1. Describe all solutions of the equation $A \mathbf{x}=\mathbf{0}$ in parametric vector form, where A is row-equivalent to the matrix

$$
\left[\begin{array}{cccccc}
1 & 3 & 2 & 1 & 2 & 3 \\
0 & 0 & 1 & 1 & 0 & 3 \\
0 & 0 & 0 & 1 & -1 & 1
\end{array}\right]
$$

2. Let

$$
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{c}
1 \\
-3 \\
3
\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right], \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{c}
-1 \\
h \\
4
\end{array}\right]
$$

For which value(s) of h is \mathbf{b} in the plane spanned by $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$?
3. Describe (by an equation and geometrically), the set of all vectors \mathbf{b} in \mathbf{R}^{3} for which the system is consistent.

$$
\begin{aligned}
x_{1}+3 x_{2} & =b_{1} \\
-x_{1}-x_{2}-x_{3} & =b_{2} \\
3 x_{1}+7 x_{2}+x_{3} & =b_{3}
\end{aligned}
$$

4. Determine whether the columns of A are linearly independent:
a) $A=\left[\begin{array}{ccc}1 & -1 & 7 \\ 3 & 1 & 13 \\ 2 & 3 & 4 \\ 5 & 7 & 11\end{array}\right]$
b) $A=\left[\begin{array}{ccccc}1 & 2 & 1 & 13 & 0 \\ -1 & 5 & -6 & 3 & 8 \\ 0 & 7 & 12 & 3 & 1\end{array}\right]$
5. Let

$$
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}
3 \\
4
\end{array}\right], \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{c}
5 \\
-5
\end{array}\right] .
$$

a) Express \mathbf{b} as a linear combination of $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$.
b) Suppose A is a matrix such that

$$
A\left[\begin{array}{c}
2 \\
-1 \\
3
\end{array}\right]=\mathbf{v}_{\mathbf{1}}, \quad \text { and } \quad A\left[\begin{array}{c}
-4 \\
2 \\
2
\end{array}\right]=\mathbf{v}_{\mathbf{2}}
$$

What is the size of A ?
c) Let A be the same matrix as in part b). Find a vector \mathbf{x} in \mathbf{R}^{3} such that

$$
A \mathbf{x}=\left[\begin{array}{c}
5 \\
-5
\end{array}\right]
$$

Explain which general property you are using. (Hint: see part a).)
6. An economy has three sectors: Chemicals, Fuels and Machinery. Chemicals sells 40% of its output to Fuels and 40% to Machinery, and retains the rest. Fuels sells 70% of its output to Chemicals and 30% to Machinery. Machinery sells 50% of its output to Chemicals and 30% to Fuels, and retains the rest.
a) Construct an exchange table for this economy.
b) Set up a system of equations that lead to equilibrium prices at which each sector's income matches its expenses. Write the augmented matrix for the system. Do not solve the system!
7. Let A be an $m \times n$ matrix, and let $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ be a linearly dependent set in \mathbf{R}^{n}. Prove that the set $\left\{A \mathbf{v}_{\mathbf{1}}, A \mathbf{v}_{\mathbf{2}}, A \mathbf{v}_{\mathbf{3}}\right\}$ is linearly dependent. (Hint: use a dependence relation between $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ and $\mathbf{v}_{\mathbf{3}}$.)
8. Extra credit!! Suppose A is a 3×3 matrix and \mathbf{y} is a vector in \mathbf{R}^{3} such that the equation $A \mathbf{x}=\mathbf{y}$ does not have a solution. Does there exist a vector \mathbf{z} in \mathbf{R}^{3} such that the equation $A \mathbf{x}=\mathbf{z}$ has a unique solution? Explain!

