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Text: Introduction to Stochastic Calculus with Applications, by Fima C. Klebaner (3rd
edition), Imperial College Press.

Other recommended reading: (Do not purchase these books before consulting with
your instructor!)

1. Real Analysis by H. L. Royden (3rd edition), Prentice Hall.

2. Probability and Measure by Patrick Billingsley (3rd edition), Wiley.

3. Probability with Martingales by David Williams, Cambridge University Press.

4. Stochastic Calculus for Finance I and II by Steven E. Shreve, Springer.

5. Brownian Motion and Stochastic Calculus by Ioannis Karatzas and Steven E. Shreve,
Springer. (Warning: this requires stamina, but is one of the few texts that is complete
and mathematically rigorous)



Chapter 2

Stochastic Processes in Discrete
Time

By a stochastic process in discrete time we mean simply a sequence {Xn}∞n=0 = (X0, X1, . . . )
of random variables defined on a common probability space, with some joint distribution.
We think of the index n in Xn as a “time parameter”, of time n = 0 as the “start” of
the process, and of Xn+1 as being observed “after” Xn. These intuitive concepts are made
precise using the mathematically rigorous notions of filtration and stopping time, which
will be introduced in the present chapter. We begin with the most important example of
a discrete time stochastic process.

2.1 Random walk

Setup: Let X1, X2, . . . be independent, identically distributed (i.i.d.) {−1, 1}-valued r.v.’s
with P(Xi = 1) = p and P(Xi = −1) = q := 1 − p for all i, where p ∈ (0, 1) is a constant
parameter. Define

S0 ≡ 0, and Sn = X1 + · · ·+Xn, n ≥ 1. (2.1)

The process {Sn} is called a simple random walk or Bernoulli random walk or a nearest-
neighbor random walk on Z. When p = 1/2, we speak of a symmetric simple random walk.
This random walk can be thought of as the evolving fortune of a gambler who repeatedly
bets $1 on red at roulette, or (appropriately scaled) as the approximate path of a particle
suspended in liquid.

The first basic question to ask is: what is the distribution of Sn for any fixed n? Note
that when n is even, Sn must be even, and when n is odd, Sn must be odd. Thus, n+ Sn
is always even. Furthermore, |Sn| ≤ n. Fix n, and let k be of the same parity as n (i.e.
n+ k is even), with |k| ≤ n. Consider ordered pairs (i, Si). Any path from (0, 0) to (n, k)
must include exactly (n+ k)/2 up-steps and exactly (n− k)/2 down-steps. Thus (compare
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34 CHAPTER 2. STOCHASTIC PROCESSES IN DISCRETE TIME

the binomial distribution!),

P(Sn = k) =
(
n
n+k

2

)
p(n+k)/2q(n−k)/2, k ∈ Z, (2.2)

where we interpret
(
n
x

)
as 0 when x is not integer or when x < 0 or x > n. The mean

and variance of Sn follow directly from the definition (2.1): since E(X1) = p − q and
Var(X1) = 4pq (check!), we have

E(Sn) = nE(X1) = (p− q)n, Var(Sn) = nVar(X1) = 4pqn.

Whereas (2.2) gives the marginal distribution of Sn, the joint distribution of the process
{Sn} follows from the following property.

Theorem 2.1. Simple random walk has the following properties:

1. (Independent increments) For all n1 < n2 < · · · < nk, the random variables Sn1 , Sn2−
Sn1 , . . . , Snk − Snk−1

are independent.

2. (Stationary increments) For all n and m with m < n, Sn − Sm
d= Sn−m.

Proof. (i) Since Sn1 =
∑n1

i=1Xi, Sn2 − Sn1 =
∑n2

i=n1+1Xi, etc., the random variables
(increments) Sn1 , Sn2 − Sn1 , . . . , Snk − Snk−1

are functions of disjoint subcollections of the
Xi. Since the Xi are independent, that makes the increments independent.

(ii) We have Sn−m =
∑n−m

i=1 Xi, and Sn − Sm =
∑n

i=m+1Xi. So each of Sn−m and
Sn − Sm is a sum of the same number (n−m) of the Xi, which are independent and have
the same distribution. Hence, Sn−m

d= Sn − Sm.

Exercise 2.2. How would you use the independent and stationary increments of the ran-
dom walk to compute, say, P(S1 = −1, S4 = 0, S10 = 4)?

2.1.1 Hitting times and recurrence

Definition 2.3. The hitting time or first-passage time of a point r ∈ Z\{0} is the r.v.

Tr := inf{n ≥ 1 : Sn = r},

with the convention that inf ∅ =∞. We can define Tr by this formula also for r = 0. The
r.v. T0 is the first return time to the origin.

In this subsection we focus on the event {Tr <∞}. In the next subsection we specialize
to the case p = 1/2 and calculate the full distribution of Tr.

We begin with T1. To start, note that T1 must be odd. We compute P(T1 = 2n + 1)
for n = 0, 1, 2, . . . . Note that

P(T1 = 2n+ 1) = P(S1 ≤ 0, . . . , S2n ≤ 0, S2n+1 = 1)
= P(S1 ≤ 0, . . . , S2n−1 ≤ 0, S2n = 0) P(X2n+1 = 1)
= pP(S1 ≤ 0, . . . , S2n−1 ≤ 0, S2n = 0).



2.1. RANDOM WALK 35

Now each path of 2n steps that begins and ends at 0 has probability pnqn, and we must
count the number of such paths that do not go above 0. This number is

Cn :=
1

n+ 1

(
2n
n

)
.

The number Cn is called the nth Catalan number. For a proof that Cn is the answer to our
counting problem, see the Wikipedia entry on Catalan numbers! (There are in fact four
different proofs given.) We thus have:

P(T1 = 2n+ 1) =
1

n+ 1

(
2n
n

)
pn+1qn, n = 0, 1, 2, . . . . (2.3)

Calculus exercise: Show (by summing the above over n) that

P(T1 <∞) =
1−
√

1− 4pq
2q

= min{1, p/q}.

Hint: compare with the series
∑∞

n=0
1

n+1

(
2n
n

)
xn+1. The derivative of this is

∑∞
n=0

(
2n
n

)
xn.

Verify the identities (
2n
n

)
= (−4)n

(
−1/2
n

)
and the generalization of the binomial theorem:

∞∑
n=0

(
α

n

)
xn = (1 + x)α.

We see that P(T1 < ∞) = 1 when p ≥ 1/2, but P(T1 < ∞) < 1 when p < 1/2. For
r ∈ N, we have

P(Tr <∞) = (min{1, p/q})r. (2.4)

This can be seen as follows: write

Tr = T1 + (T2 − T1) + · · ·+ (Tr − Tr−1).

Thus Tr is expressed as the sum of r r.v.’s which are independent and all have the same
distribution as T1. (This is intuitively obvious, though making it precise is a somewhat
tedious exercise using the independent and stationary increments of the walk.) Of course,
Tr is finite if and only if all the summands in the above equation are finite. Thus, we have
(2.4). It follows that when p ≥ 1/2, the walk will eventually reach any level r ≥ 1 with
certainty, but when p < 1/2, there is a positive probability that it will not.

Analogous results hold for finiteness of Tr with r < 0; just switch p and q. But the case
r = 0, when Tr is the first return time to the origin, is special. Here we calculate

P(T0 <∞) = P(T0 <∞|X1 = 1) P(X1 = 1) + P(T0 <∞|X1 = −1) P(X1 = −1)
= pP(T−1 <∞) + qP(T1 <∞)
= pmin{1, q/p}+ qmin{1, p/q}
= min{2p, 2q}.
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The second equality follows since, once the walk moves up to level 1, the probability of
it ever returning to 0 is the same as the probability that a walk starting at 0 would ever
reach −1 (and similarly for the second term).

Thus, P(T0 <∞) = 1 if and only if p = 1/2. When the walk {Sn} returns to its initial
position eventually with probability one we say the walk is recurrent (otherwise: transient).
Thus, simple random walk is recurrent if p = 1/2, and transient otherwise.

2.1.2 The reflection principle and the record process

Assume in this subsection that p = 1/2, i.e. the walk is symmetric. Define the record at
time n by

Mn := max{S0, S1, . . . , Sn}, n = 0, 1, . . . .

The reflection principle says this: for r ≥ 1 and k ≤ r, the number of paths (starting at 0)
with Mn ≥ r and Sn = k is equal to the number of paths with Sn = 2r − k. To see this,
note that {Mn ≥ r} = {Tr ≤ n}. Consider a path with Mn ≥ r and Sn = k, and reflect
the portion of the path from time Tr until time n in the horizontal line y = r. This gives a
new path for which Sn = 2r − k ≥ r. It is easy to see that this operation is bijective, and
hence the reflection principle follows. Since all paths of length n have the same probability,
we conclude that

P(Mn ≥ r, Sn = k) = P(Sn = 2r − k), r ≥ 1, k < r. (2.5)

From this, it is easy to derive the joint distribution of Sn and Mn, and with a little more
effort, the marginal distributions of Mn and Tr. First, we have simply

P(Mn = r, Sn = k) = P(Mn ≥ r, Sn = k)− P(Mn ≥ r + 1, Sn = k)
= P(Sn = 2r − k)− P(Sn = 2r + 2− k).

(2.6)

Next, observe that for k > r, Sn = k implies Mn ≥ r and so

P(Mn ≥ r) =
∑
k≤r

P(Mn ≥ r, Sn = k) +
∑
k>r

P(Mn ≥ r, Sn = k)

=
∑
k≤r

P(Sn = 2r − k) +
∑
k>r

P(Sn = k)

= P(Sn ≥ r) + P(Sn > r)
= 2 P(Sn > r) + P(Sn = r).

From this we obtain, after some algebra,

P(Mn = r) = P(Mn ≥ r)− P(Mn ≥ r + 1) = P(Sn = r) + P(Sn = r + 1), r ≥ 0.
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And for r ≥ 1 we have, by (2.6),

P(Tr = n) = P(Sn = r,Mn−1 = r − 1)
= P(Mn−1 = r − 1, Sn−1 = r − 1, Xn = 1)

=
1
2

P(Mn−1 = r − 1, Sn−1 = r − 1)

=
1
2

[P(Sn−1 = r − 1)− P(Sn−1 = r + 1)] .

The calculations can then be completed using (2.2), which simplifies substantially in the
case p = 1/2.

(In fact, the distributions of Mn and Tr can be calculated fully for arbitrary p using
the method of generating functions; we will not go into that here.)

2.2 Martingales

Definition 2.4. Let (Ω,F) be a measurable space. A filtration is an increasing sequence
{Fn}∞n=0 of sub-σ-algebras of F ; that is,

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ · · · ⊂ F .

A probability space (Ω,F ,P) together with a filtration {Fn} on it is called a filtered prob-
ability space, denoted (Ω,F , {Fn},P).

The most common example of a filtration is that generated by a stochastic process:

Fn = σ(X1, . . . , Xn).

We call {Fn} the natural filtration of the process {Xn}. We think of Fn as containing all
information (in this case about the process {Xn}) “up to time n”.

Definition 2.5. A stochastic process {Xn} is adapted to a filtration {Fn} if Xn is Fn-
measurable for each n.

Definition 2.6. A process {Xn} is called a submartingale relative to the filtration {Fn}
if:

(i) {Xn} is adapted to {Fn};

(ii) E|Xn| <∞ for all n; and

(iii) E[Xn|Fn−1] ≥ Xn−1 a.s. for all n.

A process {Xn} is a supermartingale if {−Xn} is a submartingale. A process that is both
a submartingale and a supermartingale is called a martingale.

When the filtration {Fn} is not mentioned explicitly, {Fn} is normally clear from the
context, or else is understood to be the natural filtration of the process {Xn}.
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Example 2.7. Let X be an integrable random variable and {Fn} a filtration. Then the
process

Xn := E[X|Fn], n = 0, 1, 2, . . .

is a martingale relative to {Fn}. To see this, note that Xn is clearly Fn-measurable and
use the tower property:

E[Xn|Fn−1] = E[E[X|Fn]|Fn−1] = E[X|Fn−1] = Xn−1 a.s.

Exercise 2.8. Let {Xn} be a supermartingale. Show that E(Xn) ≤ E(X0) for all n. If
{Xn} is a martingale, then E(Xn) = E(X0) for all n. (Use induction and the law of double
expectation.)

Example 2.9. Let {Sn} be symmetric simple random walk (p = 1/2). Then {Sn} and
{S2

n − n} are martingales. For simple random walk with arbitrary p, the following are
martingales:

(i) Sn − µn, where µ = E(X1) = p− q;

(ii) (Sn − µn)2 − σ2n, where σ2 = Var(X1) = 4pq;

(iii) (p/q)Sn .

Example 2.10 (Sums of independent, zero-mean r.v.’s). More generally, let X1, X2, . . .
be independent r.v.’s with mean 0, and put Sn = X1 + · · ·+Xn. Then {Sn} is a martingale.

Example 2.11 (Products of independent, mean 1 r.v.’s). Let Z1, Z2, . . . be independent
r.v.’s with E(Zn) = 1 for each n, and put Mn = Z1 · · ·Zn. Then {Mn} is a martingale.

Proposition 2.12. (i) Let {Xn} be a martingale and ϕ a convex real function. Put
Yn = ϕ(Xn). If E|Yn| <∞ for all n, then {Yn} is a submartingale.

(ii) Let {Xn} be a submartingale and ϕ a nondecreasing, convex real function. Put Yn =
ϕ(Xn). If E|Yn| <∞ for all n, then {Yn} is a submartingale.

Proof. (i) This follows from the conditional version of Jensen’s inequality:

E[Yn|Fn−1] = E[ϕ(Xn)|Fn−1] ≥ ϕ(E[Xn|Fn−1]) = ϕ(Xn−1) = Yn−1 a.s.

(ii) In this case we can replace the second equality above by “≥” and obtain the desired
result.

2.2.1 Stopping times and the optional stopping theorem

Definition 2.13. A stopping time with respect to a filtration {Fn} is a Z+ ∪ {∞}-valued
r.v. τ such that

{τ ≤ n} ∈ Fn, n ≥ 0. (2.7)
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Equivalently (check!), τ is a stopping time if and only if

{τ = n} ∈ Fn for all n ≥ 0.

Example 2.14. The hitting time of a Borel set B by an adapted stochastic process {Xn},
that is,

τ = inf{n : Xn ∈ B},

is a stopping time:

{τ = n} = {X0 6∈ B, . . . ,Xn−1 6∈ B,Xn ∈ B},

an intersection of events that all lie in Fn since Fn contains F0,F1, . . . ,Fn−1. Intuitively,
by time n it is “known” whether the process has entered B on or before that time. In
particular, the hitting times Tr (including the first return time T0) of Section 2.1.1 are
stopping times.

On the other hand, a r.v. like τ = sup{n ≤ 20 : Xn ∈ B} is, in general, not a stopping
time.

Proposition 2.15. Let τ1 and τ2 be stopping times. Then max{τ1, τ2} and min{τ1, τ2} are
also stopping times. This extends to maxima and minima of any finite number of stopping
times.

Proof. Exercise.

Recall that if {Xn} is a martingale, then E(Xn) = E(X0) for every (non-random!) n.
This does not imply, however, that E(Xτ ) = E(X0) for random τ , even if τ is a stopping
time. For one thing, Xτ is not defined on the set {τ = ∞}. But even if τ < ∞ almost
surely, things can go wrong.

Example 2.16. As a case in point, consider again the symmetric simple random walk
{Sn} (starting at 0), and let

τ = inf{n : Sn = 1} = T1.

We have seen in Subsection 2.1.1 that τ <∞ with probability 1, but clearly, Sτ = 1 almost
surely and hence E(Sτ ) = 1 6= 0 = E(S0).

An important question is then, under what conditions on a martingale {Xn} and a
stopping time τ can we expect that E(Xτ ) = E(X0)?

Definition 2.17. For a stochastic process {Xn} and a stopping time τ , the stopped process
determined by τ is the process {Xτ

n} defined by

Xτ
n := Xτ∧n, n = 0, 1, 2, . . . ,

where x ∧ y = min{x, y}.
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Proposition 2.18. A stopped (sub-, super-) martingale is a (sub-, super-) martingale: Let
{Xn} be a (sub)martingale and T a stopping time. Then {Xτ

n} is a (sub)martingale.

Proof. Let {Xn} be a submartingale. Since {τ > n} ∈ Fn, we have

E[Xτ
n+1 −Xτ

n|Fn] = E[Xτ∧(n+1) −Xτ∧n|Fn]

= E
[
I{τ≤n}

(
Xτ∧(n+1) −Xτ∧n

)
|Fn
]

+ E
[
I{τ>n}

(
Xτ∧(n+1) −Xτ∧n

)
|Fn
]

= E
[
I{τ≤n}(Xτ −Xτ )|Fn

]
+ E

[
I{τ>n}(Xn+1 −Xn)|Fn

]
= I{τ>n} E[Xn+1 −Xn|Fn] ≥ 0.

Hence, {Xτ
n} is a submartingale.

It follows immediately that if {Xn} is a submartingale and τ is bounded (i.e. P(τ ≤
n) = 1 for some n), then E(Xτ ) ≥ E(X0). The following theorem, due to J. L. Doob, gives
two other sufficient conditions.

Theorem 2.19 (Optional stopping theorem). Let {Xn} be a submartingale and τ an
a.s. finite stopping time. If either

(i) {Xn} is uniformly bounded (i.e. there is K > 0 such that |Xn(ω)| ≤ K for all n and
all ω); or

(ii) the increments Xn+1 −Xn are uniformly bounded and E(τ) <∞,

then Xτ is integrable and E(Xτ ) ≥ E(X0). If {Xn} is in fact a martingale and (i) or (ii)
holds, then E(Xτ ) = E(X0).

Proof. Assume (i). By Proposition 2.18,

E(Xτ∧n −X0) ≥ 0. (2.8)

Since τ <∞ a.s., τ ∧ n→ τ a.s. Let n→∞ and use the BCT to conclude

E(Xτ −X0) ≥ 0,

i.e. E(Xτ ) ≥ E(X0).
Next, assume (ii). Let K be such that |Xn(ω) − Xn−1(ω)| ≤ K for all n and all ω.

Then

|Xτ∧n −X0| =

∣∣∣∣∣
τ∧n∑
i=1

(Xi −Xi−1)

∣∣∣∣∣ ≤ K(τ ∧ n) ≤ Kτ.

Since E(τ) <∞, the DCT gives the desired result.

Let us return now to Example 2.16. Since the increments of {Sn} are clearly uniformly
bounded, it must be the case that the stopping time T1 considered there has infinite
expectation. This can indeed be verified using the distribution of T1 given in (2.3) and
Stirling’s formula.
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Exercise 2.20. Let {Xn} be a nonnegative supermartingale and τ a finite stopping time.
Show that E(Xτ ) ≤ E(X0).

A related result is the optional sampling theorem. For a stopping time τ , define

Fτ = {A ∈ F : A ∩ {τ ≤ n} ∈ Fn ∀n ≥ 0}.

Then Fτ is a σ-algebra and τ is Fτ -measurable (check!). Furthermore, if τ1 and τ2 are
stopping times and τ1 ≤ τ2 (pointwise on Ω), then Fτ1 ⊂ Fτ2 . (Check!)

Theorem 2.21 (Optional sampling theorem). Let {X0, X1, . . . , Xn} be a submartingale
and let τ1, τ2 be stopping times with τ1 ≤ τ2 ≤ n. Then

E [Xτ2 |Fτ1 ] ≥ Xτ1 a.s.

Proof. Let A ∈ Fτ1 . We must show that∫
A

(Xτ2 −Xτ1) dP ≥ 0.

Put ∆k = Xk −Xk−1, and write∫
A

(Xτ2 −Xτ1) dP =
∫
A

n∑
k=1

I{τ1<k≤τ2}∆k dP =
n∑
i=1

∫
A∩{τ1<k≤τ2}

∆k dP .

Now verify that A ∈ Fτ1 implies A ∩ {τ1 < k ≤ τ2} ∈ Fk−1, and conclude by the sub-
martingale property of {Xk} that the integral in the last expression is nonnegative.

Of course, “≥” may be replaced with “=” in the optional sampling theorem when {Xk}
is a martingale.

2.2.2 Doob’s submartingale inequality

Theorem 2.22 (Submartingale inequality). Let {X0, X1, . . . , Xn} be a submartingale.
Then for any c > 0,

cP
(

max
k≤n

Xk ≥ c
)
≤ E(X+

n ).

Proof. Assume first that Xk is nonnegative. Let A = {maxk≤nXk ≥ c}. Then A =
A0 ∪A1 ∪ · · · ∪An with the union disjoint, where

A0 = {X0 ≥ c},

and
Ak = {X0 < c, . . . ,Xk−1 < c,Xk ≥ c} for k = 1, . . . , n.
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Since Ak ∈ Fk and Xk ≥ c on Ak, we have∫
Ak

Xn dP ≥
∫
Ak

Xk dP ≥ cP(Ak).

Summing over k gives cP(A) ≤ E(Xn), as required.
If Xk is not necessarily nonnegative, put Yk = X+

k . Then Yk is a nondecreasing convex
function of Xk and hence, by Proposition 2.12, {Yk} is a nonnegative submartingale. Now
apply the submartingale inequality to {Yk}.

An application of the submartingale inequality is the following, which strengthens
Chebyshev’s inequality for partial sums of independent mean-zero random variables.

Theorem 2.23 (Kolmogorov’s inequality). Let X1, X2, . . . be independent r.v.’s with mean
0 and finite variance. Put Sn = X1 + · · ·+Xn. Then for any c > 0,

c2P
(

max
k≤n

Sk ≥ c
)
≤ Var(Sn).

Proof. Since {Sn} is a martingale, {S2
n} is a submartingale and it is nonnegative, with

E(S2
n) = Var(Sn) because E(Sn) = 0. The result now follows directly from the submartin-

gale inequality.

2.2.3 Martingale transforms

Definition 2.24. A process {Cn}n≥1 is previsible if Cn is Fn−1-measurable for each n ≥ 1.

Definition 2.25. Let X = {Xn} be an adapted stochastic process and C = {Cn} a
previsible process. The martingale transform of X by C is the process Y = {Yn} defined
by

Yn =
n∑
i=1

Ci(Xi −Xi−1).

We denote Y = C •X.

Note that if Ci ≡ 1 for all i, we have simply Yn = Xn. The martingale transform C •X
has a gambling interpretation: Let Xi −Xi−1 be your net winnings per unit stake at the
ith game in a sequence of games. Your stake Ci in the ith game should depend only on
the outcomes of the first i − 1 games, hence Ci should be Fi−1-measurable, i.e. the stake
process C is previsible. The r.v. Yn = (C •X)n represents your total fortune immediately
after the nth game. Note that, by definition, Y0 ≡ 0.

Theorem 2.26. Let X = {Xn} be an adapted process and C = {Cn} a previsible process.

(i) If C is nonnegative and uniformly bounded and X is a supermartingale, then C •X
is a supermartingale.
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(ii) If C is uniformly bounded and X is a martingale, then C •X is a martingale.

(iii) If E(C2
n) < ∞ and E(X2

n) < ∞ for all n and X is a martingale, then C • X is a
martingale.

Proof. Write Y = C •X. Since

Yn − Yn−1 = Cn(Xn −Xn−1)

and Cn is Fn−1-measurable, it follows from Theorem 1.100(i) that

E[Yn − Yn−1|Fn−1] = Cn E[Xn −Xn−1|Fn−1] ≤ 0

if X is a supermartingale, or = 0 if X is a martingale. In each of (i)-(iii), the hypothe-
sis implies that Cn(Xn − Xn−1) is integrable, in the last case because of the Hölder (or
Schwartz) inequality.

2.2.4 Convergence theorems

An important question in martingale theory is, when and in what sense we can expect a
(sub-, super-)martingale {Xn} to converge as n → ∞. The first main result is known as
the martingale convergence theorem. We follow Williams, chap. 11.

Definition 2.27. Let X = {Xn} be a stochastic process. Fix N ∈ N, and fix real numbers
a < b. The number of upcrossings UN (a, b) of the interval [a, b] by X in the time interval
[0, N ] is the largest integer m for which there exist indices

0 ≤ s1 < t1 < s2 < t2 < · · · < sm < tm ≤ N

such that
Xsi < a < b < Xti , i = 1, . . . ,m.

Lemma 2.28 (Doob’s Upcrossing Lemma). Let X be a supermartingale. Then

(b− a) E (UN (a, b)) ≤ E
[
(XN − a)−

]
.

Proof. Define a process C = {Cn} by

C1 = I{X0<a}

and for n ≥ 2,
Cn = I{Cn−1=1,Xn−1≤b}+ I{Cn−1=0,Xn−1<a} .

Gambling interpretation: wait until the process falls below a. Then play unit stakes until
the process gets above b. Then stop playing until the process gets back below a, etc.

Note that C is previsible. Define Y = C •X, and verify the inequality

YN ≥ (b− a)UN (a, b)− (XN − a)−. (2.9)

By Theorem 2.26, Y is a supermartingale, and hence, since Y0 = 0, E(YN ) ≤ 0. Taking
expectations on both sides of (2.9) now gives the result.
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Corollary 2.29. Let X be a supermartingale bounded in L1; that is, supn E |Xn| < ∞.
Define U∞(a, b) = limN→∞ UN (a, b) (which exists in Z+∪{∞} since UN (a, b) is increasing
in N). Then

P(U∞(a, b) =∞) = 0. (2.10)

Proof. Note that (XN − a)− ≤ |XN |+ |a|, so Lemma 2.28 implies

(b− a) E (UN (a, b)) ≤ |a|+ E |XN | ≤ |a|+ sup
n

E |Xn|.

Letting N →∞ gives, by MCT,

(b− a) E (U∞(a, b)) ≤ |a|+ sup
n

E |Xn| <∞.

Any r.v. with finite expectation is finite a.s., hence (2.10).

Theorem 2.30 (Martingale Convergence Theorem). Let X be a supermartingale bounded
in L1. Then almost surely, X∞ := limn→∞Xn exists and is finite.

Proof. Let X∗ = lim inf Xn and X∗ = lim supXn. Define

Λ := {Xn does not converge to a limit in [−∞,∞]}.

Then
Λ = {X∗ < X∗} =

⋃
a,b∈Q,a<b

{X∗ < a < b < X∗} =:
⋃

a,b∈Q,a<b
Λa,b.

Now P(Λa,b) = 0 by (2.10), since Λa,b ⊂ {U∞(a, b) = ∞}. Therefore, P(Λ) = 0 so that
X∞ := limn→∞Xn exists a.s. in [−∞,∞]. By Fatous’s lemma,

E|X∞| = E(lim inf |Xn|) ≤ lim inf E |Xn| ≤ sup
n

E |Xn| <∞,

and hence, X∞ is finite almost surely.

Corollary 2.31. Let X be a nonnegative supermartingale. Then almost surely, X∞ :=
limn→∞Xn exists and is finite.

Proof. Check that X is bounded in L1.

The martingale convergence theorem is a good start, but we want more. For instance,
we would like to also be able to conclude that Xn → X∞ in L1 (i.e. E|Xn − X∞| → 0)
and that X∞ is itself “part of” the supermartingale, i.e. E(X∞|Fn) ≤ Xn a.s. To obtain
this stronger conclusion we need a stronger hypothesis. This is where uniform integrability
comes in.

Definition 2.32. A collection C of random variables is uniformly integrable (UI) if for each
ε > 0 there is K > 0 such that

E
(
|X| I{|X|>K}

)
< ε ∀X ∈ C. (2.11)
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Exercise 2.33. If {Xn} is UI, then {Xn} is bounded in L1. Give an example to show that
the converse if false.

Proposition 2.34. Let C be a collection of r.v.’s and suppose that either:

(i) There is p > 1 and A > 0 such that E(|X|p) ≤ A for all X ∈ C (i.e. C is bounded in
Lp); or

(ii) There is an integrable nonnegative r.v. Y such that |X| ≤ Y for all X ∈ C.

Then C is UI.

Proof. Assume (i). If x ≥ K > 0, then x ≤ K1−pxp. Hence for X ∈ C,

E[|X| I{|X|>K}] ≤ K1−p E[|X|p I{|X|>K}] ≤ K1−pA,

and since the last expression tends to 0 as K →∞, it follows that C is UI.
Next, assume (ii). Then for all X ∈ C and K > 0,

E[|X| I{|X|>K}] ≤ E[Y I{Y >K}]→ 0 (K →∞).

Hence, C is UI.

The following theorem is what makes uniform integrability a useful concept.

Theorem 2.35. Let {Xn} be a sequence of r.v.’s such that Xn → X a.s. If {Xn} is UI,
then Xn → X in L1; that is, E|Xn −X| → 0.

Proof. Let ε > 0 be given. Define

ϕK(x) =


−K, x < K

x, |x| ≤ K
K, x > K.

Note that for all x, |ϕ(x)− x| ≤ |x|. Hence we have for each n,

E(|ϕK(Xn)−Xn|) = E[|ϕK(Xn)−Xn| I{|Xn|>K}] ≤ E[|Xn| I{|Xn|>K}]

and likewise,

E(|ϕK(X)−X|) = E[|ϕK(X)−X| I{|X|>K}] ≤ E[|X| I{|X|>K}].

Hence, since {Xn} is UI we can find K so large that

E|ϕK(Xn)−Xn| < ε/3 (n ∈ N)

and
E|ϕK(X)−X| < ε/3.
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Since ϕK is continuous and Xn → X a.s., we also have ϕK(Xn)→ ϕK(X) a.s. And since
ϕK is bounded, the BCT implies the existence of N ∈ N such that, for n ≥ N ,

E|ϕK(Xn)− ϕK(X)| < ε/3.

Hence, by the triangle inequality, we have for n ≥ N ,

E|Xn −X| < ε,

and the proof is complete.

Theorem 2.36. Let {Mn} be a UI martingale. Then M∞ := limn→∞Mn exists a.s. and
Mn →M∞ in L1. Moreover, for each n,

E[M∞|Fn] = Mn a.s. (2.12)

(Of course, the analogous statements hold for UI sub- or supermartingales.) The im-
portant second part of the theorem can be interpreted as saying that M∞ is “part of” the
martingale and is in fact its “last element”. From here on, when considering UI (sub-,
super-)martingales, we will routinely use the fact that M∞ exists and satisfies (2.12).

Proof. Since {Mn} is UI it is bounded in L1, and hence, by the Martingale Convergence
Theorem, M∞ := limn→∞Mn exists and is finite a.s. By Theorem 2.35, Mn →M∞ in L1.
Now for k > n, we have E[Mk|Fn] = Mk, and hence, for F ∈ Fn,

E(Mk IF ) = E(Mn IF ). (2.13)

Now E(Mk IF )→ E(M∞ IF ) because

|E(Mk IF )− E(M∞ IF )| ≤ E(|Mk −M∞| IF ) ≤ E |Mk −M∞| → 0.

Hence, letting k →∞ in (2.13) gives

E(M∞ IF ) = E(Mn IF )

for all F ∈ Fn, and this is equivalent to (2.12).

The last theorem in this section is about convergence of martingales bounded in L2.
A martingale M is an L2-martingale if E(M2

n) < ∞ for each n. L2-martingales have the
special property that their increments are orthogonal (but not independent!); that is, if
s ≤ t ≤ u ≤ v, then

E [(Mv −Mu)(Mt −Ms)] = 0. (2.14)

To see this, note that E[Mv|Fu] = Mu a.s., or equivalently,

E[Mv −Mu|Fu] = 0 a.s.
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Thus (since Mt −Ms is Fu-measurable),

E [(Mv −Mu)(Mt −Ms)] = E [E [(Mv −Mu)(Mt −Ms)|Fu]]
= E [(Mt −Ms) E [Mv −Mu|Fu]]
= 0.

In view of (2.14), any L2-martingale satisfies

E(M2
n) = E(M2

0 ) +
n∑
i=1

E[(Mi −Mi−1)2]. (2.15)

Say a martingale M is bounded in L2 if supn E(M2
n) <∞.

Theorem 2.37. Let M be an L2-martingale.

(i) M is bounded in L2 if and only if
∞∑
n=1

E[(Mn −Mn−1)2] <∞.

(ii) If M is bounded in L2, then M∞ = limn→∞Mn exists and is finite almost surely, and
Mn →M∞ in L2.

Proof. Statement (i) is obvious from (2.15). For (ii), note first that if M is bounded in
L2, then M is bounded in L1 (why?), so the martingale convergence theorem implies the
existence of M∞. Now for r ∈ N, the orthogonal increment property (2.14) gives

E[(Mn+r −Mn)2] =
n+r∑
i=n+1

E[(Mi −Mi−1)2].

Hence, by Fatou’s lemma,

E[(M∞ −Mn)2] ≤
∞∑

i=n+1

E[(Mi −Mi−1)2].

Since the right hand side is the tail of a convergent series, we conclude

lim
n→∞

E[(M∞ −Mn)2] = 0,

in other words, Mn →M∞ in L2.

Exercise 2.38. Show that if M is a martingale bounded in L2, then

E[(M∞ −Mn)2] =
∞∑

i=n+1

E[(Mi −Mi−1)2].

(Hint: Write M∞−Mn = (M∞−Mn+r)+(Mn+r−Mn). Expand the square, and consider
what happens upon lettig r →∞. The Schwartz (or Hölder) inequality could be helpful.)

Remark 2.39. Since the orthogonal increments play a crucial role in the above proof,
Theorem 2.37 has no analog for sub- or supermartingales in L2.
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2.2.5 Doob decomposition and the angle-bracket process

Theorem 2.40. Let X = {Xn} be an adapted process. Then there exist a martingale
M = {Mn} and a previsible process A = {An} with M0 = A0 = 0 such that

Xn = X0 +Mn +An, n ≥ 0. (2.16)

If X = X0 + M̃ + Ã is another such decomposition, then

P(Mn = M̃n and An = Ãn ∀n) = 1.

We call (2.16) the Doob decomposition of X. If in addition X is a submartingale, then A
is almost surely increasing; that is,

P(An+1 ≥ An ∀n) = 1.

Proof. Suppose martingale M and previsible A satisfy (2.16) and are null at zero. Then

E[Xn −Xn−1|Fn−1] = E[Mn −Mn−1|Fn−1] + E[An −An−1|Fn−1] = An −An−1 a.s.

Thus (since A0 = 0) with probability one,

An =
n∑
i=1

E[Xi −Xi−1|Fi−1], n = 1, 2, . . . ,

and then, of course,

Mn = Xn −X0 −An = (Xn −X0)−
n∑
i=1

E[Xi −Xi−1|Fi−1].

This proves the a.s. uniqueness of M and A. Conversely, if we define An and Mn as in the
above equations, it is easy to see that A is previsible and M is a martingale.

Now let X be a martingale with X0 = 0 and E(X2
n) < ∞. Then X2 is a martingale,

and has (a.s. unique) Doob decomposition

X2
n = Mn +An,

where M is a martingale and A an increasing, previsible process, both null at zero. Since
A is increasing, the limit A∞ := limn→∞An exists. Finiteness of A∞ is associated with
convergence of the martingale X; see Williams, sec. 12.13. The process A is often written
〈X〉 and is called the angle-bracket process associated with X.
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2.2.6 Improved OSTs

The Optional Stopping Theorem and Optional Sampling Theorem in Subsection 2.2.1
impose strong conditions on the stopping time τ , but relatively weak conditions on the
(sub-, super-)martingale X. In this subsection we aim to do the opposite. It turns out
that the “right” condition on X is uniform integrability. Here we follow Williams, chap.
A14.

Lemma 2.41. Let X be a submartingale and τ a stopping time with τ ≤ N , where N ∈ N.
Then E|Xτ | <∞ and

E[XN |Fτ ] ≥ Xτ a.s.

Proof. That E|Xτ | <∞ follows since

|Xτ | ≤ max{|X1|, . . . , |XN |} ≤ |X1|+ · · ·+ |Xn|.

The displayed inequality is a special case of Theorem 2.21. (Take τ2 ≡ N and τ1 = τ
there.)

Theorem 2.42 (Doob).

(i) Let M be a UI martingale (so M∞ exists!). Then for any stopping time τ ,

E[M∞|Fτ ] = Mτ a.s. (2.17)

(ii) If X is a UI submartingale and τ is any stopping time, then

E[X∞|Fτ ] ≥ Xτ a.s.

(iii) If X is a UI supermartingale and τ is any stopping time, then

E[X∞|Fτ ] ≤ Xτ a.s.

Proof. By Theorem 2.36 and Lemma 2.41, we have for k ∈ N,

E[M∞|Fk] = Mk, E[Mk|Fτ∧k] = Mτ∧k

(since τ ∧ k is a stopping time bounded by k). Thus, the tower law gives

E[M∞|Fτ∧k] = Mτ∧k. (2.18)

Check that if A ∈ Fτ , then A ∩ {τ ≤ k} ∈ Fτ∧k, so (2.18) gives∫
A∩{τ≤k}

M∞ dP =
∫
A∩{τ≤k}

Mτ∧k dP =
∫
A∩{τ≤k}

Mτ dP . (2.19)
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We would like to let k →∞ in this equation and conclude that∫
A∩{τ<∞}

M∞ dP =
∫
A∩{τ<∞}

Mτ dP . (2.20)

The problem is, that we do not yet know if Mτ is integrable, so the DCT can not be applied
directly. But for given F ∈ Fτ , we can take A = F ∩ {τ ≤ k} ∩ {Mτ ≥ 0} in (2.19). This
set lies in Fk because Mτ is Fτ -measurable, so F ∩ {Mτ ≥ 0} ∈ Fτ . We now obtain∫

F∩{τ≤k}∩{Mτ≥0}
M∞ dP =

∫
F∩{τ≤k}

M+
τ dP . (2.21)

The right hand side of this tends by MCT to∫
F∩{τ<∞}

M+
τ dP,

and the left hand side tends by DCT to∫
F∩{τ<∞}∩{Mτ≥0}

M∞ dP,

since we already know that M∞ is integrable. Hence∫
F∩{τ<∞}

M+
τ dP =

∫
F∩{τ<∞}∩{Mτ≥0}

M∞ dP, (2.22)

and this shows at the same time that the integral on the left is finite. In the same way, we
can show ∫

F∩{τ<∞}
M−τ dP = −

∫
F∩{τ<∞}∩{Mτ<0}

M∞ dP, (2.23)

so that
∫
F∩{τ<∞}M

−
τ dP is finite as well. But then, we can subtract (2.22) and (2.23) from

each other and conclude ∫
F∩{τ<∞}

Mτ dP =
∫
F∩{τ<∞}

M∞ dP .

Of course, we also have ∫
F∩{τ=∞}

Mτ dP =
∫
F∩{τ=∞}

M∞ dP,

and hence, ∫
F
Mτ dP =

∫
F
M∞ dP,

as desired. This proves (i).
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Next, let X be a UI submartingale. Then X has Doob decomposition X = X0 +M+A,
where M is a martingale and A is increasing. Since X is bounded in L1 and M is a
martingale, it follows that A is bounded in L1 and therefore, E(A∞) <∞. Thus, A is UI
and as a result, M is UI as well. We now obtain

E[X∞|Fτ ] = X0 + E[M∞|Fτ ] + E[A∞|Fτ ] ≥ X0 +Mτ + E[Aτ |Fτ ] = Xτ .

This gives (ii). Finally, (iii) follows from (ii) in the usual way, by considering the process
−X.

Corollary 2.43 (Optional Sampling Theorem). If M is a UI martingale and σ and τ are
stopping times with σ ≤ τ , then

E[Mτ |Fσ] = Mσ a.s.

The analogous statements hold for UI sub- and supermartingales.

Proof. From (2.17) and the tower law, we obtain

E[Mτ |Fσ] = E[E[M∞|Fτ ]|Fσ] = E[M∞|Fσ] = Mσ.

Corollary 2.44 (Optional Stopping Theorem). Let M be a UI martingale and τ a stopping
time. Then Mτ is integrable, and

E(Mτ ) = E(M0).

The analogous statements hold for UI sub- and supermartingales.

Proof. That Mτ is integrable follows from (2.17) and the conditional form of Jensen’s
inequality. Apply the previous corollary with σ = 0 to get E(Mτ ) = E(M0). If X is a
UI sub- or supermartingale, integrability of Xτ follows from the Doob decomposition of X
and the argument in the proof of Theorem 2.42.

Note that Corollary 2.44 does not render Theorem 2.19 redundant: part (iii) of that
theorem, which applies to random walks, does not follow from Corollary 2.44!

2.3 Gambler’s ruin

See Klebaner, p. 194.
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2.4 Markov chains

Definition 2.45. Let S be a countable (perhaps finite) set. A Markov chain with state
space S is a stochastic process {Xn}n∈Z+ such that Xn ∈ S for each n, and

P(Xn+1 = j|X0 = i0, X1 = i1, . . . , Xn = in) = P(Xn+1 = j|Xn = in), (2.24)

for all i0, i1, . . . , in, j ∈ S. The Markov chain is called time-homogeneous if P(Xn+1 =
j|Xn = i) does not depend on n. In that case, we write

pij = P(Xn+1 = j|Xn = i), i, j ∈ S.

We call the distribution of X0 the initial distribution of the chain and pij the transition
probabilities.

For a time-homogenous Markov chain, the initial distribution and the transition prob-
abilities pij together determine the finite-dimensional distributions of the process by the
usual multiplication rule. We often put the pij in a matrix called the transition matrix of
the Markov chain, with pij being the entry in the ith row and jth column. Note that the
row sums of the matrix are equal to 1.

The defining condition of a Markov chain (2.24) can be stated more compactly as

P(Xn+1 = j|X0, . . . , Xn) = P(Xn+1 = j|Xn).

More generally, a real-valued stochastic process {Xn} is called a Markov process if for each
Borel set B in R,

P(Xn+1 ∈ B|X0, . . . , Xn) = P(Xn+1 ∈ B|Xn),

and the process is time-homogeneous if this probability is independent of n.

Example 2.46. Simple random walk is a time-homogeneous Markov chain with state space
Z. More generally, if X1, X2, . . . are i.i.d. random variables and Sn = X1 + · · ·+Xn, then
{Sn} is in general not a Markov chain (because it doesn’t have a countable state space,
unless Xi is discrete), but it is a Markov process.

Example 2.47 (Random walk with absorbing boundaries). Let {Xn} be a Markov chain
with state space {0, 1, . . . , N} and transition matrix

P =



1 0 0 . . . 0
q 0 p . . . 0
0 q 0 p . . . 0
...

. . . . . . . . .
...

0 . . . q 0 p
0 . . . 0 0 1


(where q = 1 − p). Since p00 = pNN = 1, we call 0 and N absorbing states. The chain
behaves just like a random walk until it reaches one of these states, then it stays there
forever.



2.4. MARKOV CHAINS 53

Other examples of Markov chains include higher-dimensional random walks as well as
branching processes, birth-death processes, the Ehrenfest model, etc.

The theory of Markov chains revolves mostly around classification of states (recurrent
or transient) and existence and uniqueness of limiting distributions. We will not really use
Markov chains in this course, but will occasionally refer to the “Markov property” of a
process. A particularly important aspect of Markov chains for our purposes is that they
possess the so-called strong Markov property: If X = {Xn} is a Markov chain and τ is a
stopping time relative to the natural filtration of X, then

P(Xτ+1 = j|X0 = i0, X1 = i1, . . . , Xτ−1 = iτ−1, Xτ = i) = P(Xτ+1 = j|Xτ = i) = pij ,
(2.25)

for all i0, i1, . . . and j in S.

Exercise 2.48. Prove the strong Markov property (2.25). (Hint: partition over the values
of τ , and use the fact that {τ = n} ∈ σ({X0, . . . , Xn}).)


