. Brownian Motion and Stochastic Calculus by Ioannis Karatzas and Steven E. Shreve,
Springer. (Warning: this requires stamina, but is one of the few texts that is complete
and mathematically rigorous)
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Chapter 3

Stochastic Processes in continuous
time

By a stochastic process in continuous time we mean a collection (X(t))t∈[0,∞) of random
variables on a common probability space (Ω,F ,P), or sometimes a collection (X(t))t∈[0,T ],
where T > 0 is a constant. As in the discrete time case, we think of t as a “time parameter”.
When it is necessary to indicate the dependence on ω, we write X(t, ω).

By a filtration we mean here an increasing collection (Ft)t≥0 of sub-σ-algebras of F ;
that is, Fs ⊂ Ft for s < t. We also define

Ft+ :=
⋂
u>t

Fu.

Note that Ft+ is a σ-algebra, and Ft ⊂ Ft+. The reverse inclusion is in general false:

Example 3.1. Let Z be standard normal random variable (or any other nondegenerate
r.v.), and put

X(t) =

{
0, 0 ≤ t ≤ 1
Z, t > 1.

Let Ft = σ(X(s) : 0 ≤ s ≤ t) be the smallest σ-algebra with respect to which X(s) is
measurable for all s ∈ [0, t]. Then

Ft =

{
{∅,Ω}, 0 ≤ t ≤ 1
σ(Z), t > 1.

Hence, F1+ = σ(Z) 6= {∅,Ω} = F1.

Definition 3.2. A filtration (Ft)t is right-continuous if Ft+ = Ft for all t.

We will often assume that the filtrations that we work with are right-continuous. We’ll
also usually assume (for reasons explained later!) that F0 contains the P-null sets of F .
Together, these two requirements are referred to as the usual conditions.
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56 CHAPTER 3. STOCHASTIC PROCESSES IN CONTINUOUS TIME

Definition 3.3. A stochastic process (X(t))t is adapted to the filtration (Ft)t if X(t) is
Ft-measurable for each t.

Definition 3.4. A stopping time relative to a filtration (Ft)t is a [0,∞]-valued r.v. τ such
that for each t > 0,

{τ ≤ t} ∈ Ft.

Exercise 3.5. Show that if τ is a stopping time, then for each t > 0,

{τ = t} ∈ Ft.

Definition 3.6. For a stopping time τ , define the collection

Fτ := {A ∈ F : A ∩ {τ ≤ t} ∈ Ft ∀ t}.

As in the discrete-time case, Fτ is a σ-algebra and τ is Fτ -measurable.

Definition 3.7. A process (X(t))t is called a submartingale relative to the filtration (Ft)t
if:

(i) (X(t))t is adapted to (Ft)t;

(ii) E|X(t)| <∞ for all t; and

(iii) E[X(t)|Fs] ≥ X(s) a.s. for all 0 ≤ s < t.

A process (X(t))t is a supermartingale if (−X(t))t is a submartingale. A process that is
both a submartingale and a supermartingale is called a martingale.

Some stochastic processes are constructed from the ground up; others are defined im-
plicitly by a set of conditions. For this second type of process, it is necessary to prove
that a stochastic process satisfying the conditions actually exists. Kolmogorov’s existence
theorem is an important tool for this.

Definition 3.8. Let X = (X(t))t be a stochastic process. The finite-dimensional distri-
butions of X are the probability measures

µt1...tk(B) := P((X(t1), . . . , X(tk)) ∈ B), k ∈ N, 0 ≤ t1 < t2 < . . . tk, B ∈ B(Rk).

Note that the family {µt1...tk} satisfies the consistency condition

µt1...ti−1ti+1...tk(B1 × · · · ×Bi−1 ×Bi+1 × · · ·Bk)
= µt1...tk(B1 × · · · ×Bi−1 × R×Bi+1 × · · ·Bk),

(3.1)

for all i = 1, . . . , k, where Bi ∈ B(R) for each i.

Theorem 3.9 (Kolmogorov’s existence theorem). If {µt1...tk} is a family of probability
measures satisfying (3.1), then there exists, on some probability space (Ω,F ,P), a stochastic
process (X(t))t whose finite-dimensional distributions are µt1...tk .

Proof. See Billingsley, Section 36.



3.1. THE POISSON PROCESS 57

3.1 The Poisson process

In this section, let X1, X2, . . . be i.i.d. random variables having the exponential distribution
with parameter λ > 0, and let Sn = X1 + · · ·+Xn. Recall from Proposition 1.48 that Sn
has a gamma(n, λ) distribution. The c.d.f. of Sn is the function

Gn(x) =
∞∑
i=n

e−λx
(λx)i

i!
, x ≥ 0. (3.2)

This can be checked by computing G′n(x) and comparing with the gamma density.
We now think of the Xi’s as waiting times between consecutive events of some kind,

like arrivals of customers at a post office or tasks at a computer network. The total number
of events that have happened on or before time t (where t ≥ 0) is then

N(t) := max{n ≥ 0 : Sn ≤ t}. (3.3)

Clearly, N(t) is piecewise constant, changing only in positive jumps of size 1. The jump
times are the random times Sn. Furthermore, N(t, ω) is right-continuous as a function of
t for each ω. We say N(t) has right-continuous sample paths. Note that

{N(t) = n} = {Sn ≤ t < Sn+1).

By (3.2), we have
P(N(t) ≥ n) = P(Sn ≤ t) = Gn(t),

and so

P(N(t) = n) = Gn(t)−Gn+1(t) = e−λt
(λt)n

n!
, n = 0, 1, 2, . . . .

Thus, for each t, N(t) has a Poisson (λt) distribution. From this it follows that the expected
number of events (say arrivals) in a time interval (s, t] is proportional to t − s. We call
(N(t))t a Poisson process with intensity λ. In fact, we can say more:

Theorem 3.10 (Independent and stationary increments of the Poisson process).

(i) For 0 < t1 < t2 < · · · < tk, the increments N(t1), N(t2)−N(t1), . . . , N(tk)−N(tk−1)
are independent.

(ii) For all s < t, the increment N(t)−N(s) has a Poisson(λ(t− s)) distribution.

Proof. Fix t > 0, and define new random variables

X
(t)
1 = SN(t)+1 − t, X

(t)
2 = XN(t)+2, X

(t)
3 = XN(t)+3, . . .

These are the waiting times after time t, because

SN(t) ≤ t < SN(t)+1.
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Verify that
N(t+ s)−N(t) = max{m ≥ 0 : X(t)

1 + · · ·+X(t)
m ≤ s}. (3.4)

We first show that

P
(
N(t) = n,

(
X

(t)
1 , . . . , X

(t)
j

)
∈ H

)
= P(N(t) = n) P((X1, . . . , Xj) ∈ H), (3.5)

for all H ∈ B(Rj). By Carathéodory’s extension theorem, it is enough to show this for all
H of the form

H = (y1,∞)× (y2,∞)× · · · × (yj ,∞). (3.6)

In order to do so, we calculate

P(Sn ≤ t < Sn+1, Sn+1 − t > y) = P(Sn ≤ t,Xn+1 > t+ y − Sn)

=
∫
x≤t

P(Xn+1 > t+ y − x) dGn(x)

= e−λy
∫
x≤t

P(Xn+1 > t− x) dGn(x)

= e−λy P(Sn ≤ t,Xn+1 > t− Sn),

where the third equality follows by the memoryless property of the exponential distribution.
Using this and the independence of the Xn, we obtain for H of the form (3.6),

P
(
N(t) = n,

(
X

(t)
1 , . . . , X

(t)
j

)
∈ H

)
= P(Sn+1 − t > y1, Xn+2 > y2, . . . , Xn+j > yj , Sn ≤ t < Sn+1)

= P(Sn+1 − t > y1, Sn ≤ t < Sn+1)e−λy2 · · · e−λyj

= P(Sn ≤ t < Sn+1)e−λy1 · · · e−λyj

= P(Nt = n) P((X1, . . . , Xj) ∈ H).

Thus, we have (3.5).
Now let 0 < s1 < s2 < · · · < sk and 0 ≤ m1 ≤ m2 ≤ · · · ≤ mk. Then

{N(si) = mi, 1 ≤ i ≤ k} = {(X1, . . . , Xj) ∈ H},

where j = mk + 1 and

H = {(x1, . . . , xj) ∈ Rj : x1 + · · ·+ xmi ≤ si < x1 + · · ·+ xmi+1, 1 ≤ i ≤ k}.

In the same way, by (3.4),

{N(t+ si)−N(t) = mi, 1 ≤ i ≤ k} =
{(
X

(t)
1 , . . . , X

(t)
j

)
∈ H

}
.

Hence, (3.5) gives

P
(
N(t) = n,N(t+ si)−N(t) = mi, 1 ≤ i ≤ k

)
= P(N(t) = n) P

(
N(si) = mi, 1 ≤ i ≤ k

)
.
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Applying this repeatedly, we obtain for 0 = t0 < t1 < · · · < tk,

P
(
N(ti)−N(ti−1) = ni, 1 ≤ i ≤ k

)
=

k∏
i=1

P
(
N(ti − ti−1) = ni

)
.

From this, the assertions of the theorem follow.

Exercise 3.11. Show that the following are martingales:

(i) N(t)− λt

(ii) (N(t)− λt)2 − λt

3.2 Brownian motion

Botanist Robert Brown described the highly irregular motion of a pollen particle suspended
in liquid in 1828. Albert Einstein gave a physical explanation for this motion and derived
mathematical equations for it in 1905. The process that we now call Brownian motion
was formulated rigorously (from a mathematical point of view) by Norbert Wiener in the
1920s, and because of his work, the process is also frequently called the Wiener process. In
the 1940s, Paul Lévy analyzed Brownian motion more deeply and introduced the notion of
local time, important for the theory of stochastic calculus. Around the same time, Kiyoshi
Itô laid the groundwork for this new kind of calculus, publishing what is now known as Itô’s
rule, which replaces the chain rule from ordinary differential calculus. Brownian motion is
now used in many areas, including physics, engineering and mathematical finance.

Definition 3.12. A (one-dimensional) Brownian motion is a stochastic process {W (t) : t ≥
0} = {W (t, ω) : t ≥ 0} on some probability space (Ω,F ,P) with the following properties:

(i) W (0) ≡ 0.

(ii) (Independence of increments) For 0 ≤ t1 < t2 < · · · < tn < ∞, the increments
W (t2)−W (t1),W (t3)−W (t2), . . . ,W (tn)−W (tn−1) are independent.

(iii) (Stationarity and normality of increments) For 0 < s < t, the increment W (t)−W (s)
has a normal distribution with mean 0 and variance t− s.

(iv) (Continuity of sample paths) For each ω ∈ Ω, the function t 7→W (t, ω) is continuous.

The first question that needs to be addressed is whether such a process actually exists.
It is not difficult to check that the stipulations (ii) and (iii) satisfy the consistency condition
(3.1), so Kolmogorov’s existence theorem implies the existence of a process {W (t)} satisfy-
ing (i)-(iii). However, there is no guarantee that this process will have continuous sample
paths. One way around this is to begin with a process {W (t)} as given by Kolmogorov’s
theorem, and prove that the restriction of this process to dyadic rational time points is with
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probability one uniformly continuous on compact intervals. One can then redefine W (t)
at nondyadic t by taking limits over dyadic rationals approaching t, which will guarantee
continuity of W (t). This approach, which can be found in Billingsley, section 37, is rather
technical. Instead, we will construct Brownian motion from the ground up. But first, some
preliminaries.

Definition 3.13. A process {X(t) : t ≥ 0} is Gaussian if every finite linear combination
a1X(t1) + · · ·+ anX(tn) has a normal distribution, where ai ∈ R and ti ≥ 0 for all i.

Lemma 3.14. Brownian motion is a Gaussian process. It has mean and covariance func-
tions given by

µ(t) := E(W (t)) = 0,

and
r(s, t) := Cov(W (s),W (t)) = min{s, t}.

Proof. Let 0 ≤ t1 < t2 < · · · < tn and a1, . . . , an ∈ R. Put t0 = 0. Note that for each i,
we can write W (ti) as a linear combination of the increments W (t1)−W (t0), . . . ,W (tn)−
W (tn−1). But then a1W (t1)+· · ·+anW (tn) is also a linear combination of these increments.
Hence, {W (t)} is Gaussian.

That the mean of W (t) is zero is obvious. To compute the covariance, assume WLOG
that s < t. Then W (s) and W (t)−W (s) are independent and have mean zero, so

E[W (s)W (t)] = E
[
W (s)(W (t)−W (s))

]
+ E

[
(W (s))2

]
= E(W (s)) E(W (t)−W (s)) + Var(W (s)) = s.

Hence,
Cov(W (s),W (t)) = E(W (s)W (t))− E(W (s)) E(W (t)) = s,

as required.

It can be shown that the finite-dimensional distributions of a Gaussian process are
completely determined by its mean and covariance functions. Thus, if we can construct a
Gaussian process with continuous sample paths and with the correct mean and covariance
functions, then this process must be Brownian motion.

3.2.1 Construction of Brownian motion

To begin, note that it is sufficient to construct Brownian motion on 0 ≤ t ≤ 1: we can
then construct infinitely many independent copies of this Brownian motion and paste them
together to obtain Brownian motion on [0,∞). Precisely, let Wj(t), j ∈ N be independent
Brownian motions on [0, 1] and put

W (t) =

{
W1(t), 0 ≤ t < 1∑n−1

j=1 Wj(1) +Wn(t− n), n ≤ t < n+ 1, n ∈ N.
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Then one checks easily that W (t) is a Brownian motion on [0,∞).

Step 1. Define the Haar functions

H1(t) = 1, 0 ≤ t ≤ 1

H2n+1(t) =


2n/2, 0 ≤ t < 2−(n+1)

−2n/2, 2−(n+1) ≤ t ≤ 2−n

0, elsewhere

(n = 0, 1, 2, . . . )

H2n+j(t) = H2n+1

(
t− j − 1

2n

)
, j = 1, . . . , 2n, n ≥ 0.

Define the Schauder functions by

Sk(t) =
∫ t

0
Hk(u) du, k ∈ N, 0 ≤ t ≤ 1.

Then S1(t) = t, and for n ≥ 0 and 1 ≤ j ≤ 2n, the graph of S2n+j is a “tent” of height
2−(n+2)/2 over the interval [(j − 1)/2n, j/2n]. Note that

S2n+j(t)S2n+k(t) = 0 ∀ t if 1 ≤ k < j ≤ 2n. (3.7)

Step 2. Let Zk, k ∈ N be independent standard normal r.v.’s. Put

W (n)(t) =
2n∑
k=1

ZkSk(t), 0 ≤ t ≤ 1, n ≥ 0.

Lemma 3.15. As n → ∞, W (n) converges uniformly on [0, 1] to a continuous function
W (t) with probability one.

Proof. Let

Mn := max
1≤j≤2n−1

|Z2n−1+j |, n ∈ N.

For x > 0 and k ∈ N, we have

P(|Zk| > x) = 2 P(Zk > x) =

√
2
π

∫ ∞
x

e−u
2/2 du

≤
√

2
π

∫ ∞
x

u

x
e−u

2/2 du =

√
2
π

e−x
2/2

x
.



62 CHAPTER 3. STOCHASTIC PROCESSES IN CONTINUOUS TIME

Thus, for n ∈ N,

P(Mn > n) = P

 ⋃
1≤j≤2n−1

{
|Z2n−1+j | > n

}
≤

2n−1∑
j=1

P
(
|Z2n−1+j | > n

)
= 2n P(|Z1| > n) ≤

√
2
π
· 2ne−n

2/2

n
.

Since
∞∑
n=1

2ne−n
2/2

n
<∞

(check!!), the first Borel-Cantelli lemma implies that

P(Mn > n for infinitely many n) = 0.

Hence, with probability one, there is an index N such that Mn ≤ n whenever n ≥ N . But
then,

∞∑
k=2N+1

|ZkSk(t)| ≤
∞∑
n=N

Mn+12−(n+2)/2 ≤
∞∑
n=N

(n+ 1)2−(n+2)/2 <∞

for all 0 ≤ t ≤ 1. Thus, by the Cauchy criterion, W (n)(t) converges uniformly on [0, 1] to a
function W (t), which is continuous as the uniform limit of continous functions on [0, 1].

Step 3. Note that W (n) is a mean-zero Gaussian process for each n. It can be shown
(for instance using the method of characteristic functions) that the almost-sure limit of a
sequence of Gaussian processes is Gaussian. Hence W is Gaussian, and it remains to check
that it has the correct mean and covariance functions.

Exercise 3.16. Show that
∞∑
k=1

Sk(t) <∞ ∀ t (3.8)

and
∞∑
j=1

∞∑
k=1

Sj(s)Sk(t) <∞ ∀ s, t. (3.9)

By (3.8) and Fubini’s theorem,

E

( ∞∑
k=1

|ZkSk(t)|

)
= E |Z1|

∞∑
k=1

Sk(t) <∞,
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and so

E(W (t)) = E

( ∞∑
k=1

ZkSk(t)

)
=
∞∑
k=1

E(Zk)Sk(t) = 0.

To compute the covariance function, we need a little Fourier analysis. Verify that the
functions Hk, k ∈ N form a complete orthonormal system; that is,∫ 1

0
Hj(t)Hk(t) dt =

{
1, j = k

0, j 6= k.

Therefore, Parseval’s identity implies that for any two bounded functions f, g on [0, 1],∫ 1

0
f(u)g(u) du =

∞∑
k=1

akbk,

where

ak =
∫ 1

0
f(t)Hk(t) dt, bk =

∫ 1

0
g(t)Hk(t) dt.

Apply this to f = χ[0,s] and g = χ[0,t]. Then ak = Sk(s) and bk = Sk(t). Now

E

 ∞∑
j=1

∞∑
k=1

|ZjZkSj(s)Sk(t)|

 =
∞∑
j=1

∞∑
k=1

E |ZjZk|Sj(s)Sk(t)

≤ max{E |Z2
1 |, (E |Z1|)2}

∞∑
j=1

∞∑
k=1

Sj(S)Sk(t)

<∞

by (3.9) and Fubini’s theorem. Hence,

r(s, t) = E[W (s)W (t)] =
∞∑
j=1

∞∑
k=1

E(ZjZk)Sj(s)Sk(t)

=
∞∑
j=1

E(Z2
j )Sj(s)Sj(t) (by independence of the Zj)

=
∞∑
j=1

Sj(s)Sj(t) (since E(Z2
j ) = 1)

=
∫ 1

0
χ[0,s](u)χ[0,t](u) du (by Parseval’s identity)

= min{s, t}.

This shows that {W (t), 0 ≤ t ≤ 1} is a Brownian motion.
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3.2.2 Various properties of Brownian motion

Definition 3.17. A process (X(t))t∈[0,∞) is measurable if it is measurable viewed as a
function X : [0,∞)× Ω→ R. That is, if

{(t, ω) : X(t, ω) ∈ B} ∈ B([0,∞))×F , ∀B ∈ B(R).

Proposition 3.18. Brownian motion is measurable.

Proof. Define the piecewise constant approximands

Wn(t, ω) = W (k2−n, ω) for k2−n ≤ t < (k + 1)2−n, k = 0, 1, 2, . . . .

It is easy to see that the mapping (t, ω) 7→ Wn(t, ω) is B([0,∞))× F-measurable for each
n. By continuity of sample paths, Wn(t, ω)→W (t, ω) for each (t, ω). Hence, the mapping
(t, ω) 7→W (t, ω) is B([0,∞))×F-measurable.

This last result is useful because random integrals of the form
∫ b
a φ(W (t)) dt, where φ

is a Borel function, are now well defined. Provided the interchange of expectation and
integral can be justified, we have

E
(∫ b

a
φ(W (t)) dt

)
=
∫ b

a
E
(
φ(W (t))

)
dt.

Exercise 3.19. Compute

E
(∫ T

0
W (t) dt

)
and E

(∫ T

0
W 2(t) dt

)
Exercise 3.20 (Brownian motion martingales). Show that the following are martingales:

(i) W (t)

(ii) W (t)2 − t

(iii) eλW (t)−λ2t/2, where λ ∈ R.

Proposition 3.21. On a set of probability one,

lim
t→∞

W (t)
t

= 0. (3.10)

Proof. Writing W (n) = W (0) + [W (1)−W (0)] + · · ·+ [W (n)−W (n− 1)], we see by the
SLLN that

lim
n→∞

W (n)
n

= 0 a.s.

It is now not hard to believe that (3.10) should hold, because for arbitrary t > 0, we can
write

W (t)
t

=
[t]
t
·
(
W (t)−W ([t])

[t]
+
W ([t])

[t]

)
,
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where [t] denotes the greatest integer in t. Intuitively, the first term in parentheses should
approach zero as t → ∞. But proving this requires some care; see Karatzas and Shreve,
Problem 2.9.3.

Exercise 3.22. Show that each of the following processes is a Brownian motion:

(i) (Reflection) W1(t) = −W (t)

(ii) (Time scaling) W2(t) = cW (t/c2), for fixed c > 0

(iii) (Time shift) W3(t) = W (t0 + t)−W (t0), for fixed t0 > 0

(iv) (Time inversion)

W4(t) =

{
tW (1/t), t > 0
0, t = 0

(Hint: check that each process is a mean zero Gaussian process with continuous sample
paths and the correct covariance function. For W4, continuity at t = 0 follows from (3.10)
and the substitution u = 1/t.)

Proposition 3.21 has the following strengthening, which specifies the maximum growth
rate of Brownian paths. Its proof is beyond the scope of this course.

Theorem 3.23 (Law of the iterated logarithm). We have

lim sup
t→∞

W (t)√
2t log log t

= 1 a.s.

and
lim inf
t→∞

W (t)√
2t log log t

= −1 a.s.

(Check that these statements together imply (3.10)!)

Exercise 3.24. Use Theorem 3.23 to show that

lim sup
t↓0

W (t)√
2t log log(1/t)

= 1 a.s.

and the corresponding lim inf equals −1, almost surely.

The last exercise has the remarkable consequence that, on any time interval [0, ε], W (t)
changes sign infinitely many times with probability one. Since W (t) is continuous in t, this
means that W (t) = 0 for infinitely many t in [0, ε] with probability one. In fact, more can
be proved:

Theorem 3.25 (Zero set of Brownian motion). The set {t ≥ 0 : W (t) = 0} is with
probability one an uncountable closed set without isolated points and of Lebesgue measure
zero.
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We will not use this theorem. For a proof, see Klebaner, Theorem 3.28.

Theorem 3.26 (Nowhere differentiability of sample paths). For all ω outside a set of
probability 0, W (·, ω) is nowhere differentiable.

Note that we avoid saying something like

P(ω : W (·, ω) is nowhere differentiable) = 1.

The reason is, that it is not at all clear whether the set in question is measurable. Proving
the theorem entails finding a measurable subset of this set which has probability 1.

Proof. (We follow Billingsley, Theorem 37.3.) Put

∆n,k = W

(
k + 1

2n

)
−W

(
k

2n

)
,

and let
Xn,k = max{|∆n,k|, |∆n,k+1|, |∆n,k+2|}.

Note that each ∆n,k has the same distribution as 2−n/2W (1), namely Normal(0, 2−n).
Furthermore, for fixed n, the ∆n,k are independent. Thus, given ε > 0,

P(Xn,k ≤ ε) =
[

P(|W (1)| ≤ 2n/2ε)
]3
.

Now for α > 0,

P(|W (1)| ≤ α) =
∫ α

−α

1√
2π
e−x

2/2 dx ≤ 2α
1√
2π

< α.

Hence,
P(Xn,k ≤ ε) ≤ (2n/2ε)3.

Put
Yn = min

k≤n2n
Xn,k.

Then
P(Yn ≤ ε) ≤ n2n(2n/2ε)3 = n25n/2ε3. (3.11)

We consider the upper and lower right-hand derivatives

D+(t, ω) = lim sup
h↓0

W (t+ h, ω)−W (t, ω)
h

,

D+(t, ω) = lim inf
h↓0

W (t+ h, ω)−W (t, ω)
h

.

Define the set

E = {ω : there is t ≥ 0 such that D+(t, ω) and D+(t, ω) are both finite}.
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Suppose ω ∈ E; then we can find t ≥ 0 and K > 0 such that

−K < D+(t, ω) ≤ D+(t, ω) < K.

This implies that there is δ > 0 (depending on t,K and ω) such that

t ≤ s ≤ t+ δ ⇒ |W (s, ω)−W (t, ω)| ≤ K|s− t|. (3.12)

Choose n large enough so that 2−n < δ/4, 8K < n, and n > t. Choose k such that
(k − 1)/2n ≤ t < k/2n. Then |t − i/2n| < δ for i = k, k + 1, k + 2, k + 3, and hence, by
(3.12) and the triangle inequality,

Xn,k(ω) ≤ 2K(4/2n) < n2−n.

Since also k − 1 ≤ t2n < n2n, it follows that Yn(ω) ≤ n2−n.
Define the set An = {Yn ≤ n2−n}. The above argument shows that E ⊂ lim inf An.

Note that each An is measurable, and so lim inf An is measurable. By (3.11),

P(An) ≤ n25n/2(n2−n)3 = n42−n/2 → 0.

It follows (check!) that P(lim inf An) = 0. And outside the set lim inf An, W (·, ω) is
nowhere differentiable (in fact, it does not have finite upper and lower right-hand derivatives
anywhere).

3.2.3 Quadratic variation

Definition 3.27. The quadratic variation of a function f : [0,∞)→ R is defined by

[f, f ](t) = lim
δn→0

n∑
i=1

(
f(tni )− f(tni−1)

)2
(provided the limit exists), where {0 = tn0 < tn1 < · · · < tnn−1 < tnn = t} is a partition of
[0, t], and δn = max1≤i≤n(tni − tni−1). (Compare the definition of Riemann integral!)

Proposition 3.28. If f is continuous and of bounded variation in [0, t], then [f, f ](t) = 0.

Proof. See Klebaner, Theorem 1.10.

Because of the last proposition, quadratic variation is not a useful concept in ordinary
differential calculus. But it is of critical importance in stochastic calculus, because the
processes encountered there are typically not of bounded variation. This includes Brownian
motion.

Theorem 3.29 (Quadratic variation of Brownian motion). Brownian motion accumulates
quadratic variation at unit rate. That is,

[W,W ](t) = t.
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More precisely, for each fixed t > 0,
n∑
i=1

(
W (tni )−W (tni−1)

)2 → t in L2,

and under the extra condition
∑∞

n=1 δn <∞, the convergence above also takes place almost
surely.

Proof. See Klebaner, Theorem 3.4 for a proof of the almost-sure statement. The L2 state-
ment can be gleaned from the proof without difficulty (exercise!).

Observe the surprising fact that, although the paths of Brownian motion are random,
its quadratic variation (which is a path property!) is deterministic. We will later see that
Brownian motion is the unique mean-zero martingale whose quadratic variation on [0, t]
is t (Lévy’s characterization), and this fact offers a practical way to recognize Brownian
motions “in disguise”.

3.2.4 The strong Markov property of Brownian motion

In this subsection, let (Ft)t denote the natural filtration of (W (t))t. That is, Ft = σ(W (s) :
0 ≤ s ≤ t). Fix t0 ≥ 0, and put

W ′(t) = W (t0 + t)−W (t0), t ≥ 0.

We have seen before that W ′(t) is a Brownian motion, and in view of the independent
increments of W (t), it is independent of Ft. In particular, we have (check!)

P(W (t0 + t) ≤ y|Ft0) = P(W (t0 + t) ≤ y|W (t0)) a.s. (3.13)

We say that Brownian motion possesses the Markov property. More fully, we have, for
0 ≤ t1 < t2 < · · · < tk and H ∈ B(Rk),

P
(
(W ′(t1), . . . ,W ′(tk)) ∈ H ∩A

)
= P

(
(W ′(t1), . . . ,W ′(tk)) ∈ H

)
P(A)

= P
(
(W (t1), . . . ,W (tk)) ∈ H

)
P(A), A ∈ Ft0 .

(3.14)

We now want to show that the above identities remain true when t0 is replaced by a
stopping time τ . A process X = (X(t))t satisfying

P(X(τ + t) ≤ y|Fτ ) = P(X(τ + t) ≤ y|X(τ)) a.s. (3.15)

for every finite stopping time τ is said to possess the strong Markov property. Note that
the strong Markov property implies the Markov property, because any constant t0 > 0 is
a stopping time.

Some care is needed here; for instance, it is not a priory clear that X(τ + t) is even a
random variable (i.e. is F-measurable). We also must be careful with the use of conditional
probabilities. We ignore these subtleties here; the details can be found for instance in
Karatzas and Shreve, Chapter 2.
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Theorem 3.30 (Strong Markov property of Brownian motion). Let τ be a finite stopping
time, and put

W ∗(t, ω) := W (τ(ω) + t, ω)−W (τ(ω), ω), t ≥ 0.

Then {W ∗(t) : t ≥ 0} is a Brownian motion independent of Fτ . That is, for 0 ≤ t1 < t2 <
· · · < tk, H ∈ B(Rk) and A ∈ Fτ ,

P
(
{(W ∗(t1), . . . ,W ∗(tk)) ∈ H} ∩A

)
= P

(
(W ∗(t1), . . . ,W ∗(tk)) ∈ H) P(A)

= P
(
(W (t1), . . . ,W (tk)) ∈ H) P(A).

(3.16)

The proof of the theorem follows Billingsley, section 37, and uses the following lemma.

Lemma 3.31. Let Xn = (X1
n, . . . , X

k
n) and X = (X1, . . . , Xk) be random vectors in Rk,

and let Fn(x) be the distribution function of Xn; that is,

Fn(x) = P(X1
n ≤ x1, . . . , X

k
n ≤ xk), x = (x1, . . . , xk) ∈ Rk.

If Xn → X a.s. and Fn(x) → F (x) for all x ∈ Rk, then F (x) is the distribution function
of X.

Proof. Let H denote the distribution function of X. Then for all h > 0,

F (x1, . . . , xk) = lim sup
n→∞

Fn(x1, . . . , xk) (by hypothesis)

= lim sup
n→∞

P(X1
n ≤ x1, . . . , X

k
n ≤ xk)

≤ P(lim sup{X1
n ≤ x1, . . . , X

k
n ≤ xk})

≤ P(X1 ≤ x1, . . . , X
k ≤ xk) (since Xn → X a.s.)

= H(x1, . . . , xk)

≤ P(lim inf{X1
n ≤ x1 + h, . . . ,Xk

n ≤ xk + h}) (again since Xn → X a.s.)

≤ lim inf
n→∞

P(X1
n ≤ x1 + h, . . . ,Xk

n ≤ xk + h)

= F (x1 + h, . . . , xk + h).

But F (x1 + h, . . . , xk + h)→ F (x1, . . . , xk) as h ↓ 0, so it follows that F = H.

Exercise 3.32. We have used in the above proof that

P(lim inf An) ≤ lim inf P(An) and lim sup P(An) ≤ P(lim supAn).

Check these inequalities!

Proof of Theorem 3.30. Assume first that τ has a countable range V . Because

{ω : W ∗(t, ω) ∈ H} =
⋃
t0∈V
{ω : W (t0 + t, ω)−W (t0, ω) ∈ H, τ(ω) = t0},
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it follows that W ∗(t) is a random variable. Furthermore,

P
(
{(W ∗(t1), . . . ,W ∗(tk)) ∈ H}∩A

)
=
∑
t0∈V

P
(
{(W ∗(t1), . . . ,W ∗(tk)) ∈ H}∩A∩{τ = t0}

)
.

Now A ∈ Fτ implies A ∩ {τ = t0} ∈ Ft0 (why?), and if τ = t0 then W ∗(t) = W ′(t). Thus,
(3.14) reduces the last sum above to∑
t0∈V

P
(
(W (t1), . . . ,W (tk)) ∈ H

)
P(A ∩ {τ = t0}) = P

(
(W (t1), . . . ,W (tk)) ∈ H

)
P(A).

This shows that the first and third terms in (3.16) are equal. That the second term is
equal to the third follows by taking A = Ω. Thus, the theorem holds when τ has countable
range.

For general τ , we approximate τ as follows. Let

τn =

{
k2−n, if (k − 1)2−n < τ ≤ k2−n, k ∈ N
0, if τ = 0.

Check that each τn is a stopping time and τ ≤ τn, so that Fτ ⊂ Fτn . Define

Wn(t, ω) = W (τn(ω) + t, ω)−W (τn(ω), ω), t ≥ 0.

Since τn has countable range, we can apply (3.16) to obtain, for all A ∈ Fτ (!),

P ({(Wn(t1), . . . ,Wn(tk)) ∈ H} ∩A) = P((W (t1), . . . ,W (tk)) ∈ H) P(A). (3.17)

Now τn(ω) → τ(ω) for all ω, and by continuity of sample paths, Wn(t, ω) → W ∗(t, ω) for
each ω. Hence,

(Wn(t1), . . . ,Wn(tk))→ (W ∗(t1), . . . ,W ∗(tk)) a.s.

Apply Lemma 3.31 with Fn = F = the conditional distribution function of (Wn(t1), . . . ,Wn(tk))
given A. Then (3.16) follows from (3.17).

3.2.5 The reflection principle, hitting times and the maximum of BM

The strong Markov property of Brownian motion says roughly speaking that at a finite
stopping τ , Brownian motion “starts afresh” from the (random) level W (τ). One conse-
quence of this is the so-called reflection principle. Let τ be a finite stopping time, and
define a new process

W ′(t) =

{
W (t), t ≤ τ
W (τ)− [W (t)−W (τ)], t ≥ τ.

(3.18)

Thus, the sample path of W ′(t) is the same as the sample path of W (t) up to time τ , and
after that, it is the reflection of this path in the line y = W (τ).
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Theorem 3.33 (Reflection principle). The process {W ′(t) : t ≥ 0} is a Brownian motion.

This theorem is intuitively obvious from the strong Markov property: W ′(t) is a Brow-
nian motion before time τ , and it is a reflection of a Brownian motion, hence a Brownian
motion, after time τ , so it ought to be a Brownian motion “everywhere”. However, since τ
is random, some care is needed to check that the finite-dimensional distributions of W ′(t)
are really the same as those of W (t). (Continuity of sample paths is obvious from the
definition of W ′(t).) See Billingsley, p. 512 for a precise proof.

We now define the hitting time

τa := inf{t > 0 : W (t) ≥ a}, a > 0

and the maximum of Brownian motion up to time t,

M(t) := max{W (s) : 0 ≤ s ≤ t}.

(By continuity of sample paths, this maximum is well defined.) Also by continuity of paths,
W (τa) = a on the event {τa <∞}.

Proposition 3.34. The stopping time τa is finite with probability one: P(τa <∞) = 1.

Proof. See Klebaner, Theorem 3.14 for a proof based on the strong Markov property; or
Example 7.8 for an alternative proof using the exponential martingale eσW (t)−σ2t/2.

As we did for random walks, we will use the reflection principle to derive the distri-
butions of τa and M(t), as well as the joint distribution of M(t) and W (t). First, define
W ′(t) by (3.18) with τ = τa, and let τ ′a = inf{t > 0 : W ′(t) ≥ a}. Of course τ ′ = τ , and
for any t > 0, the pair (τ,W (t)) has the same joint distribution as the pair (τ ′,W ′(t)) by
the reflection principle. Hence, for x ≤ a,

P(τa ≤ t,W (t) ≤ x) = P(τ ′a ≤ t,W ′(t) ≤ x)
= P(τa ≤ t,W (τa)− [W (t)−W (τa)] ≤ x)
= P(τa ≤ t, 2a−W (t) ≤ x)
= P(τa ≤ t,W (t) ≥ 2a− x)
= P(W (t) ≥ 2a− x).

The second equality follows since W ′(t) = W (τa) − [W (t) −W (τa)] when τa ≤ t, and the
third since W (τa) = a. The last equality follows since 2a − x ≥ a, so if W (t) ≥ 2a − x,
then certainly τa ≤ t. In summary,

P(τa ≤ t,W (t) ≤ x) = P(W (t) ≥ 2a− x), a > 0, x ≤ a. (3.19)

Setting x = a in this equation, we obtain

P(τa ≤ t) = P(τa ≤ t,W (t) ≤ a) + P(τa ≤ t,W (t) ≥ a)

= 2 P(W (t) ≥ a) =
2√
2πt

∫ ∞
a

e−u
2/2t du,
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since {τa ≤ t,W (t) ≥ a} = {W (t) ≥ a} and W (t) ∼ Normal(0, t). Differentiating, we find
(eventually - integrate by parts!) that τa has density function

fτa(t) =
d

dt
P(τa ≤ t) =

a

t3/2
√

2π
e−a

2/2t, t ≥ 0.

(How does this change when a < 0?)
The distribution of M(t) for fixed t is derived similarly, by noting that

P(M(t) ≥ a) = P(τa ≤ t),

so that
fM(t)(a) = − d

da
P(M(t) ≥ a) =

2√
2πt

e−a
2/2t, a ≥ 0.

Exercise 3.35. Show that M(t) and W (t) have the joint density function

fM(t),W (t)(a, x) =
2(2a− x)
t3/2
√

2π
e−(2a−x)2/2t, a > 0, x ≤ a.

(Hint: rewrite (3.19) as

P(M(t) ≥ a,W (t) ≤ x) = P(W (t) ≥ 2a− x).

Differentiate both sides of this equation, first to a and then to x.)

3.2.6 The invariance principle and Wiener measure

Recall the central limit theorem: If ξ1, ξ2, . . . are i.i.d. random variables with mean zero
and variance σ2, and if Sn = ξ1 + · · ·+ ξn, then

Sn
σ
√
n
⇒ N,

where N ∼ Normal(0, 1). Note that this is also the distribution of W (1), where W (t) is
a Brownian motion. Since the process {Sn} and Brownian motion both have independent
and stationary increments, it should not be a surprise that, in a sense to be made precise
below, the entire process {Sn}, suitably scaled, converges to a Brownian motion. We begin
with a definition.

Definition 3.36. Let (S, ρ) be a metric space, let {Pn} be a sequence of Borel probability
measures on S, and let P be a Borel measure on S. We say Pn converges weakly to P if∫

S
f(s) dPn(s)→

∫
S
f(s) dP(s)

for every bounded, continuous function f : S → R.
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(If S = R, this corresponds to weak convergence of random variables; compare Theorem
??.) It follows from the definition that if Pn converges weakly to P, then P is a probability
measure. (Take f ≡ 1.)

Next, let ξ1, ξ2, . . . be i.i.d. r.v.’s on a probability space (Ω,F ,P) with mean zero and
variance σ2, and put S0 ≡ 0, and Sn = ξ1 + · · ·+ ξn for n ∈ N. We construct a continuous-
time process {Y (t) : t ≥ 0} by linear interpolation of the sequence {Sn}: Y (n) = Sn, and
for 0 ≤ λ ≤ 1,

Y
(
λn+ (1− λ)(n+ 1)

)
= λSn + (1− λ)Sn+1, n = 0, 1, 2, . . . .

Finally, define

Xn(t) =
1

σ
√
n
Y (nt), n ∈ N, t ≥ 0.

Thus, Xn is a linear interpolation of {Sn}, scaled in both time and space. As such, Xn has
continuous sample paths. Note that Y (t) has mean zero, and Var(Y (n)) = Var(Sn) = σ2n
for n ∈ N. Thus, Xn(t) has mean zero for every t, and if nt is an integer, Var(Xn(t)) =
(σ2n)−1 Var(Y (nt)) = t. Hence Xn(t) has the same mean and variance as W (t), at least
when nt is integer.

In the following theorem, C[0,∞) denotes the space of all continuous functions f :
[0,∞)→ R. We equip it with the metric

ρ(x1, x2) :=
∞∑
n=1

1
2n

max
0≤t≤n

(|x1(t)− x2(t)| ∧ 1).

It can be shown that ρ is a metric, and (C[0,∞), ρ) is a complete, separable metric space.
Furthermore, the Borel σ-algebra B(C[0,∞)) generated by the open sets of (C[0,∞), ρ) is
the smallest σ-algebra containing all the finite-dimensional cylinder sets of the form

C = {x ∈ C[0,∞) : (x(t1), . . . , x(tn)) ∈ A}, n ≥ 1, A ∈ B(Rn), ti ≥ 0.

Theorem 3.37 (Donsker’s invariance principle). Let Pn be the measure induced by the
process Xn on (C[0,∞)),B(C[0,∞))). That is,

Pn(H) = P(ω ∈ Ω : Xn(·, ω) ∈ H), H ∈ B(C[0,∞)).

Then Pn converges weakly to a probability measure P∗ on (C[0,∞)),B(C[0,∞))), under
which the coordinate mapping process W (t, x) := x(t) on C[0,∞) is a Brownian motion.
Equivalently, the sequence of processes {Xn}n converges weakly to a Brownian motion.

This theorem is intuitively quite plausible, but its proof is long and technical - see
Karatzas and Shreve, pp. 66-71. The probability measure P∗ in the above theorem is
called Wiener measure. We can now think of Brownian motion as a (function-valued!)
random variable on the probability space (C[0,∞)),B(C[0,∞)),P∗), defined by

W (t, x) := x(t), x ∈ C[0,∞), t ≥ 0.

This space is called the canonical probability space for Brownian motion, and W (t, ·) as
defined above is called canonical Brownian motion.


